
JRuby at ThoughtWorks
Ola Bini
JRuby Core Developer
obini@thoughtworks.com

About me

• Ola Bini
• From Gothenburg, Sweden
• Works for ThoughtWorks Studios in London
• Programming language geek (LISP, Io, Erlang, ML,

Smalltalk, etc)

ThoughtWorks
• Global consulting firm
• About 900 people worldwide (UK, US, Canada, Oz,

India, China)
• Known for Agile practices
• Martin Fowler is our Chief Scientist
• 40% projected revenue in the US from Ruby/Rails

ThoughtWorks Studios
• Product development
• CruiseControl Enterprise
• Mingle
• RubyWorks
- CruiseControl.rb
- Production stack
- JRuby

Agenda
• Problems with Ruby
• JRuby
• Mingle
• Other uses
• Current problems
• Q&A

What’s wrong with MRI
• Ruby 1.8: Green threading
- Can’t scale across processors/cores
- C libraries won’t/can’t yield to Ruby code (DNS)
- One-size-fits-all scheduler - doesn’t really fit all

• Ruby 1.9: Native, non-parallel threads
- Core classes and extensions not ready for parallel

execution
- Lots of work to ensure thread safety

What’s wrong with MRI
• Ruby 1.8: Partial Unicode
- Internet-connected apps MUST have solid Unicode
- Ruby provides partial, inconsistent support
- App developers must roll their own: Rails Multibyte

• Ruby 1.9: Full Unicode but drastic changes
- String interface changes to per-char, not per-byte
- Each String can have it’s own encoding

What’s wrong with MRI
• Ruby 1.8: Slower than most languages
- 1.8 is usually called “fast enough”
- ... but routinely finishes last in benchmarks
- ... and no plans to improve the situation in 1.8

• Ruby 1.9: Improvement, but still more to do
- New engine averages 3-4x improvement
- Only AOT - No JIT
- More to do: GC and threading still slow

What’s wrong with MRI
• Ruby 1.8: Memory management
- Simple design
- Good for many apps, but doesn’t scale
- Stop-the-world GC

• Ruby 1.9: No change
- Improved performance => more garbage
- GC problems could well multiply

What’s wrong with MRI
• Ruby 1.8: C language extensions
- C is difficult to write well
- No encapsulation in core
- Threading, GC issues
- Portable, but often needs recompilation
- No security restrictions

• Ruby 1.9: No change

What’s wrong with MRI
• Politics
- You want me to switch to what?
- ... and it needs servers/software/training?
- This will probably improve with time

• Legacy
- Lots of Java apps in the world
- Extensive library of Java frameworks/libraries

What is JRuby
• Java implementation of the Ruby language
• Current version 1.0.1, released in August
• Based on Ruby 1.8.5
• Started in 2001 by Jan-Arne Petersen
• Currently 6 Core developers
• Open Source - about 30-40 contributors

What can it do?
• All “pure Ruby” code works (with some caveats)
• Rake and RubyGems run well
• Rails works near nigh perfectly
• Many projects using JRuby+RSpec
• New combinations of JRuby+X popping up

What can’t it do?
• Deterministic threading
• Continuations
• Some file system operations
• fork, and other POSIX-ilk

JRuby solutions to MRI problems
• Native threading
• Scale across all processors/cores
• Concurrent execution, even in extensions
• Allow systems to schedule threads
• Ensure reasonable safety in core classes

JRuby solutions to MRI problems
• World-class, native Unicode support
• Provide Ruby’s byte[]-based String
• ... but also provide native Rails Multibyte backend
• ... and you can use the Java UTF-16 Strings directly
• ... and we’re working at implementing 1.9 Strings
• Java has complete, reliable Unicode
• ... and all libraries are Unicode-ready

JRuby solutions to MRI problems
• Scalable performance
• Make interpreter as fast as possible
- Should be as fast as Ruby 1.8

• Support Ruby 1.9/2.0 bytecode engine
- Same resulting performance boost
- Future-proof

• Each new version of Java improves JRuby
performance substantially

JRuby solutions to MRI problems
• Compile to Java bytecodes
• AOT and JIT compilation
• Let HotSpot take over
- ... by simplifying
- HotSpot JIT
- Code inlining
- Dynamic optimizations

JRuby solutions to MRI problems
• Let Java manage memory
• Best memory management and GC in the world
• Wide variety of GC options
- Concurrent
- Generational
- Real-time

• Scales up to enormous apps and systems

JRuby solutions to MRI problems
• Java-based extensions
• Easier to write than C
• Truly portable: WORA
• Clean separation between core and extensions
• No GC, threading or security issues
• Easier to expose Java libraries

JRuby solutions to MRI problems
• Politics don’t get in the way
- JRuby is “just another Java library”
- Minimal impact dev, admin processes
- Over ten years of mainstream Java

• Legacy integrates just fine
- Use existing services and libraries

Why ThoughtWorks likes JRuby
• JRuby gives access to the “enterprise” features of

Java
• Conservative environments will not use MRI
• Quick integration with legacy systems
• Cost: Java+Ruby is more cost effective than MRI

Why JRuby on Rails for TW?
• Deployment, deployment, deployment
• JDBC for database access
• Other libraries that provide needed, cross-platform

functionality (Java2D instead of RMagick?)
• Management (JMX and others)
• Common to do JRuby on Rails applications that work

with legacy data

Mingle
• Team Collaboration Tool
• First commercial JRuby on Rails application
• Originally choose JRuby for SVN plugin
• Originally developed in MRI - still MRI compatible
• Very well tested
• Mingle test suite is slower in JRuby than MRI
• ... but in production the JRuby version is quicker and

scales better

Mingle stats
• +----------------------+-------+-------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+-------+-------+---------+---------+-----+-------+
Controllers	2809	2377	32	276	8	6
Helpers	1255	1038	8	138	17	5
Models	11203	9079	176	1564	8	3
Libraries	4784	3919	88	383	4	8
Integration tests	0	0	0	0	0	0
Functional tests	3494	2881	27	337	12	6
Unit tests	16109	13272	105	1449	13	7
Acceptance tests	13318	10689	87	1100	12	7
+----------------------+-------+-------+---------+---------+-----+-------+						
Total	52972	43255	523	5247	10	6
+----------------------+-------+-------+---------+---------+-----+-------+
 Code LOC: 16413 Test LOC: 26842 Code to Test Ratio: 1:1.6

Mingle license decryption
• Licenses uses strong cryptography
• Using a Java RSA library
• Would have been very hard in MRI
• JRuby Java integration made it dead simple to use the

RSA library

Obfuscation
• Override JRuby’s LoadService
• This allows us to encrypt/decrypt all Ruby files in app/*
• Will probably move to using AOT compilation when

that is finished
• This is obfuscation - there is no real, safe protection in

it
• ... but it seems to work well enough. =)

Mingle + ChartDirector
• ChartDirector is a proprietary library for making charts
• Have both a Java library and a C extension library for

Ruby
• A thin wrapper over the Java library makes it possible

to use the same chart code in MRI and JRuby

Mingle code example:
chartdirector4jr.rb

Mingle + SVNkit
• No MRI subversion library worked on all platforms
• Initial reason for going with JRuby
• SVNkit is a Java library that provides uniform

subversion access on Linux, MacOS X, Windows,
Solaris, and all other Java platforms

• SVNkit supports file system, DAV and SVN

Mingle deployment
• install4j - installation and bundling of JVM
• Runs locally using Jetty
• BYO database - (used to be Derby)
• 1.1 or 1.2 will support WAR deployment
• Uses custom built Jetty launching
• Uses custom built AntBuilder scripts to generate WAR
• Uses CC.rb for MRI and Java CC for JRuby

Finance client 1
• Conservative, large company
• IS department standardized on Java
• JRuby on Rails application
• JRuby improves integration
• Uses the UnitRecord plugin to speed-up test suites
• Lack of good RMagick replacement have been hard
• Tomcat+Lucene seems to be causing bugs

Finance client 2
• Large, conservative company
• Separate business units: most information is not

shared
• Project aims to consolidate all accounts and customer

information into one place
• It’s written in mainly Ruby with small amounts of Java
• 2 persons, probably 4 months from start to finish
• Interacting with 5 disparate data sources

Finance client 2 - why JRuby?
• Infrastructure barrier was primary reason
- “ Those infrastructure guys are just seeing another

Java app with some static textual content (happens
to be Ruby source files)”

• Higher business value by directly lowering integration
estimates

• Using Java APIs (especially JDBC) allowed quicker
development, since no need to write new functionality
for Ruby

Waffle
• Java web framework
• No XML - except minimal web.xml
• Easy to learn
• No base classes/interfaces needed
• Allows most functionality to work with Ruby
• ... ERb templates can be used as views
• Ruby classes as controllers

Forthcoming Studios projects
• Other tools for development/team collaboration
• Will use JRuby in different ways
• ... including allow Ruby to be used as extension

language for Java based applications
• ... and improving the deployment and management

story for JRuby
• Next product will probably be GA in Jan/Feb ‘08

Challenges with JRuby
• Performance of unit tests
- Solution: running MRI precommit and JRuby in CI
- Solution: using UnitRecord instead

• It’s not free to run on both MRI and JRuby
• Start-up time (especially of Rails)
- Solution: staged start-up in background
- Not always enough for day-to-day development use

Challenges with JRuby
• JRuby regular expressions have different performance

characteristics and big-O running time in certain cases
• JRuby YAML isn’t completely stable yet (but it’s getting

there)
• High memory consumption (but still lower than

Mongrel)
• Good replacement for RMagick needed
• Lack of documentation

The future of JRuby (at TW)
• Continue looking at products around JRuby
• JRubyWorks
- Alleviate current problems with GoldSpike

• ActiveHibernate?
• Performance
• Other neat things

Resources
• www.jruby.org
• studios.thoughtworks.com
• waffle.codehaus.org
• jruby-extras.rubyforge.org
• ola-bini.blogspot.com
• JRuby mailing lists at Codehaus

Shameless plug

24 September ‘07

Q & A

