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Why Stream Computing?

What CPU manufacturers want you to believe:
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Why Stream Computing?

We need parallelism:

1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
0

10000

20000

30000

40000

50000

60000

Processor Performance

Single Core MIPS Multi Core MIPS

Time

M
IP

S



Red Hat Summit 2009 | Ulrich Drepper6

Why Stream Computing?

… but also need Stream Computing
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Why Stream Computing?

Register width increases
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Why Stream Computing?

Modern Micro-Architecture (Nehalem):
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Simple Example

Prerequisite: data in arrays

Simple: vector arithmetic

First Implementation:

     extern float *x, *y, *z;

     for (i = 0; i < N; ++i)

       z[i] = x[i] * f + y[i];

z=x∗fy
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Simple Example

Using SSE:

  extern union { float f[N]; __v4sf v[N/4]; }

     *x, *y, *z;

  __m128 vf = _mm_set_ps1(f);

  for (i = 0; i < N / 4; ++i)

    z->v[i] = _mm_add_ps(_mm_mul_ps(x->v[i], vf),

                         y->v[i]);
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Benchmarking

Performance:

Up to 25% faster
float double
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Complex Examples

Today not only arithmetic stream instructions

Not only floating point, also integer

Complex move instructions

Logic instructions

Comparison instructions

Many more

Complex control flow possible

Even more support coming



Red Hat Summit 2009 | Ulrich Drepper13

Complex Examples

Example using conditional:

void lscale(float *out, const float *in) {

  for (unsigned i = 0; i < N; ++i)

    if (in[i] > 10)

      out[i] = 10 + (in[i] – 10) * 9 / 10;

    else

      out[i] = src[i];

}
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Complex Examples

Using SSE2:

void lscale(__v4sf *out, const __v4sf *in) {

  __m128 v10 = _mm_set_ps1(10.0f), v09 = _mm_set_ps1(0.9f);

  for (unsigned i = 0; i < N / 4; ++i) {

    __m128 cmp = _mm_cmp_gt(in[i], v10);

    __m128 tmp = _mm_add_ps(v10, _mm_mul_ps(_mm_sub_ps(in[i], v10),

                                            V09));

    out[i] = _mm_or_ps(_mm_andnot_ps(cmp, in[i]),

                       _mm_and_ps(cmp, tmp));

}
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Complex Examples

Intel adds more support:

void lscale(__v4sf *out, const __v4sf *in) {

  __m128 v10 = _mm_set_ps1(10.0f), v09 = _mm_set_ps1(0.9f);

  for (unsigned i = 0; i < N / 4; ++i) {

    __m128 cmp = _mm_cmp_gt(in[i], v10);

    __m128 tmp = _mm_add_ps(v10, _mm_mul_ps(_mm_sub_ps(in[i], v10),

                                            V09));

    out[i] = _mm_blendv_ps(in[i], tmp, cmp);

}
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Benchmarking

Performance:

Up to 87% faster
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Complex Examples

Complex built-in operations:

Minimum

Maximum

Saturated arithmetic
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Scalable Stream Programming

Compilers not really optimizing automatically

Too much lowlevel knowledge

Not productive enough

Not everybody can know the instructions

Updating for newer CPU labor intensiv

Better: library approach
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Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, int N>

struct vec {

  union {

    T n[N];

    __v4sf f[N/4]; __v2df d[N/2]; __v2di ll[N/2];

  };

  T &operator[](size_t x){return n[x];}

  T operator[](size_t x) const {return n[x];}

};
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Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, int N>

T scalar(const vec<T,N> &x, const vec<T,N> &y) {

  T r = 0;

  for (int i = 0; i < N; ++i)

    r += x[i] * y[i];

  return r;

}
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Scalable Stream Programming

Hide stream programming in C++ classes

template<int N>

float scalar(const vec<float,N> &x, const vec<float,N> &y)
{

  __m128 t = _mm_setzero_ps();

  for (int i = 0; i < N / 4; ++i)

    t = _mm_add_ps(t, _mm_mul_ps(x.f[i], y.f[i]));

  t = _mm_hadd_ps(t, t);

  t = _mm_hadd_ps(t, t);

  return __builtin_ia32_vec_ext_v4sf(t, 0);

}
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Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, int N>

vec<T,N> operator+(const vec<T,N> &x, const vec<T,N> &y) {

  vec<T,N> r;

  for (int i = 0; i < N; ++i)

    r[i] = x[i] + y[i];

  return r;

}
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Scalable Stream Programming

Hide stream programming in C++ classes

template<int N>

vec<float,N> operator+(const vec<float,N> &x,

                       const vec<float,N> &y) {

  vec<float,N> r;

  for (int i = 0; i < N / 4; ++i)

    r.f[i] = _mm_add_ps(x.f[i], y.f[i]);

  return r;

}
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Scalable Stream Programming

Simple test code:

  res = scalar(vec1 * f1 + vec2 * f2,

               vec3 * f3 + vec4 * f4);

operator*(vec, T) defined appropriately

Done for float, double, int32_t, int16_t
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Benchmarking

Performance of overloaded functions:

Up to 80% faster
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Scalable Stream Programming

Avoid memory overhead:
template<typename T, int N>

struct factvec {

  const vec<T,N> &v;

  T f;

};

template<typename T, int N>

factvec<T,N> operator*(const vec<T,N> &v, T f)

{ return factvec(v, f); }

No code changes necessary!
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Scalable Stream Programming

Avoid memory overhead:
template<int N>

vec<float,N> operator+(factvec<float,N> &x,

                       factvec<float,N> &y) {

  __m128 vxf = _mm_set_ps1(x.f), vyf = _mm_set_ps1(y.f);

  vec<float,N> r;

  for (int i = 0; i < N / 4; ++i)

    r.f[i] = _mm_add_ps(_mm_mul_ps(x.v.f[i], vxf),

                        _mm_mul_ps(y.v.f[i], vyf));

  return r;

}
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Benchmarking

Results when avoiding copying:

Up to 92% faster
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Scalable Stream Programming

Delay even more:
template<typename T, int N>

struct sumfactvec {

  const vec<T,N> &v1; T f1;

  const vec<T,N> &v2; T f2;  

};

template<typename T, int N>

sumfactvec<T,N> operator+(const factvec<T,N> &v1,

                          const factvec<T,N> &v2)

{ return sumfactvec(v1, v2); }

No code changes necessary!
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Scalable Stream Programming

Delay even more:
template<int N>

float scalar(const sumfactvec<float,N> &x,

             const sumfactvec<float,N> &y)

{

  ...

}
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Benchmarking

Results when delaying all operations:

Up to 97% faster

float double int32_t int16_t
0%

25%

50%

75%

100%

Simple
SSE
C no copy
SSE no copy
C all delayed
SSE all delayed



Red Hat Summit 2009 | Ulrich Drepper33

Conclusion

Stream programming well worth it

Normal programmers don't have to be bothered

Specialists can modify library code during optimization

No program changes needed after these optimizations

C++ powerful enough to express all that's needed

Not showed: rvalue references (move semantics)

Further automatic reduction of copy operations

gcc has full set of intrinsics to use vector instructtions

Even wider vectors coming → more speedup
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