SUMMIT JBoss WORLD

PRESENTED BY RED HAT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com

Red Hat Enterprise MRG Messaging Performance Seminar

Mark Wagner Principle Engineer, Red Hat Carl Trieloff Technical Director, Red Hat

June 25, 2010

WORLD

JBoss

PRESENTED BY RED HAT

SUMIT

Overview

- Brief overview of MRG
- Guidelines for tuning Red Hat Enterprise MRG Messaging
- Understanding differences between technologies
 - 1GB / 10GB / IB / RDMA
 - SCSI / SATA / Fibre / FusionIO
- Best practices Enterprise MRG in various configurations
 - Standalone/ Cluster / Grid
- The updated benchmark data across the newest platforms
- Open source performance tools for Red Hat Enterprise MRG

Red Hat Enterprise MRG

Ş

Messaging

MRG Messaging

Enterprise Messaging System that

Implements AMQP (Advanced Message Queuing Protocol), the first open messaging standard

Participation from Red Hat, JPMC, Goldman, Credit Suisse, Deutsche Borse, Barclays, Bank of America, Microsoft, Cisco, etc

Spans many use cases in one implementation to consolidate architectural silos (fast messaging, reliable messaging, large file transfer, publish/subscribe, eventing, etc)

Uses Linux-specific optimizations to achieve breakthrough performance on Red Hat Enterprise Linux and MRG Realtime

Runs on non-Linux platforms without the full performance and quality of service benefits that Red Hat Enterprise Linux provides

Provides open, high performance system for everything from financial exchanges to infrastructure management

MRG Messaging Feature Highlights

Core Messaging

P2P, fanout, pub-sub, sync, async

Reliable messaging

Transactions local to dtx

Multiple clients (C++, Java, JMS, .NET Python, Ruby, {WCF})

High Performance

C++ broker, optimized for RHEL O-direct AIO for high-speed durablity RDMA support for ultra low latency

Management tools

Web-based GUI, cmd line tools AMQP-based framework & APIs (QMF)

NORID

JBoss

Advanced Features

Queue Semantics: Ring Queue, Last Value Queue, TTL, Initial Value Exchange, etc

Routing patterns, including XML XQuery

Federation with dynamic routes

High Availability

Active-Standby/Active-Active Broker Clustering Federated disaster recovery

Security

SASL authentication

SSL/TLS/ Kerberos encryption

Role-based Access Control (ACL)

PRESENTED BY RED HAT

SUMI

MRG 1.3 / RHEL6, what is new with regard to 'M'

Updated clients

New protocol-independent C++ and Python clients

Additional python & ruby clients that wrap a native C implementation for improved performance

Windows C++ client support (including .NET support) & Python

Additional QMF APIs

Map message support

JBoss SOA-P and EAP certification

Broker

Addition of iWARP, & RoCE in conjunction with RHEL 6

RDMA for openAIS/corosync in conjunction with RHEL 6

Offline Storage Management

And much more... (includes ~300 updates/ improvements)

(Go to Bryan Che's presentation for full roadmap details)

SUMIT JBoss WOR

ESENTED BY RED HAT

Ş

MRG 1.2 / AMQP Scale up.

MRG 1.3 / AMQP Scale up, KVM ~5%

Perftest - Bare Metal and KVM

Message Rates with Different Technologies

- 2 SR-IOV GuestsMsg/Sec - Bare Metal Msg/Sec

MRG 1.3 / AMQP Scale up, KVM ~5%

Perftest - Bare Metal and KVM

I Bridged Guest MB/sec
 2 Bridged Guests MB/Sec
 1 SR-IOV Guests MB/Sec
 2 SR-IOV Guests MB/Sec
 2 SR-IOV Guests MSg/Sec
 2 Bridged Guests Msg/Sec
 1 SR-IOV Guests Msg/Sec
 2 SR-IOV Guests MSg/Sec
 2 SR-IOV Guests MSg/Sec

MRG 1.3 RHEL6 A quick peak at RoCE (RoE)

10Gbit Mellanox w/wo RDMA - 8 Byte

Latency vs Message Rates - Lower is Better

■ 8 Bytes ■ 8 Bytes with RDMA

SUMIT

JBoss

MRG 1.3 RHEL6 A quick peak at RoCE (cont)

10Gbit Mellanox w/wo RDMA

Latency vs Message Sizes

\$

RHEL5.5 Infiniband vs. RHEL6 10Gbit – Messages / Sec

RHEL5.5 to RHEL6

RHEL5 vs RHEL6 (preliminary)

10 Gbit Ethernet (Mellanox)

Tuning

Tuning can provide excellent improvements

- Steps are different for throughput vs latency, goal is the same.
 - Try to maximize CPU cache hits and localize memory

Use NUMA if possible

numactl -c1 -m1 /root/qpid/cpp/src/qpidd --auth no -m no --piddir /var/run/qpidd --data-dir /var/lib/qpidd --loadmodule /root/qpid/cpp/src/.libs/rdma.so -P rdma

Move IRQ handlers as needed

Understand the NIC parameters, tune as necessary

The impact of tuning

Intel Westmere Mellanox ConnectX RHEL6 AMQP Perftest

Clustering and Federation

Active/Active Clustering provides

Cluster acts as virtual single broker

scalability and enhanced load-balancing

Producers and consumers can be connected to any broker in the cluster based on RHEL5 OpenAIS technology

Federation and Disaster Recovery provides

Geographical distribution of brokers configured via *links* and *routes*

DR is setup via queue state replication

link: connection between two brokers that allows messages to be passed between them - can be RDMA, SSL, TCP etc.

route: path that messages take from one broker to another; can run along one or more links to the final destination. Routes can be dynamic or static

MRG 1.2 Messaging Clustered Throughput with RDMA

On prebuild of corosync for RHEL 6, Final RHEL6 / MRG 1.3 data not yet avail

Size Of Packets

 \mathbf{S}

MRG 1.2 Messaging Infiniband RDMA Latency: Under 40 Microseconds Reliably Acknowledged

MRG Messaging Latency Test on HP BL460c G6 Infiniband

100K Message Rate

MRG 1.2 Messaging on KVM Virtualized Performance: <200 Microsecond Latency, Reliably Acknowledged

RHEL5.4 KVM AMQP Messaging Perf

Dell Poweredge R710 Intel Nehalem, 2 10Gbit VT-d

MRG 1.2 Messaging Durable Messaging Throughput

MRG Durable Messaging Throughput Across Different Storage Types

PRESENTED BY RED HAT

SUMIT

JBoss

MRG 1.2 Messaging Durable Messaging Latency

Latencytest with Durable Store Different Storage Types

PRESENTED BY RED HAT

SUMIT

JBoss

All Layers of the stack matter

If you are concerned about performance, source of latency, or issues can come from all layers...

FSI-HPC Solution Stack Users Application Environment Workload Middleware Integrated Systems Server Interconnect L2 Fabric Operating System BIOS X86-64 Server Architecture

Determinism, and performance needs to work at each layer, HP & Red Hat for example are partnered across the stack

PRESENTED BY RED HAT

SUMI

JBoss

Dealing with SMIs

HP BIOS Option for Low Latency Apps (G5,G6,G7)

Disable frequent SMIs used for Dynamic Power Savings Mode, CPU Utilization monitoring, P-state monitoring and ECC monitoring

Benefits both RHEL & MRG operating environments.

Real Time

MRG – Realtime RHEL on HP systems

Enables applications and transactions to run predictably, with guaranteed response times

89999 RHEL 5 Realtim Upgrades RHEL 5 to realtime OS 70000 Provides replacement kernel for 60000 RHEL5;x86/x86 64 Response time 50000 **Preserves RHEL Application** 40000 Compatibility 30000 20000 For certified hardware, see 10000 www.redhat.com/mrg/hardware

SUMIT JBoss WORLD PRESENTED BY RED HAT

1002

110

988

Nessages/useo

Time

MRG 1.2 Realtime Scheduling Latency

MRG 1.3, what is new with regard to 'R'

2.6.33 kernel

Realtime will move to a 2.6.33-based kernel

Perf tool

Realtime will include the new Performance Counter subsystem in the kernel and also the new associated perf performance tool

Improved performance

Realtime performance will continue to improve

Certification

Additional hardware enablement/hardware

New Realtime self-service hardware certification program

MRG Grid

Provides leading High Performance & High Throughput Computing

Brings advantages of scale-out and flexible deployment to any application or workload Delivers better asset utilization, allowing applications to take advantage of all available computing resources

Enables building cloud infrastructure and aggregating multiple clouds

Integrated support for virtualization as well as public clouds Seamlessly aggregates multiple cloud resources into one compute pool

Provides seamless and flexible computing across:

Local grids

Remote grids

Private and hybrid clouds

Public clouds (Amazon EC2)

Cycle-harvesting from desktop PCs

SUMIT JBoss WORLD PRESENTED BY RED HAT

Based on Condor and Includes:

Enterprise Supportability

From Red Hat

Web-Based Management Console

Unified management across all of MRG for job, system, license management, and workload management/monitoring

Low Latency Scheduling

Enable job submission to Condor via AMQP Messaging clients

Enable sub-second, low-latency scheduling for sub-second jobs

Virtualization Support via libvirt Integration

Support scheduling of virtual machines on Linux using libvirt API's

JBoss

WORLD

Cloud Integration with Amazon Ec2

Enable automatic cloud provisioning, job submission, results storage, teardown via Condor scheduler

Extensible, it can be a dependency for other jobs or executed based on rules (e.g. add capacity in in the cloud if local grid out of capacity)

Concurrency Limits

Set limits on how much of a certain resource (e.g. software licenses, db connections) can be used at once

Dynamic Slots

Mark slots as partitionable and sub-divide them dynamically so that more than one job can occupy a slot at once

PRESENTED BY RED HAT

SUMIT

MRG 1.3, what is new with regard to 'G'

New User Tools

- Job submission interface
- User centric UI with submissions

New Admin Tools

- Configuration management
- Trigger/event service (diagnostic)
- Multiple pool/grid representation (e.g. EC2 nodes)
- Facility for administrators to adjust User/Group priorities and do so in a hierarchical manner for hierarchical fair share

Engine

- Windows Execute Node Support
- Enhanced workflow (DAGMan) management
- Enhanced scalability

Grid scalability data

- Enterprise workload focus
 - Previous optimized for long duration jobs at scale
 - Enhancements for short running jobs at scale
- Performance testing showed room for improvement
 - Our testing showed some cyclic behavior
 - Mostly visible on short duration jobs
 - Multiple improvements lead to good utilization
 - Can now achieve ~98% utilization with 4 minute jobs
 - Can now achieve ~88% utilization with 15 second jobs

Grid scalability - Before

Active Jobs - fixed 15 sec duration

Grid scalability - After

Active Jobs - fixed 15 sec duration WORKLIFE=7200 MAX ACCEPT=5

SUMIT JBoss WORLD

Tools

MRG Realtime Tools

TUNA: System Tuning Tool

Dynamically control tuning parameters like process affinity, parent & threads, scheduling policy, device IRQ priorities, etc.

FTrace: Latency Tracer

Runtime trace capture of longest latency codepaths – both kernel and application. Peak detector

Selectable triggers for threshold tracing

Detailed kernel profiles based on latency triggers

RTEval: Hardware Latency Detector

Tool that finds hardware latencies in your system so that you can achieve low latency across your entire platform

Complements MRG Realtime hardware certification program

Existing standard RHEL5 based performance monitoring tools remain relevant

90	Tuna (on perf20.lab.bos.redhat.com)													
Sock	et 0		Sock	et 1			RQ	PID	Policy	Priority	Affinity	Events	Users	
Filter	CPU	Usage	Filter	CPU	Usage		.7	1473	FIFO	50	1,13	51525	megasas	
	0	0	Z	3	21	2	22	1321	FIFO	50	1,13	858	uhci_hcd:usb2,uhci_hcd:usb3,uhci_hcd:usb4,uhci_h	
	1	0		4	0	2	23	1270	FIFO	50	2,14	30	ehci_hcd:usb1	
	2	0		5	0	2	2229	6529	FIFO	50	0	46098	eth3(e1000)	
	12	0		15	0	2	2230	6320	FIFO	50	13	1624017	eth2(e1000)	
	13	0		16	0	2	2231	6148	FIFO	50	0-23	1	eth0:lsc	
	14	0		17	0	: 2	2232	6147	FIFO	50	13	56938	eth0:v15-Rx	
Sock	et 2		Sock	et 3—		2	2233	6146	FIFO	50	2	55448	eth0:v14-Rx	
Filter	CPU	Usage	Filter	CPU	Usage	2	2234	6145	FIFO	50	12	55406	eth0:v13-Rx	
Ø	6	0	V	9	0	2	2235	6144	FIFO	50	14	56700	eth0:v12-Rx	
Ø	7	0	V	10	0	2	2236	6143	FIFO	50	1	56803	eth0:v11-Rx	
Ø	8	0	V	11	0	2	2237	6142	FIFO	50	14	58014	eth0:v10-Rx	
Ø	18	0	V	21	0	2	2238	6141	FIFO	50	1	57371	eth0:v9-Rx	
	19	0	X	22	0	2	2239	6140	FIFO	50	14	58816	eth0:v8-Rx	
	20	0	Z	23	0	2	2240	6139	FIFO	50	0	60573	eth0:v7-Rx	
ļ]			4							<u>}</u>	
PID	Po	olicy	Priority	A	ffinity	VolCtxtSwitc		n NonVolCtxts		Switch	Command L	ine		4
1	01	THER	0	0.	-23	20259		27	44		init [3]			
2	OTHER		0 0-23		530		13	1320		kthreadd				
3	FIFO		9 0		702		0	0		migration/0				
4	FIF	FIFO 99 0 2			2	0				posixcputmr/0				
5	FIFO		0 0		2		0	0		sirq-high/0				
6	FIF	FIFO 50 0				90298186			0		sirq-timer/0			
7	FIF	FIFO 50 0				15		0	0		sirq-net-tx/0			
8	FIF	0	50		0 13		3467 0				sirq-net-rx/0			
9	FIFO		50 0			1055		0			sirq-block/0			
10	FIF	0	50	0		567		0			sirq-tasklet/	D		
4]
	[qpi	id-produ	icer-rh.	.pdf]	🔲 roo	ot@per	f20:~		😨 Tun	a (on per	f20.lab			ſ
🕜 Ap	plicati	ons Pla	aces S	Syster	n 🙈 🧭)		6	1 GHz			N.	🔨 🔄 👔 👔 🞢 root Tue Nov 4, 2:44 PM	6

Take Home Exam

An example to try

Broker

numactl -c1 -m1 /root/qpid/cpp/src/qpidd --auth no -m no --pid-dir /var/run/qpidd -data-dir /var/lib/qpidd -P rdma

Driver

cat run_latencytest_rdma.sh

#!/bin/bash

for rate in `seq 1 10`; do echo "rate at \${rate}0000"; /usr/bin/latencytest -b \$1 --size \$2 --rate \${rate}0000 -P rdma & sleep 60; kill %1; echo ; sleep 1; done 2>&1 > \$3

./run_latencytest_rdma.sh 172.168.10.18 32 perf18_rhel6_mellanox_10gb_rdma.log &

Questions ?

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

#summitjbw

READ THE BLOG http://summitblog.redhat.com/

SUMIT

