
Teaching Rails
at a University

Prof. Dr.-Ing. Carsten Bormann, Universität Bremen TZI
Railsconf Europe 2007, Berlin DE, 2007-09-19

This public version sanitized for copyrights and privacy rights — sorry about that

If Ruby is so great,

why are Universities
still teaching Java?

Who are you?

1. Who teaches (coaches, consults with newbies) Rails?

2. Who works at a University?

3. Intersection of 1 and 2 (teach && work)?

4. Who is at a University?

5. Intersection of 1 and 4 (teach && is)?

self.class.ancestors

 I teach and do research at universities
(Uni Bremen TZI, UdK Berlin IEB, TU Helsinki netlab)

 I occasionally
 write books
 do real work
 help create software

Germany

 You can’t earn
credit points
for learning a
programming
language at
an
Universität
(that wouldn’t
be science)

 Universitäten
(research
universities)
 Science

 Fachhochschulen
(no english term)

 Skills

Insert
image of
Einstein
here

Insert
image of
mechanic
here

How to motivate teaching Rails?

 To colleagues?
 hard (see above)

 To myself?
 I need the students

 To students?
 easy (see below)

Web app dev

7

QuickSlow
Dirty

Clean

PHP

Java
Insert
really
large
stack of
Java books
here

Can’t really teach “Rails”, anyway

 We actually teach web application development
 In: (Prerequisites)

 Basics of Internet Technologies (Net and Web)
 Out: (Objective)

 Agile development
 Web-based apps as a specific form of fast app dev
 Ruby as the leading dynamic language

8

Eat your own dogfood.

 The TZI administrative/financial database is a Rails site.

 One afternoon, we knocked off a little
course management system in Rails.

 We run internal and external projects
using Rails.

 We have lots of project ideas that will be enabled by Rails.

9

Example for a Thesis Project

 Is it possible to get a German
SME to contract and pay for an
Agile Development Project?

 Are there maybe
Agile Development issues
specific to Germany?

10

Google Summer of Code 2007

 Atom Publishing Protocol Support for Ruby + Rails
by Gerrit Kaiser, mentored by Benjamin Joseph Bleything
(see http://app.rubyforge.org)

 released, but not completely done yet

 to lead to a Bachelor Report by November

11

http://code.google.com/soc/ruby/appinfo.html?csaid=D674259244797ADC
http://code.google.com/soc/ruby/appinfo.html?csaid=D674259244797ADC
http://app.rubyforge.org
http://app.rubyforge.org

Teaching Rails
at a University

Prof. Dr.-Ing. Carsten Bormann, Universität Bremen TZI

One interesting approach

 Use Ruby/Rails to teach programming to non-programmers
 http://rubylearn.com (Charles Severance, UMich),

http://wonderfullyflawed.com/course/ (Trek)

13

Ruby on Rails @ Uni Bremen

 Master-level course, 6 CP (ECTS)
 but open for younger people, if they feel up to it

 „Agile Web-Entwicklung“ (AWE)
 (no, not “bewegliche Netzentwicklung mit Schienen”)

 Not just Rails, but the agile dev methods, too

14

How can you do agile development
without customers?
 You can’t.

 So where do you get them?

 _____

 If you want to play customer in a future course, please
contact me at
 cabo@tzi.org

15

Structure of the AWE course

 Learn Ruby in a no-credits pre-course
 a couple of weeks before the Rails course
 hard to keep up the motivation here

 Lock up the students in a computer room
for two weeks
 Start the day with some “lectures”
 Let them work in pairs on projects for the rest of the day
 Encourage communication

16

Insert
image of
freezing guy
here

Organization

 Assign a customer to each pair
 have a hard deadline at the end of the 12 days

 Morning: Lectures
 Late afternoon: communication break
 Rest of the time: project work (incl. customer meetings)

 The usual stuff (SVN, wiki, ...)

17

The communication break

 Groups are encouraged to do peer-teaching
(mutual coaching)

 17:00–18:00 each day:
 I pick a subject
 groups (2) are randomly paired (4)
 group pairs (4) are paired again (8)

 Result: 2 to 3 distilled presentations on the subject
prepared in a common Wiki

18

Week 1
 Get people up and

running in two days
 Give them all to be

“feature-complete” in
the first week

19

Mon Intro (look at what I’m not doing),
motivation, overview
Get to know Rails
Learn the environment

Tue Migrations
Basic Agile Development
Understand the customer

Wed More about views and controllers
More about AR, Validation; SQL
Security

Thu AJAX
RJS

Fri (More about TDD)
Lead into a weekend of work

Week 2
 Three more days of

refinements
 Focus is on project

completion

20

Mon Unicode
Internationalization in Rails

Tue REST

Wed More Security
Performance, Deployment

Thu Project presentations

Fri Finishing

6 CP = 180 h

 About 36 h of mandatory preparation (learn Ruby)
 About 32 h of frontal instruction (with some discussion)
 About 8 h of student presentations (with lots of discussion)
 About 104 h of:

 conversation with customers
 implementation, testing
 on-line learning
 peer-teaching

 144h/12d = 12h/d =

21

INTENSE

Who is going?

 Funny:
 Half is sophomore (1st term)
 Half is graduate level (7th term or more)

 Great mix for getting students to learn and teach at the
same time.

22

What they liked

 Ruby

 Rails

 The format (2 intense weeks in one room with many iMacs)

 The combination/mix of presentations and practice
 some discussion about the distribution in time

 The snowballing/communication breaks

23

Insert image of sleepy, stressed out
students here

What they didn’t like (1)

 No time for groceries and laundry
 Next time, we’ll tell them beforehand

24

INTENSE

What they didn’t like (2)

 I brought up TDD only on the fifth day
 to be fixed

 I used a (long) screencast in class
 don’t do that

 Some of my slides still at the previous level of Rails
 shame on me

25

Insert image of
students in computer
room with some
bottles of beer clearly
visible here

What I liked

 Incredible level of motivation
 coupled with high level of (voluntary) mutual cooperation

 Students’ own experience mixes with my guidance and
their ad-hoc research
 In the end, I probably learned even more than the students

 Students like AWE
 “This has been the best course I have attended at a university”

26

Rails is moving — fast

 Much of the material out there is in 1.0-land
 or somewhere not far beyond

 Start-with-SQL vs. migration approach
 Classic vs. REST
 (see DHH’s keynote)

 You want to demonstrate best practices from the start
 but they change

27

What could be fixed in Rails

 (to make setup of teaching environments easier:)
fix the SQLite support
 most groups migrate (!) to MySQL after a couple of days

 the “docs” (actual comments unprintable)
 symbols vs. strings

 i18n, l10n (at least make the plugins more reliable)

 Today’s students want IDEs, code browsers, refactoring, ...

28

So, can you teach Rails at a Uni?

 Yes, you can!
 But you probably should think fresh
 Model teaching on actual usage

 AWE course: Demanding
 2-week blackout
 Have to re-work much of it every year

 Why isn’t it done in more places?
 Unis are conservative?
 Ignorance? Haughtiness?

☀

☂

?

30

