
Sam Aaron

PhD
on

Rails

http://www.zsquad.com/images/trojanhorse.gif

http://www.zsquad.com/images/trojanhorse.gif
http://www.zsquad.com/images/trojanhorse.gif

Interest Management

Users

Interest Management

Artefacts

Interest Management

Events

Interest Management

Each user creates a given average
number events per unit of time.

Each user needs to be made aware
of all events.

Interest Management

Number of
Messages

Number of Users

Describing Subsets

Everything

Describing Subsets

Boring

Interesting

Interest Management

“the process of filtering
irrelevant messages”

Masa and Źara

Interest Management

“reducing messages to a
smaller relevant set”

Morse

Categorisation

Locales

Interacting Locales

Describing Subsets

Categorisation

Describing Subsets

Artefact Attribute Values

Explicit Metadata

Implicit Metadata

VE Implementation

Categorisation

Locales

Interacting Locales

➡Artefacts

➡(Virtual) Artefacts

➡Relationships

VE Implementation

VRML

browser

EAI interface

VE Implementation

VRML
browser

EAI interface

EAILibrary

EAIShell

VE Implementation

VE Implementation

VE Implementation

VRML
browser

EAI interface

EAILibrary Java Simulation

EAIShell

VE Implementation

VE Implementation

Dynamic Typing

Flexible Syntax

Powerful Language

irb

VE Implementation

Convention over

Configuration

DRY

Testing

irb (Rails Console)

Thank You!

VE Implementation

VRML
browser

EAI interface

EAILibrary Java Simulation

EAIShell

VRML
browser

EAI interface

EAILibrary

Rails SimulationEAIShell

VE Implementation

VE Implementation

VE Implementation

VE Implementation

“I am interested in all
artefacts that are

red”

VE Implementation

VE Implementation

select * from artefacts
where

(colour = 'red')

VE Implementation

“I am interested in all red
players, whose aura overlaps
the referee’s aura and that are
within the home penalty circle”

select * from artefacts where (virtual = false
and ((colour = 'red') and (category = 'player'
and
((virtual = false and (category = 'player' and
(name in (select name from artefacts where
(((5.0 + radius > sqrt(pow((x_coord - 27.0),
2) + pow((y_coord - 13.0), 2))) and (category
= 'aura')))))))
and ((9.5 > sqrt(pow((x_coord - 25.0), 2) +
pow((y_coord - 10.0), 2))))))))

VE Implementation

Domain Specific Languages

Succinctness

Domain Specific Languages

35

Internal DSLs use the constructs and syntax of a general purpose programming language itself to

define to DSL18. Constructing DSLs like this is similar to bottom-up programming[40] in which

the language is changed to suit the problem. The Lisp, Smalltalk and Ruby communities have a

strong tradition of using internal DSLs.

External DSLs have their own syntax. A compiler is then written to parse the DSL and possibly

generate code for standard general purpose language, or interpret it directly. This approach is

traditional in the Unix community which has many tools that make this easier such as yacc and

lex[60]. XML is an example of an external DSL.

The expressiveness of a language refers essentially to the power and ability of representing different

concepts within its domain or context. As explained above, the expressiveness or computational power

of a DSL need not be any greater than the demands of context or domain within which it will be used.

The focus of DSLs tends to be on creating a language that fits the domain for which it was created. The

judgement of how well the language fits is clearly subjective. However, it usually has a correlation to

the readability and succinctness of the language from the perspective of the domain within which it is

executing. Sections 2.3.1 and 2.3.2 explore the concepts of readability and succinctness respectively.

2.3.1 Readability

In a given language, complex, expressive statements can very easily become difficult to read. A good

example of this is the syntax of regular expressions. For example, consider the following regular expression

which matches valid e-mail addresses:

/\A([\w\.\-\+]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/i

The ability to read, write and verify the interest statements is . Not only are more readable statements

easier to read, they are also easier to write and verify. Having a readable language can also help in exposing

obvious bugs. For an example of a language that attempts to be more readable, consider COBOL. COBOL

attempts to bring programming languages closer to natural languages using keywords such as MULTIPLY,

GIVING and BY. Consider the solution

x =
−b +

√
b2 − 4ac

2a
(2.1)

of the quadratic equation ax2 + bx + c = 0 written in COBOL19 looks as follows:

MULTIPLY B BY B GIVING B-SQUARED.

MULTIPLY 4 BY A GIVING FOUR-A.

18Internal DSLs are also referred to as embedded DSLs.
19ignoring (for didactic purposes) the existence of the ‘compute’ verb which allows: COMPUTE X = (-B + (B ** 2 - (4 * A * C))

**.5) / (2 * A)

Domain Specific Languages

Readability

Domain Specific Languages

MULTIPLY B BY B GIVING B-SQUARED.
MULTIPLY 4 BY A GIVING FOUR-A.
MULTIPLY FOUR-A BY C GIVING FOUR-A-C.
SUBTRACT FOUR-A-C FROM B-SQUARED GIVING
RESULT-1.
COMPUTE RESULT-2 = RESULT-1 ** .5.
SUBTRACT B FROM RESULT-2 GIVING NUMERATOR.
MULTIPLY 2 BY A GIVING DENOMINATOR.
DIVIDE NUMERATOR BY DENOMINATOR GIVING X.

Domain Specific Languages

Expressiveness

Domain Specific Languages

Interest Conditions

Combinations

Grouping

Abstraction

Scoping

Wish

Wish

Wish

“Treating Code as an Essay”

Yukihiro Matsumoto

Wish

One statement per line

No AND and OR keywords

Implicit parenthesis

Subwishes

Smart Quoting

http://sam.aaron.name

Thanks

http://sam.aaron.name
http://sam.aaron.name

