

Smiting Functional and

Performance Problems with

SystemTap

William Cohen, Jason Baron, and

Dominic Duval

Red Hat
June 24, 2010

Outline

● Dynamic instrumentation

● SystemTap

● SystemTap “ready-to-run” examples

● Big Kernel Lock example

● Tracepoints and example

● User-space probing and example

● Common SystemTap techniques

● How to write your own scripts

● Where to get more information

Why Dynamic Instrumentation?

● Complicated systems:
● Many possible reasons for a performance problem
● Many components
● Unexpected interaction between component
● Unexpected use of components

Why Dynamic Instrumentation? (cont)

● Traditional debugging techniques unattractive:
● Interrupt normal operation of system, e.g. gdb
● Recompilation and re-installation of software
● Tools only look at one executable or aspect of system at

time, not the entire system

Dynamic instrumentation

● Allows instrumentation of running system

● Avoids interrupting already running processes

● Avoids rebuilding and re-installing software

● Reduces time to test out hypotheses

SystemTap

● Dynamic scriptable instrumentation tool

● Powerful scripting features:
● Conditional constructs
● Associative arrays
● Statistics and histograms

● Number of safety checks to make ensure script benign:
● Translator limit actions available
● Run-time checks to limit overhead

How SystemTap Works

● SystemTap script contains:
● Probe events
● Probe handlers

● SystemTap steps to run a script:
● Parses script
● Elaborates (pulls in information from debuginfo/tapsets)
● Translates
● Compiles kernel module
● Loads kernel module and collects data

Simple SystemTap Script

$ cat simple.stp

probe vfs.read {

 printf("read performed\n")

 exit()

}

$ stap simple.stp

read performed

$

SystemTap "Ready-to-Run" Scripts

● Building catalog of SystemTap scripts

● Catalog included in systemtap RPM, e.g.
/usr/share/doc/systemtap-1.1/examples

● Have indices with short descriptions:
/usr/share/doc/systemtap-1.1/examples/index.html

/usr/share/doc/systemtap-1.1/examples/index.txt

Big Kernel Lock

● Big Kernel Lock (BKL) introduced in Linux 2.0

● Allowed for multiple processors

● Scaling problems (serialization of kernel code)

● Kernel developers working to replace BKL with finer-
grain locking

● Some kernel sub-systems still use BKL:
● NFS
● SMB
● TTY

Big Kernel Lock (BKL) Example

● examples/locks/bkl.stp

● One argument, number of threads waiting on BKL

● If number of waiting thread exceeded, print holding
thread's:

● Name
● PID
● Duration holding BKL

Tracepoints

● Callback located at strategic points in kernel

● Advantages:
● Much faster than kprobes
● Improved portability

● Incorporated in a number of subsystems: kvm, module,
jb2, scsi, ext4, workqueue, skb, bkl, kmem, block,
syscalls, lock, irq, signal, sched, wireless, gfs2, xfs

Tracepoints (cont)

● Increased use in upstream Linux kernel:
● 2.6.28 - 12
● 2.6.29 - 31
● 2.6.30 - 45
● 2.6.31 - 117
● 2.6.32 - 209
● 2.6.33 - 271
● 2.6.34 - 282

Tracepoint example, schedtimes.stp

● examples/process/schedtimes.stp

● Can run system-wide

● Can focus on a single process (Optional)

● Traces amount of time process(es) spend:
● Running
● Sleeping
● Waiting for IO
● Queued
● Total time

User-space probing

● SystemTap user-space probing uses the utrace
mechanism

● Utrace mechanism designed to address issues with
ptrace:

● Traces changes to process (creation/exit/mmap)
● Allows multiple engines to attach to a single process

● SystemTap requires kernel that includes utrace
mechanism

User-space Probing Example

● general/para-callgraph.stp

● Traces program execution:
● When function entered and parameters
● When function exited with return value

● Flexibility in tracing:
● Portion of code in some file
● Trace all code in executable

Markers for User-Space Programs

● User-space Markers are similar to kernel tracepoints
● Define interesting points in user-space code
● Improve portability

● Fedora-13 and RHEL-6 packages with markers:
● postgresql
● java-1.6.0-openjdk
● tcl

● See markers with:

stap -L 'process(“executable_name”).mark(“*”)'

Common SystemTap Script Uses

● “Super strace”

● Determine whether particular function is called

● Get traceback to determine what is calling a function

● Examine arguments passed into or returned by a
function

● Determine which process or thread is triggering an
event

● Determine time between events

“Super Strace”

● Strace is a very useful tool

● strace limitations:
● Only able to watch a single process
● Limits on filtering (cannot filter on return values)
● Can generate very verbose log

● Systemtap able to monitor syscalls system-wide

● Systemtap can have more flexible filtering, for example
syscall return value < 0

Writing Your Own Systemtap Scripts

● Use existing examples as starting points

● Find possible probe points with “-L” option:

stap -L 'kernel.trace("*")'

stap -L 'process(“a.out”).function(“*”)'

● Systemtap man pages:

man -k 3stap

● Look through tapsets for probe points:

/usr/share/systemtap/tapset

● Look through the kernel sources

Navigating the Linux Kernel

● Linux kernel cross references (lxr)

● Red Hat Enterprise Linux kernels:

http://www.rhkernel.org

● Upstream kernels

http://lxr.linux.no/linux/

Where to get more information

● Red Hat SystemTap Beginner's Guide:
● http://www.redhat.com/docs/manuals/enterprise/

● IBM Red Book:
● http://www.redbooks.ibm.com/abstracts/redp4469.html

● SystemTap project page:
● http://sourceware.org/systemtap/

● Forums for questions and help:
● Email systemtap@sources.redhat.com
● IRC #systemtap on irc.freenode.net

http://www.redhat.com/docs/manuals/enterprise/
http://www.redbooks.ibm.com/abstracts/redp4469.html
http://sourceware.org/systemtap/
mailto:systemtap@sources.redhat.com

Get Your Script into the SystemTap Examples

● Submit scripts for the examples

● Get enthusiastic feedback on the script from
SystemTap developers

● Make sure that script works on wide variety of
environments, example scripts are run a part of
testsuite

● More details about submitting examples in:

/usr/share/doc/systemtap-1.1/examples/README

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

