
A Small Talk on Getting Big.
Scaling a Rails App & all that Jazz.

Good Dog Picture.

Medium Dog.

Bad Dog Picture.

How did this Happen?

Mongrel Picture.

Too Much Time in the Application.
Too Much Time in the Database.

A Really Cool Trick

class ApplicationController < ActionController:Base
include ResponseManagementAdditions
after_filter :show_runtimes

around_filter { |controller, action| controller.total_runtime =
Benchmark.measure(&action).real }

end

A Really Cool Trick

module ResponseManagementAdditions
 def show_runtimes
 return if response.headers['Status'] == '304 Not Modified' || !
(response.body && response.body.respond_to?(:sub!))

 db_runtime = ((0 + (@db_rt_before_render || 0) +
(@db_rt_after_render || 0)) * 1000).truncate
 rendering_runtime = ((@rendering_runtime || 0) * 1000).truncate
 total_runtime = ((@total_runtime || 0) * 1000).truncate

 response.body.gsub!(/<\/body><\/html>$/, "<!-- served to you
through a copper wire by #{HOSTNAME} at
#{Time.now.to_s(:short)} in #{total_runtime} ms (d #{db_runtime} / r
#{rendering_runtime}). thank you, come again. -->
\n</body></html>")
 end
end

Two Ways People Design Sites.

Over-architect.
Under-architect.

Move Fast. Scale Quickly.

Too Much Time in the Application.

Abstract Long Running Processes
to Daemons.

An Ugly but Amazingly Simple Queuing
System.

class FooDaemon < TwitterDaemon::Base
 before_startup :set_fugly_dist_idx

 def process
 unprocessed_content do |c|
 increment_counter(:total)

 # Do work ...

 break unless running?
 end
 end

 ...

...

def unprocessed_content(&block)
 loop do
 content = ContentModel.pending_content("substring(truncate(id,
0),-2,1) = #{@fugly_dist_idx}")
 messages.each { |message| yield message }
 sleep 1 if messages.nil? || messages.empty?
 end
 end

 def set_fugly_dist_idx
 @fugly_dist_idx = ARGV.find { |v| v.match(/[0-9]/) }
 raise "You need to specify a dist idx between 0 and 9." unless
@fugly_dist_idx
 @fugly_dist_idx = @fugly_dist_idx.to_i
 end
end

A Better Queuing System.

Starling.

Distributed Queuing.
Transactional Playback.

Fast.
Simple.

Speaks Memcache's Language.
100% Pure Ruby.

Not Open Source.

(yet ...)

Too Much Time in the Database.

The Basics. Database 101.
(I shouldn't need this slide in here.)

Index everything you will query on.
Avoid complex joins.

Use joint indices when you must join tables.
Avoid scanning large sets of data.

Cache.

Cache.

Cache.

CACHE!

 But How?
That Sounds Hard.

Turns Out it Isn't.

Serialize, Denormalize.

class User < ActiveRecord::Base
 serialize :following_ids

 def following_ids
 # this accessor is overwritten because we want to lazily set the
 # friends_ids column, rather than running a gigantic slow migration.
 RAILS_DEFAULT_LOGGER.debug "loading following_ids"
 ids = read_attribute(:following_ids)

 if ids.nil? || !ids.kind_of?(Array)
 ids = connection.select_values("SELECT DISTINCT followed_user_id
FROM followed_users WHERE user_id =
#{self.id}").map(&:to_i).compact
 update_attribute(:following_ids, ids)
 end

 ids
 end

 ...

 def following_ids_add(the_id)
 ids = self.following_ids.dup
 ids << the_id
 write_attribute(:following_ids, ids)
 end

 def following_ids_delete(the_id)
 ids = self.following_ids.dup
 ids.delete(the_id)
 write_attribute(:following_ids, ids)
 end

end # End Class

Oh yeah, and Cheat.
(It's ok!)

Thing about your application.
How can you cheat and get away

with it?

Is your data delivered in real time?
Is your data static content?

How do users interact?

Interestingness.
(Little things that don't deserve other space.)

It's OK to use Monit to kill processes
if they get too big.

Ensure you can deploy frequently.

Ensure you can roll back easily.

Scale where it matters.

Some code is ugly. It's OK.
(who needs a hug?)

Ensure your users can give feedback
easily.

Use the Community.

Make an API.
(Scale your Developer-base.)

We run on Edge (but with Piston).

A Cool Trick. Gems in Vendor.

Rails::Initializer.run do |config|

 # Load Gems from the /vendor/gems folder first, if they exist.
 config.load_paths += Dir["#{RAILS_ROOT}/vendor/gems/**"].map do |dir|
 File.directory?(lib = "#{dir}/lib") ? lib : dir
 end

 ...

Personal Pet Peeve.

It's 2007. Every spammer has your email address.
Put it on your goddamn webpage so people can

get ahold of you about interesting things.

Questions?

Britt Selvitelle

IM & Email
anotherbritt@gmail.com

mailto:anotherbritt@gmail.com

