
Scaling a Rails Application
from the Bottom Up
Jason Ho!man PhD, Founder and CTO, Joyent

Rails Conf Europe 2007
Monday, September 17, 2007

The questions

! Can I write a [Rails] application where I can start in a
datacenter in San Francisco, then drop copies in Tokyo,
Hong Kong, Virginia, London, Amsterdam, and Frankfurt
while maintaining a unified backend, di!erentially
directing people based on their geography and having
my costs only go from 1x to 7x?

! Can I write a [Rails] application where my user base
grows from 10,000 to 10,000,000 and have my per user
costs stay the same or less?

! Can I write a [Rails] application and have it run on an
device like an iPhone?

Hi, I’m Jason

Some of Joyent’s

The connector

Slingshot

! Typically putting about 10 servers (16GB) and 2x
4TBs of SAS in place every 2-4 days

Today’s schedule
130pm

500pm

50

50

50

I

II

III

IV

V

VI

230pm

240pm

340pm

350pm

QA

6 Acts

I. Introduction and foundational items

II. Where do I put stu!?

III. What stu!?

IV. What do I run on this stu!?

V. What are the patterns of deployment?

VI. Lessons learned

What I’ll tell you about

! What we’ve done

! Why we’ve done it

! How we’re doing it

! Our way of thinking

Thinking

! Scalability, Throughput and Performance

! Limits (practical and theoretical)

! Rules of Ten

! Web applications are stateless

Scalability

! Scalability

! Throughput

! Performance

Rules of Ten

! Tiers

! Tiers are di!erent functionally

! Tiers should be 10x di!erent in throughput

! Costs

! Infrastructure costs ≤10% of “revenue”

Web applications are stateless

! HTTP is a stateless protocol

! http://tools.ietf.org/html/rfc2616

! The Hypertext Transfer Protocol (HTTP) is an application-level protocol
for distributed, collaborative, hypermedia information systems. It is a
generic, stateless, protocol which can be used for many tasks beyond
its use for hypertext, such as name servers and distributed object
management systems, through extension of its request methods, error
codes and headers [47]. A feature of HTTP is the typing and negotiation
of data representation, allowing systems to be built independently of
the data being transferred.

Because they’re stateless

! Inherently “scalable”

! Front

! How to scale when you have to connect it
to an IP address?

! Application

! Back (Data store)

! How to scale files, databases etc?

Simple
Standard

Open

Fundamental Limits

! Money

! Time

! People

! Experience

! Power (which limits memory and CPU)

! Bandwidth

Introduction and
Foundational Items

I get asked lots of questions

! “I have yet to find any examples of websites
that have heavy tra#c and stream media that
run from a Ruby on Rails platform, can you
suggest any sites that will demonstrate that the
ruby platform is stable and reliable enough to
use on a commercial level?”

! “We are concerned about the long-term viability
of Ruby on Rails as a development language
and environment.”

! “How easily can a ruby site be converted to
another language? (If for any reason we were
forced to abandon ruby at some point in the
future or I can’t find someone to work with our
code?).”

! “My company has some concerns on whether
or not Ruby on Rails is the right platform to
deploy on if we have a very large scale app.”

! What is a “scalable” application?

! What are some hardware layouts?

! Where do you get the hardware?

! How do you pay for it?

! Where do you put it?

! Who runs it?

! How do you watch it?

! What do you need relative to an application?

! What are the commonalities of scalable web architectures?

! What are the unique bottlenecks for Ruby on Rails applications?

! What's the best way to start so you can make sure everything scales?

! What are the common mistakes?

But are these really Ruby or Rails
specific ?

They have to do with designing
and then running scalable

“internet” applications

But the road to a top site on the
internet is not from one

interation

Let’s break that down

! Designing

! Running

! Scalable

! “Internet” applications

Scalable means?

Types of scalability

! Load

! Geographic

! Administrative

A Sysadmin’s view

! Ruby on Rails is simply one part

! Developers have to understand Rails
horizontally (of course, otherwise they couldn’t
write the application)

! Developers ideally understand the vertical stack

! It can get complicated fast and it’s easy to
overengineer

What do you do with
1000s of physical machines?

100s of TB of storage?
In 4 facilities on 2 continents?

Is this a “Rails” issue?

No, I’m afraid not.

This has been done before.

The same big questions.

Let’s take the “connector”

“Logical” servers for the connector
1) Jumpstart/PXE Boot

2) Monitoring

3) Auditing

4) Logging

5) Provisioning and configuration management

6) DHCP/LDAP for server identification/authentication and control (at dual for failover)

7) DNS: DNS cache and resolver, and a (private) DNS system (4x + 2; 2+ sites)

8) DNS MySQL (4x + 2, dual masters with slaves per DNS node, innodb tables)

9) SPAM filtering servers (files to NFS store and tracking to postgresql)

10) SPAM database setup (postgresql)

11) SPAM NFS store

12) SMTP proxies and gateways out

13) SMTP proxies and gateways in (delivery to clusters to Maildir over NFS)

14) Mail stores

15) IMAP proxy servers

16) IMAP servers

17) User LDAP servers

18) User long running processes

19) User postgresql DB servers

20) User web servers

21) User application servers

22) User File Storage (NFS)

23) Joyent Organization Provisioning/Customer panel servers (web, app, database)

24) iSCSI storage systems

25) Chat servers

26) Load balancer/proxies/static caches

...

Guess which is “Rails”?

Ease of management is on a log scale

! 10

! 100

! 1,000

! 10,000

! 100,000

! 1,000,000

Amps, Volts and Watts

! 110V, 208V, 240V

! 10, 15, 20, 30, 60 amp

! Standard baselines: 10 amp, 240V; 15 amp, 110V

! $25 per amp for 208V power

! 20 amps X 208V = 4160 watts

! 80% safely usable = 3328 watts

A $5000 Dell 1850 costs $1850 to
power over a 3 year lifespan

! 440watts x 24 hours/day x 1 kw/1000 watts =
10.56 kwh/day

! 10.56 kwh/day x $0.16/kwh = $1.69/day

! $1.69/day x 365 days/year = 616.85/year

How many servers fit in a 100kw?

! 100 kilowatts to power and 100 kilowatts to cool

! At 250-400 watts each

! 250 - 400 servers

Other common limiting factors

Where do I put stuff?
What stuff?

Physical considerations

! Space

! Power

! Network connection

! Cables cables cables

! Routers and switches

! Servers

! Storage

The 10% rule

! Google’s earning release:

! "Other cost of revenues, which is comprised
primarily of data center operational expenses,
as well as credit card processing charges,
increased to $307 million, or 10% of revenues,
in the fourth quarter of 2006, compared to
$223 million, or 8% of revenues, in the third
quarter."

! A common rule of thumb I tell people is to
target their performance goals in application
design and coding so that their infrastructure
(not including people) is ≤10% of an application’s
revenue.

The 10% rule

! Meaning if you’re making $1.2 million dollars a
year o! of an online application, then you
should be in area of spending $120,000/year or
$10,000/month on servers, storage and
bandwidth.

! And from the other way around, if you’re
spending $10,000 a month on these same
things, then you know where to push your
revenue to.

The 10% rule

Or maybe this is just a cost.
It used to be for me.

A joyent.net node (-ish)

Whatever you do

! Keep it simple

! Standardize, Standardize, Standardize

! Try and use open technologies

Some of my rules

! Virtualization, virtualization, virtualization

! Separating hardware components

! Keep the hardware setup simple

! Things should add up

! Configuration management and distributed
control

! Pool and split

! Understand what each component can do as a
maximum and a minimum

Pairing physical resources with
logical needs while keeping the

smallest footprint

You either build or you buy it

Or you buy all of it from someone
else

Then You Build

“Buying”
(by the way)

means
“using Rails”

too

What’s the cost breakpoints?

! Including people costs

! It’s generally cheaper at the $20,000-$30,000/
month spending to do it in-house. *Assuming
you or at least one of your guys knows what
they’re doing.

But what if I buy all my stuff from
someone else?

Our story

The Planet

Cee-Kay

KISS

One kind of
Console server
Switch
Server
CPU
RAM
Storage
Disc
Operating system
Interconnect
Power plug
Power strip

!Console server => Lantronix
!Switch => 48 port all gigabit (Force10 E300s)
!Server => Sun Fire AMDs (X4100,X4600), T1000s
!CPU => Opteron 285 and T1 SPARC
!RAM => 2GB DIMMS
!Storage => Sun Fire X4500 and NetApp FAS filters
!Disc => 500GB SATA and 73GB/146GB SAS
!Operating system => Solaris Nevada (“11”)
!Interconnect => gigabit with cat6 cables
!Power plug => 208V, L6-20R (the “wall”), IEC320-C14 to IEC320-
C13 (server to PDU)
!Power strip => APC 208V, 20x

Our Choices

I/O
Storage

PublicRemote Interconnects

* Flat network
* Physically segregated

Cabling standard

Public network

Private interconnects

Storage

Storage

ALOM => console servers

Switch interconnects and mesh

3’ cat6

RAIDZ2+1

! Think of it as a distributed RAID6+1
! Dual switched
! Able to turn o! half of your storage units
! You end up having data stripped across 44, 88, 132, 196 drives

RAIDZ2

RAIDZ2

RAIDZ2

RAIDZ2

RAIDZ2Patent backups

Our “SAN”

Vendors

! Networking: Dell, HP, Force10, Cisco, Foundry

! Servers: Dell, HP, Sun

! Storage: Dell, HP, Sun, NetApp, Nexsan

Servers

! Dell: 1850 and 2850 models

! HP: DL320s

! Sun: X2100 and X4100

Storage?

! Lots of local drives

! DAS trays (trays that do their own RAID)

! iSCSI (it’s now possible to stay away from fiber)

! RAID6 and RAID10

Leverage

! Pick a vendor and get as much as you can from
that single vendor

Some comments

! Dell => direct, aggressive, helpful and they
resell a lot of stu!

! HP => might be direct, likely reseller

! Sun => you go through a reseller

Why we started with Dells

! Responsive

! They put us in touch with di!erent leasing
companies and arrangements

! They shipped

! We were a Dell/EMC shop (even with Solaris
running on them)

Why we ended up using Sun
! The rails (literally the rack rails)

! RAS

! Hot-swappable components

! Energy e#cient

! True ALOM/iLOM that works with console

! Often cheapest per CPU, per GB RAM

! Often cheapest in TCO

! We’re on Solaris (there’s some assurances
there)

Lease if you can

! Generally it’s about 10-50% down

! And can be “ok” interest rate wise: 8-18%

! Do FMV where you turn over the systems at
year 2

! How do you do it? Demonstrate that you have
the cash overwise and push your vendor.

So what’s a typical lease payment?

! $10,000 system

! $1000 down, $400/month (10% down, 4%/mo)

Designing around power

So you want to colo?

You’re going to be small potatoes

Try and go local to start

Our providers

! Level 3

! Equinix (IXEurope)

! Why?

Typical power they’ll allow

! Dual 15 amp, 110V

! Dual 20 amp, 110V

! Dual 20 amp, 208V (rare in non-cage setups)

! $250/month for each 15/20 amp, 110V plug

! $500/month for 20amp, 208V plug

Typical Costs

! $500-750 for the rack

! $500-$1000 for power per rack

! $1000 bandwidth commit (10 Mbps x $100,
applies to all racks)

! $4000 for systems (20x $200/mo)/rack

Comparison

! Total $6500 for 20 systems in a rack on a lease.

! “2850s” at The Planet or Rackspace:
$900-1200 each ($18,000 - $24,000/month)

! DIY: does require a more involved human or
two of them (that could use up the di!erence; a
great sysadmin/racker is $100K+)

What do you run on it?

The Key

What are the patterns of
deployment?

Lessons learned

Ruby

! I like that Ruby is process-based

! I actually don’t think it should ever be threaded

! I think it should focus on being as asynchronous
and event-based on a per process basis

! I think it should be loosely coupled

! What does a “VM” do then: it manages LWPs

! This is erlang versus java

So how do you run a rails process?

! FCGI

! Mongrel (event-driven)

! JRuby in Glassfish

How we do Mongrel

! 16GB RAM, 4 AMD CPU machines

! 4 virtual “containers” on them

! Each container: 10 mongrels (so 10 per CPU)

$ rake war:standalone:create

(in /home/jason)

Assembling web application

 Adding web application

 Adding Ruby gem ActiveRecord-JDBC version 0.4

 Creating web archive

$ cp railstest.war /a/1/app/glassfish/domains/domain1/autodeploy/
railstest.war

Glassfish

Glassfish admin

A controller or an application?

Quick note on relative performance

! A “hello world” application

! Mongrel: 150 req/sec

! Event mongrel: 400 req/sec

! Glassfish: 1000 req/sec

Base difference

! http://weblogs.java.net/blog/arungupta/archive/
2007/08/rubyjruby_proce.html

Affects “administrative” scalability
Affects concept of process scalability

http://weblogs.java.net/blog/arungupta/archive/2007/08/rubyjruby_proce.html
http://weblogs.java.net/blog/arungupta/archive/2007/08/rubyjruby_proce.html
http://weblogs.java.net/blog/arungupta/archive/2007/08/rubyjruby_proce.html
http://weblogs.java.net/blog/arungupta/archive/2007/08/rubyjruby_proce.html

How do you scale processes?

! Run more and more of them

! They should add up

Add up how and where?

! Add up in the front

! Add up in the back

! Add up linearly

Horizontally scaling across processes

! In the front: load balancers capable of it

! In the back: database middleware and message
buses

The front

! DNS

! Load-balancing

! The “front” cannot be built into the application

DNS

! Don’t forget about it.

! Always surprising how little people know about
DNS servers

! Federation by DNS is an easy way to split your
customers into pods.

dns1# uname -a

FreeBSD dns1.textdrive.com 5.3-RELEASE FreeBSD 5.3-
RELEASE #0: Fri Nov 5 04:19:18 UTC 2004
root@harlow.cse.buffalo.edu:/usr/obj/usr/src/sys/
GENERIC i386

dns1# cd /usr/ports/dns/powerdns

dns1# make config

dns1# make install

mailto:root@harlow.cse.buffalo.edu
mailto:root@harlow.cse.buffalo.edu

dns1# head /usr/local/etc/pdns.conf

MySQL

launch=gmysql

gmysql-host=127.0.0.1

gmysql-dbname=dns

gmysql-user=dns

gmysql-password=blahblahblahboo

CREATE TABLE domains (
 id int(11) NOT NULL auto_increment,
 name varchar(255) NOT NULL default '',
 master varchar(20) default NULL,
 last_check int(11) default NULL,
 type varchar(6) NOT NULL default '',
 notified_serial int(11) default NULL,
 account varchar(40) default NULL,
 PRIMARY KEY (id),
 UNIQUE KEY name_index (name)
) TYPE=InnoDB;

CREATE TABLE records (
 id int(11) NOT NULL auto_increment,
 domain_id int(11) default NULL,
 name varchar(255) default NULL,
 type varchar(6) default NULL,
 content varchar(255) default NULL,
 ttl int(11) default NULL,
 prio int(11) default NULL,
 change_date int(11) default NULL,
 PRIMARY KEY (id),
 KEY rec_name_index (name),
 KEY nametype_index (name,type),
 KEY domain_id (domain_id)
) TYPE=InnoDB;

CREATE TABLE zones (
 id int(11) NOT NULL auto_increment,
 domain_id int(11) NOT NULL default '0',
 owner int(11) NOT NULL default '0',
 comment text,
 PRIMARY KEY (id)
) TYPE=MyISAM;

mysql> use dna;
ERROR 1044 (42000): Access denied for user 'dns'@'localhost' to database 'dna'
mysql> use dns;
Database changed
mysql> show tables;
+---------------+
| Tables_in_dns |
+---------------+
| domains |
| records |
| zones |
+---------------+
3 rows in set (0.00 sec)

insert into domains (name,type) values ('joyent.com','NATIVE');

insert into records (domain_id, name,type,content,ttl,prio) select id ,'joyent.com', 'SOA',
'dns1.textdrive.com dns.textdrive.com 1086328940 10800 1800 10800 1800', 1800, 0 from domains where
name='joyent.com';

insert into records (domain_id, name,type,content,ttl,prio) select id ,'joyent.com', 'NS',
'dns1.textdrive.com', 120, 0 from domains where name='joyent.com';

insert into records (domain_id, name,type,content,ttl,prio) select id ,'*.joyent.com', 'A', '207.7.108.165',
120, 0 from domains where name='joyent.com';

mysql> SELECT * FROM domains WHERE name = 'joyent.com';
+-------+------------+--------+------------+--------+-----------------+---------+
| id | name | master | last_check | type | notified_serial | account |
+-------+------------+--------+------------+--------+-----------------+---------+
| 15811 | joyent.com | NULL | NULL | NATIVE | NULL | NULL |
+-------+------------+--------+------------+--------+-----------------+---------+
1 row in set (0.02 sec)

mysql> SELECT * FROM records WHERE domain_id = 15811 \G
*************************** 1. row ***************************
 id: 532305
 domain_id: 15811
 name: joyent.com
 type: A
 content: 4.71.165.93
 ttl: 180
 prio: 0
change_date: 1172471659
*************************** 2. row ***************************
 id: 532306
 domain_id: 15811
 name: _xmpp-server._tcp.joyent.com
 type: SRV
 content: 5 5269 jabber.joyent.com
 ttl: 180
 prio: 0
change_date: NULL
*************************** 3. row ***************************
 id: 532307
 domain_id: 15811
 name: _xmpp-client._tcp.joyent.com
 type: SRV
 content: 5 5222 jabber.joyent.com
 ttl: 180
 prio: 0
change_date: NULL

BIG-IPs

! http://f5.com/

http://f5.com
http://f5.com

The real wins with BIG-IPs

! The only thing I’ve seen horizontally scale
across a couple thousand mongrels

! Layer 7 and iRules (separate controllers)

! Full packet inspection

when HTTP_REQUEST {
 if { [HTTP::uri] contains "svn" } {
 pool devror_svn
 } else {
 pool devror_trac
 }
}

when HTTP_REQUEST {
 if { [HTTP::host] contains "www"} {

 if { [HTTP::uri] contains "?" } {
 HTTP::redirect "http://twitter.com[HTTP::path]?[HTTP::query]"
 } else {
 HTTP::redirect "http://twitter.com[HTTP::path]"
 }
}
}

http://twitter.com
http://twitter.com
http://twitter.com
http://twitter.com

when HTTP_REQUEST {
 # Don't allow data to be chunked
 if { [HTTP::version] eq "1.1" } {
 if { [HTTP::header is_keepalive] } {
 HTTP::header replace "Connection" "Keep-Alive"
 }
 HTTP::version "1.0"
 }
}

when HTTP_RESPONSE {
 # Only check responses that are a text content type
 # (text/html, text/xml, text/plain, etc).
 if { [HTTP::header "Content-Type"] starts_with "text/" } {
 # Get the content length so we can request the data to be
 # processed in the HTTP_RESPONSE_DATA event.
 if { [HTTP::header exists "Content-Length"] } {
 set content_length [HTTP::header "Content-Length"]
 } else {
 set content_length 4294967295
 }
 if { $content_length > 0 } {
 HTTP::collect $content_length
 }
 }
}

when HTTP_RESPONSE_DATA {
 # Find ALL the possible credit card numbers in one pass
 set card_indices [regexp -all -inline -indices {(?:3[4|7]\d{13})|(?:4\d{15})|(?:
5[1-5]\d{14})|(?:6011\d{12})} [HTTP::payload]]

 # Calculate MOD10
 for { set i 0 } { $i < $card_len } { incr i } {
 set c [string index $card_number $i]
 if {($i & 1) == $double} {
 if {[incr c $c] >= 10} {incr c -9}
 }
 incr chksum $c
 }

 # Determine Card Type
 switch [string index $card_number 0] {
 3 { set type AmericanExpress }
 4 { set type Visa }
 5 { set type MasterCard }
 6 { set type Discover }
 default { set type Unknown }
 }

 # If valid card number, then mask out numbers with X's
 if { ($chksum % 10) == 0 } {
 set isCard valid
 HTTP::payload replace $card_start $card_len [string repeat "X" $card_len]
 }

 # Log Results
 log local0. "Found $isCard $type CC# $card_number"
 }
}

Layer7

Each controller has their own app
servers

! http://jason.joyent.net/mail

! http://jason.joyent.net/lists

! http://jason.joyent.net/calendar

! http://jason.joyent.net/login

http://jason.joyent.net/mail
http://jason.joyent.net/mail
http://jason.joyent.net/lists
http://jason.joyent.net/lists
http://jason.joyent.net/calendar
http://jason.joyent.net/calendar
http://jason.joyent.net/login
http://jason.joyent.net/login

The partitioning and federation
then possible ...

Free software LB alternatives

! That I also like and think will get you far

! Varnish

! HA-Proxy

The appearance of a rule of 10

! Apache, Nginx, Lighttpd, Litespeed: ≤1000 req/
sec

! Varnish: 10,000 req/sec

! BIG-IP: 100,000 req/sec

My preferred web server + LB proxy

! Nginx

! Static assets with solaris event ports as the
engine

The back

! Your datastore

! What is your data?

! Where does it live?

! How does it relate to hardware size?

! How do you interact with it?

! This can be built into the application

What do I mean by built-in?

! MySQL handling the replication?

! Sequoia (middleware) handling the replication?

! Application handling the replication?

Another advantage with JRuby

! Is the interaction with the backends

JDBC

$ /a/1/app/glassfish/bin/asadmin create-jdbc-connection-pool \
 --restype javax.sql.DataSource \
 --datasourceclassname
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource \
 --property User=root:Password=root:URL=jdbc\\:mysql\\://localhost/
railstest_production \
 jdbc/railstestpool
/a/1/app/glassfish/bin/asadmin ping-connection-pool jdbc/railstestpool

$ /a/1/app/glassfish/bin/asadmin create-jdbc-resource \

 --connectionpoolid jdbc/railstestpool jdbc/railstest

You get database connection
pooling and caching then

You get “traditional” middleware

You get increasing access to ODMBS

Maybe a RDMS isn’t the only thing

! Memcache (in memory and easy)

! LDAP

! Message buses with an in-memory db (JEAI,
ActiveMQ)

! Object databases

! File system

memcached

! http://www.danga.com/memcached/

http://www.danga.com/memcached/
http://www.danga.com/memcached/

J-EAI

! XMPP-Jabber message bus for XML (atom)

! Erlang-based

! Cluster-ready and very scalable

! Lots of connectors: SMTP, JDBC

! App <-> Bus <-> Database

Asynchronous messaging

! http://code.google.com/p/activemessaging/

! ActiveMQ

! Stomp (http://stomp.codehaus.org/)

http://code.google.com/p/activemessaging/
http://code.google.com/p/activemessaging/
http://stomp.codehaus.org
http://stomp.codehaus.org

LDAP

! Hierarchical database

! Great for parent-child modeled data

! We use for all authentication, user databases,
DNS ...

! Basically as much as we can

Why?

The multi-master replication is
amazing when you’ve been living
in MySQL and PostgreSQL lands

Sina

! “With over 230 million registered users, over 42
million long-term paid users for special services,
and over 450 million peak daily hits, Sina is one
of the largest Web portals and a leading online
media and value-added information service
provider in China.”

! 12 Sun Fire T1000 servers running Solaris 10
and the Sun Java System Directory Server.

Pay attention to how you store
your files

A story

Hashed directory structures

! Never more than 10K files / subdirs in a single
directory (I aim for a max of 4K or so..)

! Keep it simple to implement / remember

! Don't get carried away and nest too deeply, that
can hurt performance too

A couple of approaches

The 16x256

! Pre-create 16 top level dirs, 256 subdirs each
which gives you 4096 "buckets".

! Keeping to the 10K per bucket rule, that's 4M
"things" you can put into this structure. Go to
256 x 256 if you're big and/or want to keep the
number of things in the buckets lower.

! How do you decide where to put stu!?

! Pick randomly from 1 to 16 and from 1 to 256.
Store path in the profile. What's it look like:

userid=76340

fspath=/data/12/245/76340/file1,file2,etc..

! You get nice even distribution, but the downside
is that you can't "compute" the directory path
from the thing's ID.

The Hasher

! Idea is to compute the FS path from something
you already know.

! Big plus is that anything you write that needs to
access the FS doesn't need to look up the path
in a database.

! Dubious value since you probably had to look
the object/thing you're doing this for in the
database anyways.. but you get the idea...

! Example: Use the userid to form the multi-level
"hash" into the filesystem. Take for example the
first two digits as your top level directory, the
second two as the subdirectories. So sticking
with our userid above we'd get a path like:

! /data/76/34/76340

! Downside is you can end up building stupid
logic around the thing to handle low ids (where
does user "46" go?) or end up padding stu!, all
of which is ugly.

! A fancier alternative to this is using something
like a MD5 hash (which you probably also
already have for sessions) and that works well,
is easy to implements, tends to give you better
distribution "for free", and looks sexy to boot:

echo "76340" | md5

e7ceb3e68b9095be49948d849b44181f

gives us:

/data/e7/ceb/76340

! Distribution is still unpredictable

! Watch your crypt()-style implementation cause it
might output characters you need to escape!

! You can't compute it in your head

Downsides of the MD5-style

But

! The attractiveness of using some sort of
computed hash will mostly depend on what sort
of ID structure you already have, or or planning
to use.

! Some are very friendly to simple hashing, some
are not.

! So think “friendly”

Jamis does something like this
! http://www.37signals.com/svn/archives2/

id_partitioning.php

http://www.37signals.com/svn/archives2/id_partitioning.php
http://www.37signals.com/svn/archives2/id_partitioning.php
http://www.37signals.com/svn/archives2/id_partitioning.php
http://www.37signals.com/svn/archives2/id_partitioning.php

Recap

! Use DNS
! Great load balancers
! Event-driven mongrels
! A relational database isn’t the only datastore:

we use LDAP, J-EAI, file system too
! A Rails process should only be doing Rails
! Static assets should be coming from static

servers and then a CDN
! Go layer7 where you can: a rails process should

only be doing one controller
! Federate and separate as much as you can

Required separations
! All DNS based

! Dynamic (domain.com)

! Static (assets1-4, assets5-8)

! Uploads (authenticated; uploadsX.domain.com)

! You build a separate application

! Downloads (authenticated vs unauthenticated)

! downloadsX.domain.com

! 60 second URLS

! Administrative (admin.domain.com

