A Small Talk on Getting Big.
Scaling a Rails App & all that Jazz.

=i

How did this Happen?

=

maongrel cluster

HTTF REequests

Apache 2.2

mod_proxy _balancer

mongrel
instance

mongrel
instance

mongrel
instance

mongrel
instance

Too Much Time in the Application.
Too Much Time in the Database.

=i

A Really Cool Trick

class ApplicationController < ActionController:Base
include ResponseManagementAdditions
after_filter :show_runtimes

around_filter { [controller, action| controller.total _runtime =
Benchmark.measure(&action).real }
end

A Really Cool Trick

module ResponseManagementAdditions
def show_runtimes
return if response.headers['Status'] == '304 Not Modified' || !
(response.body && response.body.respond _to?(:sub!))

db_runtime = ((0 + (@db_rt_before render || 0) +

(@db_rt_after _render || 0)) * 1000).truncate
rendering_runtime = ((@rendering_runtime || 0) * 1000).truncate
total _runtime = ((@total_runtime || 0) * 1000).truncate

response.body.gsub!(/<\/body><\/htmI>$/, "<!-- served to you
through a copper wire by #{HOSTNAME} at
#{Time.now.to_s(:short)} in #{total runtime} ms (d #{db_runtime} /r
#{rendering_runtime}). thank you, come again. -->
\n</body></htmI>")
end
end

=

Two Ways People Design Sites.

Over-architect:
Under-architect.

=

Move Fast. Scale Quickly.

=i

Too Much Time in the Application.

=i

Abstract Long Running Processes
to Daemons.

=

An Ugly but Amazingly Simple Queuing
System.

=

class FooDaemon < TwitterDaemon::Base
before_startup :set fugly dist idx

def process
unprocessed_content do |c|
increment_counter(:total)

Do work ...

break unless running?
end
end

=i

def unprocessed_content(&block)
loop do
content = ContentModel.pending_content("substring(truncate(id,
0),-2,1) = #{@fugly_dist_idx}")
messages.each { |message| yield message }
sleep 1 if messages.nil? || messages.empty?
end
end

def set_fugly dist _idx
@fugly_dist_idx = ARGV.find { |v| v.match(/[0-9]/) }
raise "You need to specify a dist idx between 0 and 9." unless
@fugly_dist_idx
@fugly_dist_idx = @fugly dist_idx.to i
end
end

=i

A Better Queuing System.

=i

Starling.

=

Distributed Queuing.
Transactional Playback.

Fast.
Simple.

Speaks Memcache's Language.

100% Pure Ruby.

=i

Not Open Source.

=

Too Much Time in the Database.

=i

The Basics. Database 101.
(I shouldn't need this slide in here.)

=i

Index everything you will query on.
Avoid complex joins.

Use joint indices when you must join tables.

Avoid scanning large sets of data.

=i

Cache.

=

Cache.

Cache

CACHE!

But How?
That Sounds Hard.

=

Turns Out it Isn't.

=

Serialize, Denormalize.

=i

class User < ActiveRecord::Base
serialize :following_ids

def following_ids

this accessor is overwritten because we want to lazily set the

friends_ids column, rather than running a gigantic slow migration.
RAILS DEFAULT LOGGER.debug "loading following_ids"
ids = read_ attribute(:following_ids)

if ids.nil? || lids.kind_of?(Array)
ids = connection.select values("SELECT DISTINCT followed user id
FROM followed users WHERE user _id =
#{self.id}").map(&:to_i).compact
update_attribute(:following ids, ids)
end

Ids
end

=

def following_ids add(the _id)

ids = self.following_ids.dup

ids << the_id

write attribute(:following _ids, ids)
end

def following_ids delete(the id)
ids = self.following_ids.dup
ids.delete(the _id)
write_attribute(:following_ids, ids)

end

end # End Class

=

Oh yeah, and Cheat.
(It's ok!)

=

Thing about your application.
How can you cheat and get away
with it?

=i

Is your data delivered in real time?
Is your data static content?
How do users interact?

=i

Interestingness.
(Little things that don't deserve other space.)

=

It's OK to use Monit to kill processes
iIf they get too big.

=

Ensure you can deploy frequently.

=i

Ensure you can roll back easily.

=i

Scale where it matters.

=i

Some code is ugly. It's OK.
(who needs a hug?)

=i

Ensure your users can give feedback
easily.

=

Use the Community.

=

Make an API.
(Scale your Developer-base.)

=i

We run on Edge (but with Piston).

=i

A Cool Trick. Gems in Vendor.

Rails::Initializer.run do |config|

Load Gems from the /vendor/gems folder first, if they exist.

config.load_paths += Dir["#{RAILS_ROOQOT}/vendor/gems/**"].map do |dir|
File.directory?(lib = "#{dir}/lib") ? lib : dir

end

=

Personal Pet Peeve.

It's 2007. Every spammer has your email address.

Put it on your goddamn webpage so people can
get ahold of you about interesting things.

=i

Questions?

=

Britt Selvitelle

IM & Email
anotherbritt@gmail.com

=i

mailto:anotherbritt@gmail.com

