

Making Rails More
(Artificially) Intelligent

Partially supported by Ministerio de Educación y Ciencia
and the Fondo Social Europeo PTA-CTE/1370/2003

Santiago Bel
Sergio Espeja

Artificial Intelligence

 "The science and
engineering of
making intelligent
machines", John
McCarthy

 Algorithms that
solve ”intelligent”
problems

What are we going to see?

 Bayesian Networks
Predicts if attendants will fall asleep

 Naive Bayes Classifier
Email classification for customer services.

 Genetic Algorithms
Optimize web page revenue from

advertisements

Bayesian Networks

 Causal networks
Cause Effect

 2 components:
Acyclic graph
Probability

distributions set

 Inference

Ruby and Bayesian Networks
 sbn, Simple Bayesian Networks

http://sbn.rubyforge.org/
Carl Youngblood, 2007

 bn4r, Bayesian Networks for Ruby
http://bn4r.rubyforge.org/
Sergio Espeja, 2006

 Install the library
gem install bn4r

http://sbn.rubyforge.org/
http://bn4r.rubyforge.org/

Bayes predictor: Are you going to
fall asleep?

Photo by Jarkko Laine
http://www.flickr.com/people/jarkko/

Delayed Flight Lots of beer
last night

Attendant is
tired

Attendant
falls asleep

Speaker
had

lots of beer
yesterdayMonotone

Speech
The topic is
interesting

Attendant is
bored

Bayes predictor: Are you going to
fall asleep?

Delayed FlightLots of beer
last night

Speaker
had

lots of beer
yesterdayMonotone

Speech
The topic is
interesting

Attendant is
bored

Attendant is
tired

Attendant
falls asleep

Create BayesNet
bn = BayesNet.new

Create nodes for the Bayes Net (BayesNetNodes)
bn.add_vertex(delayed = BayesNetNode.new("DelayedFlight"))
bn.add_vertex(att_hangover = BayesNetNode.new(“LotsOfBeerLastNight"))
…
bn.add_vertex(asleep = BayesNetNode.new(“AttendantFallsAsleep"))

Bayes Net creation

Delayed FlightLots of beer
last night

Speaker
had

lots of beer
yesterdayMonotone

Speech
The topic is
interesting

Attendant is
bored

Attendant is
tired

Attendant
falls asleep

Add relations (edges) between nodes in the BayesNet
bn.add_edge(delayed, tired)
bn.add_edge(att_hangover, tired)
…
bn.add_edge(tired, asleep)
bn.add_edge(bored, asleep)

Bayes Net creation (edges)

Delayed FlightLots of beer
last night

Attendant is
tired

Attendant
falls asleep

Probability Distribution Tables

0.7P(delay=false)

0.3P(delay=true)

0.8P(att_hangover=false)

0.2P(att_hangover=true)

0.950.20.30.05P(tired=false)

0.050.80.70.95P(tired=true)

!delay &

!att_hangover

!delay &

att_hangover

delay &

!att_hangover

delay &

att_hangover

Assign probabilities to each node
delayed.set_probability_table([], [0.3, 0.7])
att_hangover.set_probability_table([], [0.2, 0.8])

tired.set_probability_table([delay, att_hangover], [0.95,
0.05, 0.7, 0.3, 0.8, 0.2, 0.05,0.95])

Solve

Delayed Flight Lots of beer
last night

Speaker
had

lots of beer
yesterday

Monotone
Speech

The topic is
interesting

Attendant is
bored

Attendant is
tired

Attendant
falls asleep

delayed.set_value(true)

interesting_topic.set_value(true)

speaker_hangover.set_value(false)

is_attendant_sleeping = bn.enumeration_ask (asleep, [delayed, interesting_topic,
speaker_hangover])

P(is_attendant_sleeping=true| delayed, interesting_topic, speaker_hangover) = 0.1
P(is_attendant_sleeping=false| delayed, interesting_topic, speaker_hangover) = 0.9

Hey! You are breaking the
probabilities!

Photo by Jarkko Laine
http://www.flickr.com/people/jarkko/

require "rubygems“
require "bn4r“

Create BayesNet
bn = BayesNet.new

Create nodes for the Bayes Net (BayesNetNodes)
bn.add_vertex(delayed = BayesNetNode.new("DelayedFlight"))
bn.add_vertex(att_hangover = BayesNetNode.new("LotsOfBeerLastNight"))
bn.add_vertex(tired = BayesNetNode.new("AttendantIsTired"))
bn.add_vertex(speaker_hangover = BayesNetNode.new("SpeakerHadLotsOfBeerYesterday"))
bn.add_vertex(monotone_speech = BayesNetNode.new("MonotoneSpeech"))
bn.add_vertex(interesting_topic = BayesNetNode.new("TheTopicIsInteresting"))
bn.add_vertex(bored = BayesNetNode.new("AttendantIsBored"))
bn.add_vertex(asleep = BayesNetNode.new("AttendantFallsAsleep"))

Add relations (edges) between nodes in the BayesNet
bn.add_edge(delayed, tired)
bn.add_edge(att_hangover, tired)
bn.add_edge(tired, asleep)
bn.add_edge(speaker_hangover, monotone_speech)
bn.add_edge(monotone_speech , bored)
bn.add_edge(interesting_topic, bored)
bn.add_edge(bored, asleep)

Assign probabilities to each node
delayed.set_probability_table([], [0.3, 0.7])
att_hangover.set_probability_table([], [0.2, 0.8])
tired.set_probability_table([delayed, att_hangover], [0.95, 0.05, 0.7, 0.3, 0.8, 0.2, 0.05,0.95])
speaker_hangover.set_probability_table([], [0.5, 0.5])
monotone_speech.set_probability_table([speaker_hangover], [0.9, 0.1, 0.1, 0.9])
interesting_topic.set_probability_table([], [0.95, 0.05])
bored.set_probability_table([monotone_speech, interesting_topic], [0.6, 0.4, 0.95, 0.05, 0.05,
0.95, 0.8, 0.2])
asleep.set_probability_table([tired, bored], [0.9, 0.1, 0.3, 0.7, 0.4, 0.6, 0.05,0.95])

Assign observed values
delayed.set_value(true)
interesting_topic.set_value(true)
speaker_hangover.set_value(false)

Ask the network
is_attendant_sleeping = bn.enumeration_ask (monotone_speech, [delayed, interesting_topic,
speaker_hangover])

Print probabilities
p is_attendant_sleeping
puts "true --> " +
(is_attendant_sleeping[0]/(is_attendant_sleeping[0]+is_attendant_sleeping[1])).to_s
puts "false --> " +
(is_attendant_sleeping[1]/(is_attendant_sleeping[0]+is_attendant_sleeping[1])).to_s

Naïve Bayes Classifier

 Applies the Bayes Rule
with naïve
independence
assumptions

 Classes must be
known

 Requires training

Photo by Aya Walraven Otake
http://www.flickr.com/people/ayalan/

Ruby and Bayesian classifiers

 Install the library
gem install classifier

 Ruby Classifier - Bayesian and LSI
classification library
http://classifier.rubyforge.org/

Lucas Carlson, David Fayram II.

http://classifier.rubyforge.org/

Naïve Bayes example:

 Hosting provider customer services
 Depending on mail subject, send the email:

To Technical Department
To Commercial Department

 We need a training set with mail subjects
already classified as “Technical” or
“Commercial”

Working on our classifier (I)

 Create the classifier
require 'rubygems'
require 'stemmer'
require 'classifier'

Create the classifier
classifier = Classifier::Bayes.new('Technical', 'Commercial')

Training Sets (I)
 Commercial training set

commercial =
["I already payed this invoice.",
"Do you have any discount for 1 year contract?",
"Do you have discounts?",
"Do you have any affiliate schema?",
"This is my new VISA no",
"I cannot see my invoices",
"When is finishing my free period?",
"I have a friend that is interested in your services, will you make us any offer?",
"I didn't use your services last mont. I shouldn't be charged",
"Do you have any kind of warranty?",
"Is it possible to freeze my account and continue after holidays?",
"I don't want to continue with your services.",
"Great service! Can I upgrade my account?",
"Where are the differences between shared and private hosting?"]

Training Sets (II)
 Technician training set

technician =
["I have limit of quoata exceeded and I cannot see my mail.",
"Is your ftp server working correctly?",
"My mails get delayed too much when my php application sends them.",
"I cannot read my mail",
"I cannot connect to the ftp server.",
"I cannot upload to the ftp server",
"My rails application is not working in your server.",
"Can I use background processes in the shared hosting?",
"Can I install this gem?",
"My php app is not working",
"Can you setup a ssl cert for me please?",
"I cannot connect to my server.",
"How can I connect to subversion?"]

Working on our classifier (II)

 Train the classifier

Train the classifier
technician.each { |technician| classifier.train_Technical technician }
commercial.each { |commercial| classifier.train_Commercial commercial }

Working on our classifier (III)

 Use It!
puts classifier.classify "How can I connect to my ftp account?“
-> Technical
puts classifier.classify "Is a private account better?“
-> Commercial
puts classifier.classify "Do you have available rails framework?“
-> Technical
puts classifier.classify "How much is your shared hosting for a whole year?"
-> Commercial
puts classifier.classify "I didn't get my discount in the last invoice. Is there something
wrong?"
-> Commercial
puts classifier.classify "Connection Timeout in my ftp connections“
-> Technical
puts classifier.classify "Which is my email outgoing server?“
-> Technical

Genetic Algorithms

 Based on Darwin’s
evolution theory.

 Evolve to find exact
or aproximate
optimal solutions to
problems

Photo by John Mu

http://www.flickr.com/people/jm123467890/

Useful GA example

 Optimize
advertisement revenue
in your website

 It’s done automatically
and without human
supervision

 Find optimal ad
combinations

Darwin’s Evolution Theory…

 There is a population (set of
individuals)

 Only best-fit individuals
survive

 Individuals combine
between them to produce
new generations

 Natural mutations introduce
new peculiarities in the
population

GA Requirements

 Individual Data Representation
How do we manage the real data for each

individual?

 Fitness function:
When is an individual better than another

one?

 Recombine method
How to create new “child” individuals?

 Mutate method
How to introduce new peculiarities into the

population?

Ruby and Genetic Algorithms

 Gga4r, General Genetic Algorithms for
Ruby
http://gga4r.rubyforge.org/
Sergio Espeja, 2007

 Install the library
gem install gga4r

http://gga4r.rubyforge.org/

Individual representation
 Every ad position is represented in a vector
 Each position can have different ad versions

1

2

5

4

3 ad7Xad3ad9X

54321

 Objective:

Get the best ad combination -> the best vector

Individual Data Representation

 AdsVector Class.

class AdsVector < Array
 attr_accessor :clicks, :prints

 def initialize(value)
 super(value)
 clear
 end

 def clear
 @clicks = 0
 @prints = 0
 end
end

 Array that stores the ad
combination

 It keeps control of prints and
clicks

Fitness function
 In this case an ad combination is better when

reaches more CTR (Click Through Ratio).

class AdsVector < Array
 attr_accessor :clicks, :prints

 def fitness

 @clicks.to_f/@prints.to_f
 end
end

Recombine method

 A random position in
the vector is decided.
Then, the 2 combined
vectors are mixed into
2 new “child” vectors.

ad7Xad3ad9X

54321

ad5ad4ad3ad9X

54321

ad5ad4ad3ad2ad1

54321

ad7Xad3ad2ad1

54321

Parents Children

def recombine(c2)
 cross_point = (rand * c2.size).to_i
 c1_a, c1_b = self.separate(cross_point)
 c2_a, c2_b = c2.separate(cross_point)
 [AdsVector.new(c1_a + c2_b),
 AdsVector.new(c2_a + c1_b)]
end

Mutate method

 A random ad is placed in a random position
sometimes getting new individual
configurations.

ad7ad2ad3ad9X

54321

ad7ad1ad3ad9X

54321

ADS = %w{ NONE AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 }

def mutate
 mutate_point = (rand * self.size).to_i
 self[mutate_point] = ADS[(rand * ADS.size).to_i]
end

GA Initialization and running

 Create initial population (mainly randomly)
 GA Object creation with the initial

population.
 Running: Evolve and check for the best

individuals.

Let it play: Create the initial
population

NUM_POSITIONS = 5
ADS = %w{ NONE AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 }
MAX_POPULATION = 20

def create_initial_population
 num_initial_pop = MAX_POPULATION
 initial_population = []

 num_initial_pop.times do
 individual = AdsVector.new NUM_POSITIONS
 individual.each {|pos, i| individual[i] = ADS[(rand * ADS.size).to_i]}
 initial_population << individual
 end

 return initial_population
end

Let it play: Create the GA Object

@ads_ga = GeneticAlgorithm.new(create_initial_population,
 :max_population => MAX_POPULATION)

Let it play: Evolve and check for
the best individual

@ads_ga.evolve

one_best_fit = @ads_ga.best_fit.first

What’s missing?
 In order to evaluate the fitness function it is

required to count ad’s prints and clicks.

@total_prints = 0

def on_print(individual_id)
 @ads_ga.generations[-1][individual_id].prints += 1
 @total_prints += 1
end

def on_click(individual_id)
 @ads_ga.generations[-1][individual_id].clicks += 1
end

Simulation
Simulates a search for the best ad,
In this simulations an ad combination has more probabilities
of being clicked when has more coincidences v[i] = Ad_i
[Ad1, Ad2, NONE, NONE, NONE] is better than [Ad2, Ad1, NONE, NONE, NONE]
def search_best_ads_simulation
 1000.times do |t|
 (@ads_ga.generations[-1].size).times do |individual_id|
 50.times do
 on_print(individual_id)
 prob = 0.0
 @ads_ga.generations[-1][individual_id].each_with_index do |ad, pos|
 prob += 1.0/NUM_POSITIONS.to_f if "AD#{pos+1}" == ad
 end
 on_click(individual_id) if rand < prob
 end
 end
 puts "Evolution " + @ads_ga.generations.size.to_s
 one_best_fit = @ads_ga.best_fit.first
 puts "Best fitness = #{one_best_fit.fitness}"
 p one_best_fit
 puts "-"*50
 @ads_ga.evolve
 @ads_ga.generations[-1].each { |individual| individual.clear }
end
end

Conclusions…

 AI in web applications is more than spam
detection.

 Don’t be afraid of AI (at least by now…)
 It’s very easy to use.
 Think about it. AI can improve your web

applications.

Questions?

Thanks!

Code and more info at bee.com.es

http://bee.com.es/

