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● SystemTap

● SystemTap “ready-to-run” examples

● Big Kernel Lock example
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● User-space probing and example

● Common SystemTap techniques

● How to write your own scripts

● Where to get more information



Why Dynamic Instrumentation?

● Complicated systems:
● Many possible reasons for a performance problem
● Many components
● Unexpected interaction between component
● Unexpected use of components



Why Dynamic Instrumentation? (cont)

● Traditional debugging techniques unattractive:
● Interrupt normal operation of system, e.g. gdb
● Recompilation and re-installation of software
● Tools only look at one executable or aspect of system at 

time, not the entire system



Dynamic instrumentation

● Allows instrumentation of running system

● Avoids interrupting already running processes

● Avoids rebuilding and re-installing software

● Reduces time to test out hypotheses



SystemTap

● Dynamic scriptable instrumentation tool

● Powerful scripting features:
● Conditional constructs
● Associative arrays
● Statistics and histograms

● Number of safety checks to make ensure script benign:
● Translator limit actions available
● Run-time checks to limit overhead



How SystemTap Works

● SystemTap script contains:
● Probe events
● Probe handlers

● SystemTap steps to run a script:
● Parses script
● Elaborates (pulls in information from debuginfo/tapsets)
● Translates
● Compiles kernel module
● Loads kernel module and collects data



Simple SystemTap Script

$ cat simple.stp

probe vfs.read {

  printf("read performed\n")

  exit()

}

$ stap simple.stp

read performed

$



SystemTap "Ready-to-Run" Scripts

● Building catalog of SystemTap scripts

● Catalog included in systemtap RPM, e.g.
/usr/share/doc/systemtap-1.1/examples

● Have indices with short descriptions:
/usr/share/doc/systemtap-1.1/examples/index.html

/usr/share/doc/systemtap-1.1/examples/index.txt



Big Kernel Lock

● Big Kernel Lock (BKL) introduced in Linux 2.0

● Allowed for multiple processors

● Scaling problems (serialization of kernel code)

● Kernel developers working to replace BKL with finer-
grain locking

● Some kernel sub-systems still use BKL:
● NFS
● SMB
● TTY



Big Kernel Lock (BKL) Example

● examples/locks/bkl.stp

● One argument, number of threads waiting on BKL

● If number of waiting thread exceeded, print holding 
thread's:

● Name
● PID
● Duration holding BKL



Tracepoints

● Callback located at strategic points in kernel

● Advantages:
● Much faster than kprobes
● Improved portability

● Incorporated in a number of subsystems: kvm, module, 
jb2, scsi, ext4, workqueue, skb, bkl, kmem, block, 
syscalls, lock, irq, signal, sched, wireless, gfs2, xfs



Tracepoints (cont)

● Increased use in upstream Linux kernel:
● 2.6.28 -  12
● 2.6.29 -  31
● 2.6.30 -  45
● 2.6.31 - 117
● 2.6.32 - 209
● 2.6.33 - 271
● 2.6.34 - 282



Tracepoint example, schedtimes.stp

● examples/process/schedtimes.stp

● Can run system-wide

● Can focus on a single process (Optional)

● Traces amount of time process(es) spend:
● Running
● Sleeping
● Waiting for IO
● Queued
● Total time



User-space probing

● SystemTap user-space probing uses the utrace 
mechanism

● Utrace mechanism designed to address issues with 
ptrace:

● Traces changes to process (creation/exit/mmap)
● Allows multiple engines to attach to a single process

● SystemTap requires kernel that includes utrace 
mechanism



User-space Probing Example

● general/para-callgraph.stp

● Traces program execution:
● When function entered and parameters
● When function exited with return value

● Flexibility in tracing:
● Portion of code in some file
● Trace all code in executable



Markers for User-Space Programs

● User-space Markers are similar to kernel tracepoints
● Define interesting points in user-space code
● Improve portability

● Fedora-13 and RHEL-6 packages with markers:
● postgresql
● java-1.6.0-openjdk
● tcl

● See markers with:

stap -L 'process(“executable_name”).mark(“*”)'



Common SystemTap Script Uses

● “Super strace”

● Determine whether particular function is called

● Get traceback to determine what is calling a function

● Examine arguments passed into or returned by a 
function

● Determine which process or thread is triggering an 
event

● Determine time between events



“Super Strace”

● Strace is a very useful tool

● strace limitations:
● Only able to watch a single process
● Limits on filtering (cannot filter on return values)
● Can generate very verbose log

● Systemtap able to monitor syscalls system-wide

● Systemtap can have more flexible filtering, for example 
syscall return value < 0



Writing Your Own Systemtap Scripts

● Use existing examples as starting points

● Find possible probe points with “-L” option:

stap -L 'kernel.trace("*")'

stap -L 'process(“a.out”).function(“*”)'

● Systemtap man pages:

man -k 3stap

● Look through tapsets for probe points:

/usr/share/systemtap/tapset

● Look through the kernel sources



Navigating the Linux Kernel

● Linux kernel cross references (lxr)

● Red Hat Enterprise Linux kernels:

http://www.rhkernel.org

● Upstream kernels 

http://lxr.linux.no/linux/



Where to get more information

● Red Hat SystemTap Beginner's Guide:
● http://www.redhat.com/docs/manuals/enterprise/

● IBM Red Book:
● http://www.redbooks.ibm.com/abstracts/redp4469.html

● SystemTap project page:
● http://sourceware.org/systemtap/

● Forums for questions and help:
● Email systemtap@sources.redhat.com
● IRC #systemtap on irc.freenode.net

http://www.redhat.com/docs/manuals/enterprise/
http://www.redbooks.ibm.com/abstracts/redp4469.html
http://sourceware.org/systemtap/
mailto:systemtap@sources.redhat.com


Get Your Script into the SystemTap Examples

● Submit scripts for the examples

● Get enthusiastic feedback on the script from 
SystemTap developers

● Make sure that script works on wide variety of 
environments, example scripts are run a part of 
testsuite

● More details about submitting examples in:

/usr/share/doc/systemtap-1.1/examples/README



Questions?
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