
Obscure Data Formats - RailsConf Europe 2007 - By Chad Thatcher

In the first part of this paper I will introduce “composition” in ActiveRe-
cord and highlight some of its benefits and uses in our models. This will be
followed by a few examples to expand the concept and put everything into
context when I demonstrate the project which I will do in the second part of
the paper.

I will then go into some detail about the obscure data format the project
uses called “MARC” and show how composition is used within the project to
solve some difficult problems encountered.

PART 1 - Composition

Composition or aggregation is one of the most powerful building blocks of
any good Object Oriented design. It is also a key component of object re-
lational modeling seeing as fields are aggregated within the model object
either explicitly or implicitly. Hibernate, for example, asks us to explicitly
define our composition through an HBM xml definition. With ActiveRecord
this is implicit...

...which is both a blessing and a curse. Blessing in that because of the
very nature of Rails we don’t have to muck about with configurations and
this is great because 99% of the time this would be wasted effort. But is is
also a little bit of a curse in that we can sometimes overlook an opportunity
to capitalize on the power of composition.

Lets look at the features of
rolling our own composi-
tions in ActiveRecord by
using the macro-like class
method “COMPOSED_OF”

And here are some of the ways “composed_of” can be used:

Using the “composed_of”
method in its most basic
form we simply map a ta-
ble field to an object of
our choice. And the name
of our composition be-
comes the access point.

We can also map an ag-
gregate to a field by nam-
ing the “composed_of”
property name the same
as the field name. This is
a subtly different to the
first example but in this

way we can completely hide or protect the attribute. In the first example the
user can still directly set the attribute by simply referring to it rather than its
composed_of property name. In the last example referring to the attribute
will always result in the aggregate object being returned or referenced.

We can also map several fields in a single composition to a single object.
Being able to manage several table fields in one aggregate is very powerful
if in the very least it gives us the ability to fetch or set this data in a com-
pound way. For example, lets say I am recording the addresses of re-
sources on the net and for one reason or another want to store that URL in
it component parts, the server name, a file path and other cgi key/value

pairs. By using an aggregate I could get at those parts individually and
also deal with the URL in its complete form and never have to worry about
how to break it up or reconstitute it. This is what it might look like...

There are a lot of examples of using composition in ActiveRecord out on
the net.

The most common one being
the “currency” example wraps
double fields that hold money
values and the aggregate gives
us convenient methods for get-
ting those values with a preci-
sion of to two decimal places or
doing currency conversions
etc.. The “address” example
wraps several fields in a model
that represent a postal address
and gives us various conven-
iences like fetching the address
ready for label printing.

The examples so far make it easy to miss some of the potential of “compos-
ed_of” which really starts to shine when your aggregates manage complex
data or reflect into the database or call on external services or resources.

And “composed_of”, being composition, also allows us to prefer and use
composition over inheritance.

In an asset management
system, for example, the
usual suspects might be
lined up for managing digi-
tal assets like single table
inheritance. But we could
also use composition in
preference to inheritance
here and wrap up our asset
in an aggregate, which in
turn would aggregate the
appropriate object re-
quired for managing a par-
ticular media type.

In a 3D application we might have a massive collection of points and for ef-
ficiency want to store these in a single field or in groups of tuples instead of
running tables with millions and millions of rows and costly joins. Aggre-
gates would help us do this and provide us with a clean way of encapsulat-
ing operations we might want to carry out on that data.

A similar thing could be done with mapping data provided you don’t want
to actually involve those values in searches but even then, as you will see
shortly when I demonstrate RISM, there are other viable solutions for this.

Another great use for compo-
sition is for storing large
structured documents like
XML when there is no need
to keep them in an unrav-
eled state in the database.
An aggregate implementing
DOM will give us convenient
access to the inner parts of
the data.

It is also provides a means
of keeping our code DRY

when we spot the same fields popping up in several places that require some
sort of special handling.

There is also potential in using serialization provided we are not limiting
the scope of our project with this kind of implementation specific data rep-
resentation, but this is quickly getting into a much debated area and I am not
going to get into that.

Or with something like Entity Relationship Modeling - the idea that you
don’t normalise you data entities in the RDBMS but rather have one giant
table and allow the users to define their own types and rules around those
types. Composed_of could be an excellent tool for this.

PART II - Case Study

The project I have been
working on - the Interna-
tional Repository of Musi-
cal Sources - was
founded in 1949 with the
aim of locating and
documenting all surviv-
ing musical sources dat-
ing from earliest times to
about 1800. Over the
years around 420,000
catalogue records have
been added to the data-
base.

In 2003 RISM UK - run as a joint effort between Royal Holloway of the Uni-
versity of London and The British Library went online providing its part of
the collection as a public resource. Many other countries have done the
same.

The final UK and Irish contribution
to the project will be around 110,000
catalogue records and the online da-
tabase may eventually include the
contributions of other countries.

Because of the age of the project and the fact that 95% of all of the projects
sources come from libraries, archives and museums, its not surprising that
it uses MARC as its data storage format. So what exactly is MARC?

MARC stands for MA-
chine Readable Catalog-
ing.

MARC was invented in
the First Age of Comput-
ing when IT departments
looked like this and IT
professionals still wore
tweed!

MARC is an international standard for storing bibliographic records. Much
of the design of MARC was influenced by those little index cards we still
find in most libraries today. At the time hierarchical databases were the
dominant means of storing data, and relational databases didn’t even exist
apart from being a theoretical subject found in PhDs. So MARC is a hierar-
chical format and over the decades as it was adapted by different countries
and organizations took on a number variations. Here is an example record
of one of todays most dominant MARC formats - “MARC 21”:

The 21 in the name stands
for 21st century believe it
or not.

It can be quite frightening
to look at at first sight but
if we drill into it a bit, its
elements become quite
obvious. A MARC record
is made up of several
tags and you can see
those stand out at the be-
ginning of each line.

Here is one of these tags
in isolation:

Each tag is represented
by a number which signi-
fies its function. There
are a number of defini-
tions floating around for
the various MARC for-
mats for what these tag
numbers represent.

This is a 245 tag which contains a “title”, “subtitle” and any personal names
that might actually appear on the manuscript or document. The indicator is
there for historical reasons and there is no need to go into any detail for this
paper.

Then comes the “field” - all the remaining data. Bear in mind that the ter-
minology used in the day was slightly different to what we are used to to-
day. Here the “field” represents the whole data part of the tag which in-
cludes the subfields it can be broken down into.

Subfields have a dollar sign for a prefix, in this particular format, followed
by a single letter or number which signifies the function or meaning of the
data that follows.

With that fresh in mind here is MARC in its hierarchical layout.

Its important to realise that
the order in which many of
these tags appear is very
important. For example, the
789 tag carries musical
scores so if there is more
than one instance of these
tags, they fall out of order
they would not make sense
- because the musical bars
themselves would be out of
order.

And the order of some subfields can also be significant for various other
reasons.

Anyway I think thats enough on the MARC format because it is like many
other hierarchical data structures which we are all familiar with. I just
wanted you to feel a little bit of my pain.

So how is this stored? Well, there are several well known techniques for
storing hierarchical or network models in RDBMSs and most perform well
on the whole. Perhaps the most common technique is the “adjacency list”
the one that is used by the “acts_as_tree” plugin:

This particular technique
has a foreign key like “par-
ent_id” pointing to the id the
parent node in the same ta-
ble. This kind of represen-
tation is easy to update but
does run into trouble when
there are a large numbers
of nodes in the hierarchy,
because of the fairly heavy
use of self joins. This was
actually the technique used
in the previous incarnation
of the RISM project.

This is not a presentation on how to represent hierarchies in a relational
model, nor is it an argument for or against doing this but I thought I would
just go over adjacency lists quickly so things will make more sense when I
discuss later how the previous incarnation of the RISM project struggled
with this technique. And to understand this better lets look at some of the
projects requirements:

In my experience of dealing with such a massive hierarchies in a relational
model is that you are either fighting with slow selects or heavy row up-
dates. If your hierarchy is small and or not often updated, then storing it in
an RDBMS is still a viable and preferable option. If your hierarchy is both
large and updated often, like the RISM project, then you may encounter dif-
ficulties.

Given that each MARC record has an average of 50 subfields, and hence 50
nodes in any given branch, I needed to make one careful consideration:
How many manuscripts would eventually be catalogued in RISM and hence
how many records would there be representing each child in the hierarchy?

Now five million rows may not seem like a massive amount. After all there
are databases out there running happily with far more than this. But 5 mil-
lion was just the estimate coming off the starting block. Combine this kind
of volume with choppy, sporadic updates to the data set and the more
common techniques for storing hierarchies in a relational database become
unsuitable.

Besides, updating or inserting records in a table of 5 million rows on a
good day is going to be a slow performer. There was also the small fact
that the “content” field that stored the data of each subfield had to be a text,
or blob in order to house the data of some of the larger subfields like “de-
scriptions”. Given that a “node” table would be managing all nodes in a
generic way, even for nodes whose data is entirely predictable and meas-
urable would have their data bunged into a text column. Efficiency suffers.
And future growth leaves is predictably steep.

And you’re asking your
hardware to climb a
mountain...

You may be thinking that a solution would be to just chuck cheap iron at the
problem, but this is a publicly funded project and thats a big ask no matter
how cheap the iron. The other issue is that this application needs to run as
a “local version” on small laptops, and I will explain why in a minute.

So I started to look at the motivation behind storing these MARC records
as hierarchies in the database and found that the only real requirement
behind it was to be able to search the content of individual nodes. And there
are a number of solutions that could take care this, most notably full text
indexing with FERRET so I began to explore using this to free up this limita-
tion.

I still needed to be able to ma-
nipulate a MARC record as a tree
to get at individual subfields or
add or delete them and composi-
tion seemed like a good candi-
date so I experimented with
“COMPOSED_OF”. After a few
prototypes I found that it would do
nicely.

Here is how composed_of is
used in RISM. It simply maps a
field called “source” in the manu-
scripts table to the Marc class.

“Marc” is a MarcNode which is a straightforward node type that you find in
many solutions for representing trees. Here Marc is a descendant of

MarcNode because it
provides a few extra serv-
ices and behaves slightly
differently being the root
node.

Each MarcNode, of course,
contains a tree of other
MarcNodes which repre-
sent the hierarchy of the
MARC record found in the
“SOURCE” field.

It knows the MARC format and can parse it easily and quickly, populating
its MarcNode tree along the way.

It is database aware, and I will explain in a moment why this is.

And it can handle various other formats of MARC apart from MARC 21 and
is able to export to and import from these formats.

There was one other big requirement in RISM which was to manage certain
subfields via other database tables in the system. For example, PEOPLE.
They didn’t want the cataloguers creating several copies of the same per-
son across different manuscript records. This is easy to do when different
cataloguers are free typing and misspelling data. So the project wanted
only one occurrence of Johann Sebastian Bach for example, be-
cause there is only one. The same would go for many other val-
ues in the system, like standardised titles, terms and institu-
tions.

This means there is a normal database model with separate tables for
managing these entities in a central place.

The MarcNode tree adds another facet if you will by living on the boundary
between what would be considered the normal “database” and its old world
MARC representation.

Here we can see that the main model in the system - MANUSCRIPT - is re-
lated in the normal way to the other models of the system. Anything that is
a part of the normal data model is in blue and the unorthodox Marc and
MarcNodes in orange. Various MarcNodes then also reference parts of the
database.

This might seem a little back-to-front or messy but it works very well pro-
vided the boundaries of responsibility are well observed.

I chose UUIDs as pointers
to the real database rows
because of the need to run
RISM as a local version on
small laptops carried by
cataloguers who would find
themselves cataloguing in
some remote library with-
out internet access. The
UUIDs keep the remote
synchronization robust by
avoiding ID conflicts when
the cataloguer finally gets
home or back to the British

Library and establishes a link with the server.

To make things even more delightful, some subfields are dependent on
other subfields for fetching their real data from the database.

Here the A subfield which
represents a persons full
name contains the reference
to a Person model. The D
subfield which represents
that persons life dates refer-
ences the same Person
model through its master
subfield A.

Because all of the relation-
ships between the tables are
maintained as a normal
data model I get all the ad-
vantages of that as well. If
the spelling of a persons name is changed for example, I needn’t do any-
thing to change the contents of the MARC records because they are hold-
ing references.

However! I still need to consult the database through the normal means
when entities are updated in order to find out which manuscripts have
been affected by the change. I do this is simply so I can find out which
manuscripts I need to ask to reindex themselves in Ferret.

I use a homegrown Ferret
solution because I unfortu-
nately couldn’t use the
“acts_as_ferret” plugin as it
does not cater for this kind of
situation where I am effec-
tively breaking up one col-
umn into many parts. Luckily,
each MarcNode knows
whether or not it should be in-
dexed and if so how...

Some subfields like the 008 tag contains data that needs to be broken
down further - in this case years which need to be range searchable.

789h subfields contain an incipit representation of the first few bars of the
music. This is a textual representation of the music in a notation called
Plaine & Easy invented so that you could use the characters found on a
typewriter to represent music. These incipits need to be broken down in all
sorts of clever ways to allow people to search for parts of a musical piece or
similar melodies etc etc.

On top of quick and advanced search I am also using ferret to drive the
manuscripts lister. This kind of search over query for data navigation is
becoming more and more prevalent as a cheap and effective solution to
unacceptable response times. And it is difficult to ignore other benefits
such as easy filtering.

To give you an idea of the
difference between the
old project and the shiny
new one heres some
stats:

In conclusion, taking control of your model’s composition can open up a world
of possibilities and provides you with a way of working outside of the normal
paradigm. Ferret can also prove to be a nice complement to composed_of
allowing you to cater to some requirements which would otherwise force you
to follow a strict 3NF design.

Thanks for listening reading!

By Chad Thatcher

