

Open Source Virtualization:

KVM and Linux

Chris Wright
Principal Software Engineer, Red Hat
September 4, 2009

Increased capacity

Agenda

RHEL 5.4 Virtualization

Virtualization Stack

KVM

KVM at a glance

KVM Execution loop

Memory management

Paravirtualization

I/O

Roadmap

Community

Conclusions

RHEL 5.4 Virtualization

Xen enhancements

32-on-64 PV, HVM guest timekeeping, 192 CPUs, VPID, 1GB pages, PCI device assignment, SR-IOV

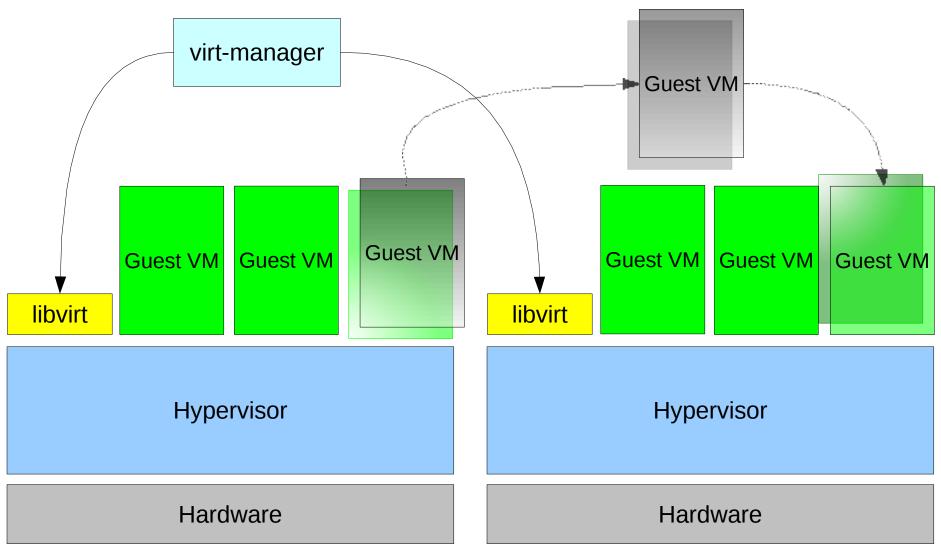
libvirt update to 0.6.3

KVM support, PCI hotplug, PCI device assignment

Introduction of KVM

more on this later

RHEV


Based on RHEL 5.4 and KVM (SVVP, WHQL)

Dedicated Virtual Machine hosting platform

Graphical Management

Virtualization stack

libvirt features

Provisioning, lifecycle management

Hypervisor agnosite

Xen, KVM, QEMU, LXC, UML, OpenVZ, VMware, IBM Power

Storage

IDE, SCSI, LVM, FC, Multipath, NPIV, NFS

Networking

Bridging, bonding, vlans, etc

Secure remote management

TLS, Kerberos

Many common language bindings

Python, perl, ruby, ocaml, c#, java

CIM provider

AMQP agent

KVM features

Leverage HW virtualization support VT-x/AMD-V, VPID/ASID, EPT/NPT, VT-d/IOMMU

CPU and memory overcommit

High performance I/O

Hotplug (CPU, Block, NIC, PCI)

SMP guests

Live migration

PCI Device Assignment and SR-IOV

Page sharing

NUMA

Power Management

SPICE

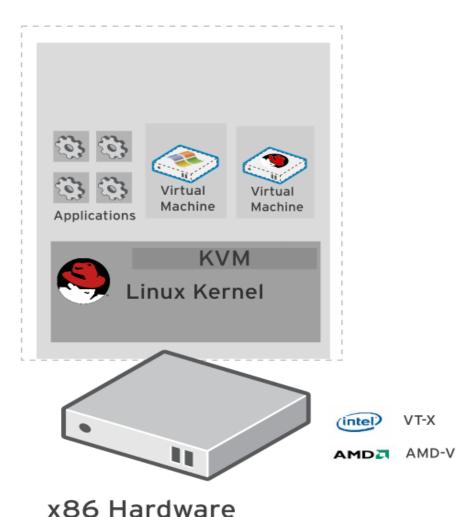
The Kernel-based Virtual Machine (KVM)

KVM at a glance

A Linux kernel module turning Linux into a hypervisor Tightly integrated into Linux

Advanced memory management

Supports multiple architectures x86, ia64, s390, PowerPC


Requires hardware virtualization extensions paravirtualization where makes sense

Supports many guests RHEL 3/4/5, Windows XP/Server 2003/Server 2008

Competitive performance and feature set

Architecture Overview of KVM

KVM: Kernel-based Virtual Machine – Full virtualization solution for Linux

Incorporated into the Linux kernel in 2006

Converts Linux into a hypervisor

Run unmodified guest OSes

KVM architecture provides high "feature-velocity" – leverages the power of Linux

is best characterized by

PRAGMATISM

is best characterized by

PRACMATISM

LAZINESS

A hypervisor needs

A scheduler and memory management

Platform support code

An I/O stack

Device drivers

A management stack

A hypervisor needs

A scheduler and memory management

Platform support code

An I/O stack

Device drivers

A management stack

Linux has world-class support for all this, so why reinvent the wheel?

Focus on virtualization, leave other things to respective developers

Linux Integration

Preemption (and voluntary sleep) hooks: preempt notifiers

Swapping and other virtual memory management: mmu notifiers

Preempt Notifiers

Linux may choose to suspend a vcpu's execution KVM runs with some guest state loaded while in kernel mode (FPU, etc.)

Need to restore state when switching back to user mode Solution: Linux notifies KVM whenever it preempts a process that has guest state loaded

... and when the process is scheduled back in

Allows the best of both worlds Low vmexit latency

Preemptibility, sleeping when paging in

MMU Notifiers

Linux doesn't know about the KVM MMU

So it can't

Flush shadow page table entries when it swaps out a page (or migrates it, or ...)

Query the pte accessed bit when determines the recency of a page

Solution: add a notifier for tlb flushes

for accessed/dirty bit checks

With MMU notifiers, the KVM shadow MMU follows changes to the Linux view of the process memory map

Leverage Linux

Power Management – a good example of how Linux integration helps

An especially rough area in operating systems

KVM has

Automatic frequency scaling

with several governors

Suspend/resume support

with running virtual machines

Advanced I/O support

LVM, Multipath, Bonding

All with a small amount of glue code

Leverage Linux: Security

KVM inherits security features of Linux

Includes support for SELinux

Provides protection and isolation for virtual machines and host

Compromised virtual machine cannot access other VMs or host

sVirt Project

Sub-project of NSA's SELinux community

Provides "hardened" hypervisors

Multilevel security

Isolate guests

Contain any hypervisor breaches

Real time

Linux has (unmerged) hard real time support KVM does not interfere with the real time properties of real time Linux

Can run virtual machines alongside hard real time processes

Run a GUI in a container alongside an industrial controller

Or a cell phone

Or, soak up unused cycles on real-time financials servers

KVM Execution Model

Three modes for thread execution instead of the traditional two:

User mode

Kernel mode

Guest mode

A virtual CPU is implemented using a Linux thread The Linux scheduler is responsible for scheduling a virtual CPU, as it is a normal thread

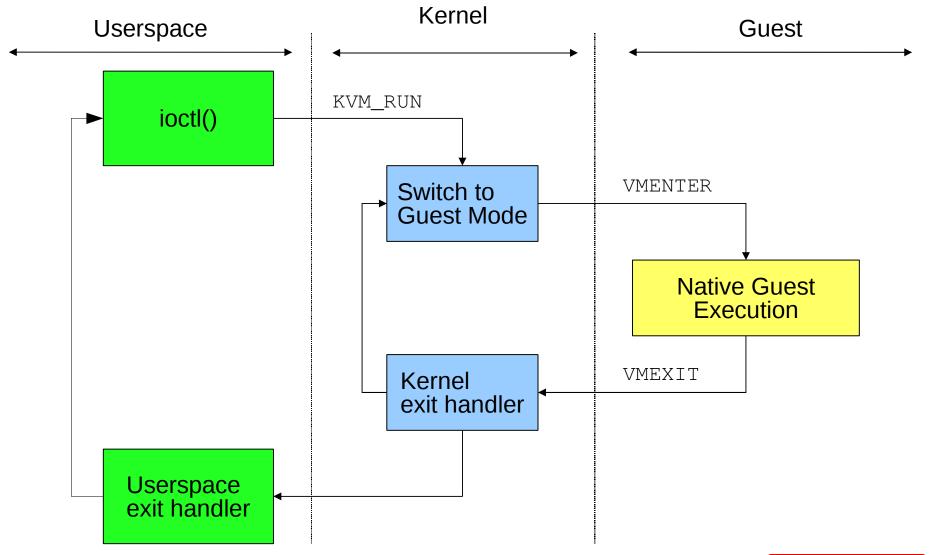
KVM Execution Model

Guest code executes natively

Apart from trap and emulate instructions

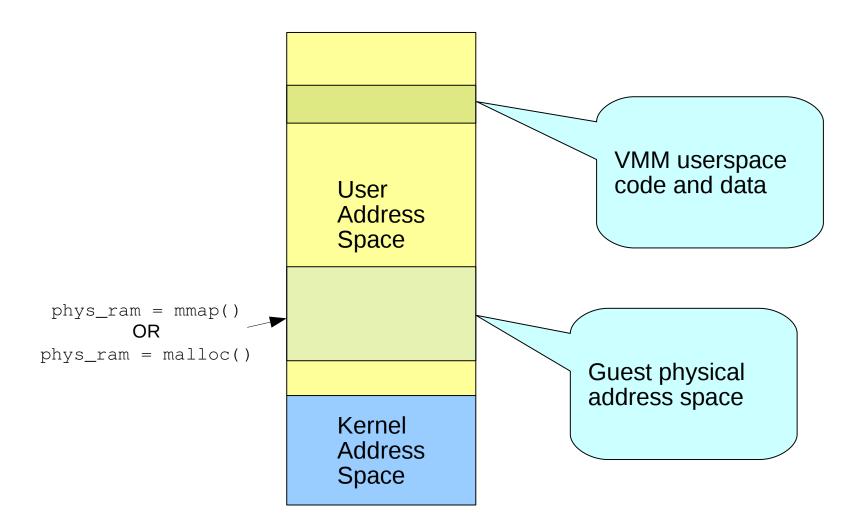
Performance critical or security critical operations handled in kernel

Mode transitions


Shadow MMU

I/O emulation and management handled in userspace QEMU-derived code base

Other users welcome



KVM Execution Model

KVM Memory Model

KVM Memory Model

Guest physical memory is just a chunk of host virtual memory, so it can be

Swapped

Shared

Backed by large pages

Backed by a disk file

COW'ed

NUMA aware

The rest of the host virtual memory is free for use by the VMM

Low bandwidth device emulation

Management code

Memory Page Sharing

Implemented in loadable kernel module

Kernel SamePage Merging (KSM)

Kernel scans memory of virtual machines

Looks for identical pages

"Merges" identical pages

Only stores one copy (read only) of shared memory

If a guest changes the page it gets it's own private copy

Significant hardware savings

Better consolidation ratio
Allows more virtual machines to run per host

Paravirtualization

Not nearly as critical for CPU/MMU now with hardware assistance

Highly intrusive

KVM has modular paravirtualization support Turn on and off as needed by hardware

Supported areas

Hypercall-based, batched mmu operations

Clock

I/O path (virtio)

I/O - virtio

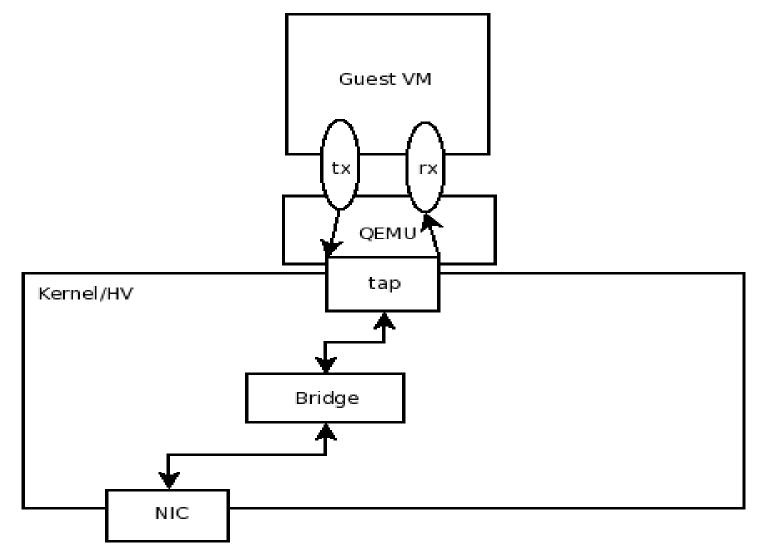
Most devices emulated in userspace With fairly low performance

Paravirtualized I/O is the traditional way to accelerate I/O

Virtio is a framework and set of drivers:

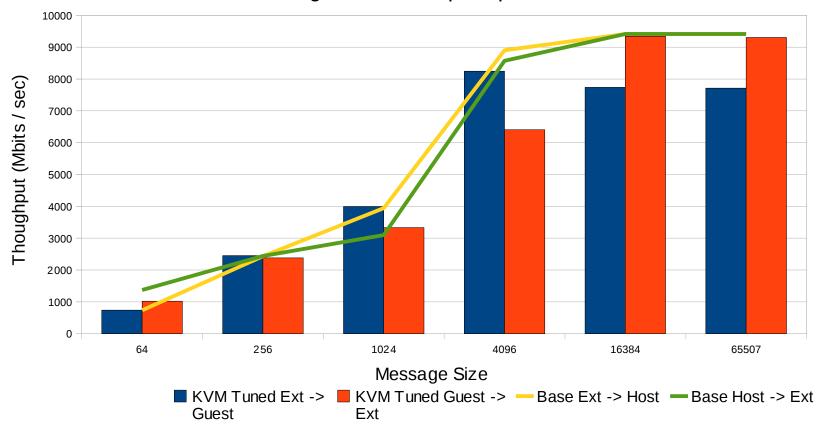
A hypervisor-independent, domain-independent, bus-independent protocol for transferring buffers

A binding layer for attaching virtio to a bus (e.g. pci)

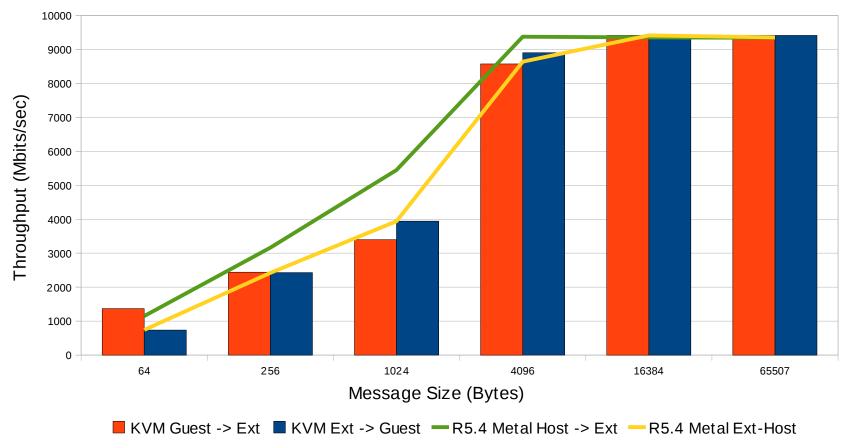

Domain specific guest drivers (networking, storage, etc.)

RHEL 3/4/5, Windows XP/Server 2003/Server 2008

Hypervisor specific host support


Virtio network architecture

KVM netperf w/ virtio


TCP Throughput KVM vs Bare Metal single stream netperf, pinned

KVM netperf w/ device assignment

KVM Guest w/Device Assignment TCP Performance single stream netperf, BareMetal vs KVM

Roadmap

QEMU improvements and integration

libmonitor, machine description

qxl/SPICE integration

Scalability work

Qemu and kvm

Performance...

Roadmap cont'd

```
Performance work
   Block
       I/O using linux aio
   Network
       GRO, multiqueue virtio, latency reduction, zero copy
   MMU
       Page hints
   Scheduler
       Improve SMP guest scaling
Resource management
   cgroups
```


Community

Main contributors

AMD, IBM, Intel, Novell, SGI, Siemens, Red Hat

Typical open source project Mailing lists, IRC

Your participation is most welcome!

http://linux-kvm.org

Conclusions

Simple model - no excess baggage Fully featured Great performance Rapidly moving forward

http://linux-kvm.org

