
Red Hat Summit 2009 | Ulrich Drepper1

Red Hat Summit 2009 | Ulrich Drepper2

Stop Underutilizing Your Computer

Ulrich Drepper
Consulting Engineer, Red Hat
2009-9-4

Red Hat Summit 2009 | Ulrich Drepper3

Overview

Why Stream Computing?

Simple Example

Benchmarking

Complex Examples

Scalable Stream Programming Techniques

Red Hat Summit 2009 | Ulrich Drepper4

Why Stream Computing?

What CPU manufacturers want you to believe:

1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
0

10000

20000

30000

40000

50000

60000

Processor Performance

CPU MIPS

Time

M
IP

S

Red Hat Summit 2009 | Ulrich Drepper5

Why Stream Computing?

We need parallelism:

1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
0

10000

20000

30000

40000

50000

60000

Processor Performance

Single Core MIPS Multi Core MIPS

Time

M
IP

S

Red Hat Summit 2009 | Ulrich Drepper6

Why Stream Computing?

… but also need Stream Computing

1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
0

10000

20000

30000

40000

50000

60000

Processor Performance

Single Core Integer
MIPS

Single Core MIPS Multi Core MIPS

Time

M
IP

S

Red Hat Summit 2009 | Ulrich Drepper7

Why Stream Computing?

Register width increases

32

64

128

256

Integer

MMX

SSE

AVX

And 512 bytes in future

Red Hat Summit 2009 | Ulrich Drepper8

Why Stream Computing?

Modern Micro-Architecture (Nehalem):

Integer ALU
& Shift

Integer ALU
& LEA Load Store

Address
Store
Data

Integer ALU
& Shift

FP Multiply

Divide

SSE Integer ALU
Integer Shuffles

FP Add

Complex
Integer

SSE Integer
Multiply

Branch

FP Shuffle

SSE Integer ALU
Integer Shuffles

Unified Reservation Station

P
ort 0

P
ort 1

P
ort 2

P
ort 3

P
ort 4

P
ort 5

Red Hat Summit 2009 | Ulrich Drepper9

Simple Example

Prerequisite: data in arrays

Simple: vector arithmetic

First Implementation:

 extern float *x, *y, *z;

 for (i = 0; i < N; ++i)

 z[i] = x[i] * f + y[i];

z=x∗fy

Red Hat Summit 2009 | Ulrich Drepper10

Simple Example

Using SSE:

 extern union { float f[N]; __v4sf v[N/4]; }

 *x, *y, *z;

 __m128 vf = _mm_set_ps1(f);

 for (i = 0; i < N / 4; ++i)

 z->v[i] = _mm_add_ps(_mm_mul_ps(x->v[i], vf),

 y->v[i]);

Red Hat Summit 2009 | Ulrich Drepper11

Benchmarking

Performance:

Up to 25% faster
float double

0%

25%

50%

75%

100%

Simple
SSE

Red Hat Summit 2009 | Ulrich Drepper12

Complex Examples

Today not only arithmetic stream instructions

Not only floating point, also integer

Complex move instructions

Logic instructions

Comparison instructions

Many more

Complex control flow possible

Even more support coming

Red Hat Summit 2009 | Ulrich Drepper13

Complex Examples

Example using conditional:

void lscale(float *out, const float *in) {

 for (unsigned i = 0; i < N; ++i)

 if (in[i] > 10)

 out[i] = 10 + (in[i] – 10) * 9 / 10;

 else

 out[i] = src[i];

}

Red Hat Summit 2009 | Ulrich Drepper14

Complex Examples

Using SSE2:

void lscale(__v4sf *out, const __v4sf *in) {

 __m128 v10 = _mm_set_ps1(10.0f), v09 = _mm_set_ps1(0.9f);

 for (unsigned i = 0; i < N / 4; ++i) {

 __m128 cmp = _mm_cmp_gt(in[i], v10);

 __m128 tmp = _mm_add_ps(v10, _mm_mul_ps(_mm_sub_ps(in[i], v10),

 V09));

 out[i] = _mm_or_ps(_mm_andnot_ps(cmp, in[i]),

 _mm_and_ps(cmp, tmp));

}

Red Hat Summit 2009 | Ulrich Drepper15

Complex Examples

Intel adds more support:

void lscale(__v4sf *out, const __v4sf *in) {

 __m128 v10 = _mm_set_ps1(10.0f), v09 = _mm_set_ps1(0.9f);

 for (unsigned i = 0; i < N / 4; ++i) {

 __m128 cmp = _mm_cmp_gt(in[i], v10);

 __m128 tmp = _mm_add_ps(v10, _mm_mul_ps(_mm_sub_ps(in[i], v10),

 V09));

 out[i] = _mm_blendv_ps(in[i], tmp, cmp);

}

Red Hat Summit 2009 | Ulrich Drepper16

Benchmarking

Performance:

Up to 87% faster

float double
0%

25%

50%

75%

100%

Simple
SSE2
SSE4.1

Red Hat Summit 2009 | Ulrich Drepper17

Complex Examples

Complex built-in operations:

Minimum

Maximum

Saturated arithmetic

Red Hat Summit 2009 | Ulrich Drepper18

Scalable Stream Programming

Compilers not really optimizing automatically

Too much lowlevel knowledge

Not productive enough

Not everybody can know the instructions

Updating for newer CPU labor intensiv

Better: library approach

Red Hat Summit 2009 | Ulrich Drepper19

Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, int N>

struct vec {

 union {

 T n[N];

 __v4sf f[N/4]; __v2df d[N/2]; __v2di ll[N/2];

 };

 T &operator[](size_t x){return n[x];}

 T operator[](size_t x) const {return n[x];}

};

Red Hat Summit 2009 | Ulrich Drepper20

Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, int N>

T scalar(const vec<T,N> &x, const vec<T,N> &y) {

 T r = 0;

 for (int i = 0; i < N; ++i)

 r += x[i] * y[i];

 return r;

}

Red Hat Summit 2009 | Ulrich Drepper21

Scalable Stream Programming

Hide stream programming in C++ classes

template<int N>

float scalar(const vec<float,N> &x, const vec<float,N> &y)
{

 __m128 t = _mm_setzero_ps();

 for (int i = 0; i < N / 4; ++i)

 t = _mm_add_ps(t, _mm_mul_ps(x.f[i], y.f[i]));

 t = _mm_hadd_ps(t, t);

 t = _mm_hadd_ps(t, t);

 return __builtin_ia32_vec_ext_v4sf(t, 0);

}

Red Hat Summit 2009 | Ulrich Drepper22

Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, int N>

vec<T,N> operator+(const vec<T,N> &x, const vec<T,N> &y) {

 vec<T,N> r;

 for (int i = 0; i < N; ++i)

 r[i] = x[i] + y[i];

 return r;

}

Red Hat Summit 2009 | Ulrich Drepper23

Scalable Stream Programming

Hide stream programming in C++ classes

template<int N>

vec<float,N> operator+(const vec<float,N> &x,

 const vec<float,N> &y) {

 vec<float,N> r;

 for (int i = 0; i < N / 4; ++i)

 r.f[i] = _mm_add_ps(x.f[i], y.f[i]);

 return r;

}

Red Hat Summit 2009 | Ulrich Drepper24

Scalable Stream Programming

Simple test code:

 res = scalar(vec1 * f1 + vec2 * f2,

 vec3 * f3 + vec4 * f4);

operator*(vec, T) defined appropriately

Done for float, double, int32_t, int16_t

Red Hat Summit 2009 | Ulrich Drepper25

Benchmarking

Performance of overloaded functions:

Up to 80% faster

float double int32_t int16_t
0%

25%

50%

75%

100%

Simple
SSE

Red Hat Summit 2009 | Ulrich Drepper26

Scalable Stream Programming

Avoid memory overhead:
template<typename T, int N>

struct factvec {

 const vec<T,N> &v;

 T f;

};

template<typename T, int N>

factvec<T,N> operator*(const vec<T,N> &v, T f)

{ return factvec(v, f); }

No code changes necessary!

Red Hat Summit 2009 | Ulrich Drepper27

Scalable Stream Programming

Avoid memory overhead:
template<int N>

vec<float,N> operator+(factvec<float,N> &x,

 factvec<float,N> &y) {

 __m128 vxf = _mm_set_ps1(x.f), vyf = _mm_set_ps1(y.f);

 vec<float,N> r;

 for (int i = 0; i < N / 4; ++i)

 r.f[i] = _mm_add_ps(_mm_mul_ps(x.v.f[i], vxf),

 _mm_mul_ps(y.v.f[i], vyf));

 return r;

}

Red Hat Summit 2009 | Ulrich Drepper28

Red Hat Summit 2009 | Ulrich Drepper29

Benchmarking

Results when avoiding copying:

Up to 92% faster

float double int32_t int16_t
0%

25%

50%

75%

100%

Simple
SSE
C no copy
SSE no copy

Red Hat Summit 2009 | Ulrich Drepper30

Scalable Stream Programming

Delay even more:
template<typename T, int N>

struct sumfactvec {

 const vec<T,N> &v1; T f1;

 const vec<T,N> &v2; T f2;

};

template<typename T, int N>

sumfactvec<T,N> operator+(const factvec<T,N> &v1,

 const factvec<T,N> &v2)

{ return sumfactvec(v1, v2); }

No code changes necessary!

Red Hat Summit 2009 | Ulrich Drepper31

Scalable Stream Programming

Delay even more:
template<int N>

float scalar(const sumfactvec<float,N> &x,

 const sumfactvec<float,N> &y)

{

 ...

}

Red Hat Summit 2009 | Ulrich Drepper32

Benchmarking

Results when delaying all operations:

Up to 97% faster

float double int32_t int16_t
0%

25%

50%

75%

100%

Simple
SSE
C no copy
SSE no copy
C all delayed
SSE all delayed

Red Hat Summit 2009 | Ulrich Drepper33

Conclusion

Stream programming well worth it

Normal programmers don't have to be bothered

Specialists can modify library code during optimization

No program changes needed after these optimizations

C++ powerful enough to express all that's needed

Not showed: rvalue references (move semantics)

Further automatic reduction of copy operations

gcc has full set of intrinsics to use vector instructtions

Even wider vectors coming → more speedup

Red Hat Summit 2009 | Ulrich Drepper34

drepper@redhat.com | http://people.redhat.com/drepper

mailto:drepper@redhat.com

