RED HAT :: CHICAGO :: 2009

SUMMIT

FOLLOW US§.
TWITTER.COM/REDHATSUMMIT

TWEET ABOUT US.
ADD #SUMMIT AND/OR #JBOSSWORLD TO THE END
OF YOUR EVENT-RELATED TWEET

presen ted by tr

RED HAT :: CHICAGOD :: 2009

SUMMIT

Stop Underutilizing Your Computer

Ulrich Drepper
Consulting Engineer, Red Hat
2009-9-4

presen ted by tr

Overview

Why Stream Computing?

Simple Example

Benchmarking

Complex Examples

Scalable Stream Programming Techniques

HAT :: CHICAGO :: 2009

"SUMMIT

Red Hat Summit 2009 | Ulrich Drepper

Why Stream Computing?

What CPU manufacturers want you to believe:

Processor Performance

60000

50000

40000

MIPS

30000

20000

10000

0 \ — \ \ \ \ \ \
1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007

Time

— CPUMIPS

RED HAT :: CHICAGO :: 2009

SUMIT

4 Red Hat Summit 2009 | Ulrich Drepper

Why Stream Computing?

We need parallelism:

Processor Performance

60000

50000

40000

MIPS

30000

20000

10000

///
-

0 — T T

[[[[[|
1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
Time

Single Core MIPS — Multi Core MIPS

RED HAT :: CHICAGO :: 2009

SUMIT

5 Red Hat Summit 2009 | Ulrich Drepper

Why Stream Computing?

... but also need Stream Computing

Processor Performance

60000

50000

40000

30000

MIPS

20000

10000

P

0 ! ! I I I I I I I !
1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007

Time

==Single Core Integer ~ Single Core MIPS — Multi Core MIPS
MIPS

RED HAT :: CHICAGO :: 2009

SUMIT

6 Red Hat Summit 2009 | Ulrich Drepper

Why Stream Computing?

Register width increases

Integer 32

MMX | 64

SSE | 128

AVX | 256

And 512 bytes In future

Red Hat Summit 2009 | Ulrich Drepper

Why Stream Computing?

Modern Micro-Architecture (Nehalem):

Unified Reservation Station

U U U U U U
o o o o o o
— — — — — —
o w NEN ol
Integer ALU Integer ALU Load Store Store Integer ALU
& Shift & LEA Address Data & Shift
FP Multiply FP Add Branch
. Complex
Divide iz FP Shuffle
SSE Integer ALU SSE Integer SSE Integer ALU
Integer Shuffles Multiply Integer Shuffles

RED HAT :: CHICAGO :: 2009

SUMIT

Red Hat Summit 2009 | Ulrich Drepper

Simple Example

Prerequisite: data in arrays
Simple: vector arithmetic

z=xxf+Yy

First Implementation:

extern float *x, *y, *z;
for (1 = 0; 1 < N; ++1)

z[1] = x[1] * T + y[1];

Red Hat Summit 2009 | Ulrich Drepper

HAT :: CHICAGO :: 2009

"SUMMIT

Simple Example

Using SSE:

extern union { float f[N]; __v4sf v[N/4]; }
*x, *y, *z:
__ml128 vf = _mm_set_psi(f);
for (1 =0; 1 < N/ 4; ++1i)
z->v[i] = _mm_add_ps(_mm_mul_ps(x->v[i], vf),

y->v[1i]);

10 Red Hat Summit 2009 | Ulrich Drepper

Benchmarking

Performance:

100%
75%

50%

25%

0%
float double

Up to 25% faster

RED HAT :: CHICAGO :: 2009

SUMIT

11 Red Hat Summit 2009 | Ulrich Drepper

Complex Examples

Today not only arithmetic stream instructions

Not only floating point, also integer
Complex move instructions
Logic instructions
Comparison instructions
Many more
Complex control flow possible

Even more support coming

12 Red Hat Summit 2009 | Ulrich Drepper

HAT :: CHICAGO :: 2009

"SUMMIT

Complex Examples

Example using conditional.

void lscale(float *out, const float *in) {
for (unsigned 1 = 0; 1 < N; ++1)
if (in[i] > 10)
out[i] = 10 + (in[1] - 10) * 9 / 10;
else

out[i] = src[i];

13 Red Hat Summit 2009 | Ulrich Drepper

HAT :: CHICAGO :: 2009

"SUMMIT

Complex Examples

14

Using SSEZ2:

void lscale(__v4sf *out, const _ v4sf *in) {
_ m128 v10 = _mm_set_ps1(10.0f), vO9 = _mm_set_psi(0.9f);
for (unsigned i = 0; 1 < N / 4; ++1i) {
_ m128 cmp = _mm_cmp_gt(in[i], v10);
_ m128 tmp = _mm_add_ps(v1i0, _mm_mul_ps(_mm_sub_ps(in[i], v10),
Vo9)),
out[1i] = _mm_or_ps(_mm_andnot_ps(cmp, in[1i]),

_mm_and_ps(cmp, tmp));

RED HAT :: CHICAGO :: 2009

SUMIT

Red Hat Summit 2009 | Ulrich Drepper

Complex Examples

15

Intel adds more support:

void lscale(__v4sf *out, const _ v4sf *in) {
_ m128 v10 = _mm_set_ps1(10.0f), vO9 = _mm_set_psi(0.9f);
for (unsigned 1 = 0; 1 < N / 4; ++i) {
_ . m128 cmp = _mm_cmp_gt(in[1i], v10);
_ m128 tmp = _mm_add_ps(v1i0, _mm_mul_ps(_mm_sub_ps(in[i], v10),
V09));

out[1] = _mm_blendv_ps(in[1i], tmp, cmp),

RED HAT :: CHICAGO :: 2009

SUMIT

Red Hat Summit 2009 | Ulrich Drepper

Benchmarking

Performance:
100%
75%
i B Simple
S0% B SSE2
| | SSE4.1
25%

0%
float double

Up to 87% faster

RED HAT :: CHICAGO :: 2009

SUMIT

16 Red Hat Summit 2009 | Ulrich Drepper

Complex Examples

Complex built-in operations:
Minimum
Maximum
Saturated arithmetic

17 Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Scalable Stream Programming

Compilers not really optimizing automatically

Too much lowlevel knowledge

Not productive enough
Not everybody can know the instructions

Updating for newer CPU labor intensiv

Better: library approach

18 Red Hat Summit 2009 | Ulrich Drepper

HAT :: CHICAGO :: 2009

"SUMMIT

Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, 1int N>
struct vec {
union {
T n[N];
__vasf f[N/4]; __vadf d[N/2]; __v2di 11[N/2];
i
T &operator[](size_t x){return n[x];}

T operator[](size_t x) const {return n[x];}

iy

19 Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, 1int N>
T scalar(const vec<T,N> &x, const vec<T,N> &y) {
Tr=20;
for (int 1 = 0; 1 < N; ++1)
r+= x[1] * y[1];

return r;

20 Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Scalable Stream Programming

21

Hide stream programming in C++ classes

template<int N>

float scalar(const vec<float,N> &x, const vec<float,N> &y)

{

_ m128 t = _mm_setzero_ps();

for

t
t =
t =

(int 1 = 0; 1 < N / 4; ++i)

= _mm_add_ps(t, _mm_mul_ps(x.f[i], y.f[i]));
_mm_hadd_ps(t, t);

_mm_hadd_ps(t, t);

return _ _builtin_1ia32_vec_ext_v4sf(t, 0);

Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

22

Scalable Stream Programming

Hide stream programming in C++ classes

template<typename T, 1int N>

vec<T,N> operator+(const vec<T,N> &x, const vec<T,N> &y) {
vec<T,N> r;

for (int 1 = 0; 1 < N; ++1)
r(1] = x[1] + y[1];

return r;

RED HAT :: CHICAGO :: 2009

SUMIT

Red Hat Summit 2009 | Ulrich Drepper

Scalable Stream Programming

Hide stream programming in C++ classes

template<int N>
vec<float,N> operator+(const vec<float,N> &x,
const vec<float,N> &y) {
vec<float,N> r;
for (int 1 = 0; i < N / 4; ++1)
r.f[1] = _mm_add_ps(x.f[1], y.f[1]);

return r;

23 Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Scalable Stream Programming

Simple test code:

res = scalar(vecl * f1 + vec2 * T2,
vec3 * f3 + vecd * f4);

operator*(vec, T) defined appropriately
Done for float, double, 1nt32_¢t, 1ntl16_t

24 Red Hat Summit 2009 | Ulrich Drepper

Benchmarking

Performance of overloaded functions:

100%
75%
50% B Simple
M SSE
25%

0%

float double int32_t intl6_t

Up to 80% faster

RED HAT :: CHICAGO :: 2009

SUMIT

25 Red Hat Summit 2009 | Ulrich Drepper

Scalable Stream Programming

Avoid memory overhead.:
template<typename T, int N>
struct factvec {
const vec<T,N> &v;
T f;
¥
template<typename T, int N>
factvec<T,N> operator*(const vec<T,N> &v, T f)

{ return factvec(v, f); }

No code changes necessary!

26 Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Scalable Stream Programming

Avoid memory overhead.:
template<int N>
vec<float, N> operator+(factvec<float, N> &x,
factvec<float,N> &y) {
_ m128 vxf = _mm_set_psi(x.f), vyf = _mm_set_psi(y.f);
vec<float,N> r;
for (int 1 = 0; 1 < N / 4; ++1)
r.f[1] = _mm_add_ps(_mm_mul_ps(x.v.f[1], vxf),
_mm_mul_ps(y.v.f[1], vyf));

return r;

RED HAT :: CHICAGO :: 2009

SUMIT

27 Red Hat Summit 2009 | Ulrich Drepper

28

Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Benchmarking

Results when avoiding copying:

100%
75%
M Simple
50% M SSE
] C no copy
B SSE no copy
25%

0%

float double int32_ t intl6_t

Up to 92% faster

RED HAT :: CHICAGO :: 2009

SUMIT

29 Red Hat Summit 2009 | Ulrich Drepper

Scalable Stream Programming

Delay even more:
template<typename T, int N>
struct sumfactvec {
const vec<T,N> &vl1; T f1;
const vec<T,N> &v2; T f2;
i
template<typename T, int N>
sumfactvec<T,N> operator+(const factvec<T,N> &vl,
const factvec<T,N> &v2)

{ return sumfactvec(vl, v2); }

RED HAT :: CHICAGO :: 2009

,No code changes necessary! SUMMIT

ed Hat Summit 2009 | Ul

Scalable Stream Programming

Delay even more:
template<int N>
float scalar(const sumfactvec<float, N> &x,

const sumfactvec<float, N> &y)

31 Red Hat Summit 2009 | Ulrich Drepper

RED HAT :: CHICAGO :: 2009

SUMIT

Benchmarking

Results when delaying all operations:

100%
75%
M Simple
M SSE
50%] C no copy
B SSE no copy
1 C all delayed
25% B SSE all delayed

0%
float double int32 t intl6_t

Up to 97% faster

RED HAT :: CHICAGO :: 2009

SUMIT

32 Red Hat Summit 2009 | Ulrich Drepper

Conclusion

Stream programming well worth it

Normal programmers don't have to be bothered
Specialists can modify library code during optimization
No program changes needed after these optimizations
C++ powerful enough to express all that's needed

Not showed: rvalue references (move semantics)
Further automatic reduction of copy operations

gcc has full set of intrinsics to use vector instructtions
Even wider vectors coming = more speedup

RED HAT :: CHICAGO :: 2009

SUMIT

33 Red Hat Summit 2009 | Ulrich Drepper

QUESTIONS?

TELL US WHAT YOU THINK:
REDHAT.COM/SUMMIT-SURVEY

drepper@redhat.com | http://people.redhat.com/drepper

mailto:drepper@redhat.com

