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Overview

This talk will cover a wide range of topics related to KVM 
performance

● RHEL5 and RHEL6
● RHEL6 data is NOT final and subject to change

● Command line vs libvirt 
● Use libvirt where possible, not all features in all releases

● We will not cover the RHEV products
● Some stuff may apply but...



What we tell You
● Some of the Basics

● A quick, high level overview of KVM

● Some block IO basics
● Some examples using database workloads

● A deeper dive into networking
● Virtio-net, vhost-net, SR-IOV

● Huge Pages

● Non-uniform Memory Allocation (NUMA) and affinity settings

● Wrap up



  

A quick KVM primer



Quick Overview – KVM Architecture
● Guests run as a process in userspace on the host

● Guests inherits features from the kernel  (NUMA, huge 
pages, support for new hardware)

● Disk and Network IO through host (most of the time)
● IO settings in host can make a big difference in guest IO 

performance
● Need to understand host buffer caching

● Proper settings to achieve true direct IO  from the guest
● Deadline scheduler (on host) typically gives best performance 

● Network typically goes through a software bridge

● Device assignment can help with network performance
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I/O – virtio

● Most devices emulated in userspace
● With fairly low performance

● Paravirtualized I/O is the traditional way to accelerate I/O
● Virtio is a framework and set of drivers:

● A hypervisor-independent, domain-independent, 
bus‑independent protocol for transferring buffers

● A binding layer for attaching virtio to a bus (e.g. pci)
● Domain specific guest drivers (networking, storage, etc.)

● RHEL 3/4/5, Windows XP/Server 2003/Server 2008
● Hypervisor specific host support



KVM Execution model

● Three modes for thread execution instead of the traditional two:

● User mode

● Kernel mode

● Guest mode

● A virtual CPU is implemented using a Linux thread

● The Linux scheduler is responsible for scheduling a virtual CPU, 
as it is a normal thread

● Understanding these help when tuning 



KVM Execution Model
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I/O – virtio

● Most devices emulated in userspace

● With fairly low performance

● Paravirtualized I/O is the traditional way to accelerate I/O 

● Virtio is a framework and set of drivers:

● A hypervisor-independent, domain-independent, 
bus‑independent protocol for transferring buffers

● A binding layer for attaching virtio to a bus (e.g. pci)

● Domain specific guest drivers (networking, storage, etc.)
● RHEL 3/4/5/6, Windows XP/Server 2003/Server 2008

● Hypervisor specific host support



  

Disk IO



IO Elevators

●Deadline
● Two queues – one for read and one for write
● IOs dispatched based on time spent in queue

●CFQ (Completely Fair Queuing)

● Per process queue
● Each process queue gets a fixed time slice (based on 

process priority – to maintain fairness)
●How to configure

● Boot command line (elevator=deadline/cfq)
● echo “deadline” > /sys/class/block/sda/queue/scheduler



Performance Differences based on IO Elevators 
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KVM Performance – RHEL6 aio=kernel 
Win2k8 Intel 24cpu, 64GB, FC IOmeter
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KVM Performance – RHEL6 aio=kernel 
Win2k8 Intel 24cpu, 64GB, FC IOmeter
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Networking



Virtio net

● Provides acceptable performance 

● Typically via a bridge / tap device
● Bridge is shared across multiple guests
● Throughput is acceptable
● Latency is not so good

● Changes for RHEL6
● Moving to vhost-net
● If you use scripts, you may need to modify them



virtio network architecture
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virtio data
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Device Assignment / SR-IOV

● Big win in lowering latency and improving throughput

● Essentially allows device to be accessed from guest

● First vendor to supply this

● Need driver / HW that supports functionality
● Only a few drivers in RHEL5.5
● Additional drivers / HW coming in RHEL6



PCI device assignment network  (vt-d/SR-IOV)
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SR-IOV  vs Bridged Performance
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Vhost-net

● Moves host side driver from user space to kernel

● Less context switching
● Low latency
● MSI
● One less copy



In-Kernel vhost-net architecture (RHEL6)
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Vhost vs virtio data

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65507

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

RHEL6.0 - vhost_net - single stream netperf 

Host <-> External  vs Guest <-> External

G->E Rate E->G Rate H->E Rate E->H Rate

Message Size

M
b

its
 / 

se
c



Latency comparison – RHEL 6
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IO-Cache



KVM IO Cache Settings

●Cache=none
● IO from the guest in not cached

●Cache=writethrough
● IO from the guest is cached and written through on the host
● Potential scaling problems with this option with multiple guests 

(host cpu used to maintain cache)

●Cache=writeback
● Not supported

●Configure IO-Cache per disk in qemu command line or libvirt



Effect of IO Cache settings on Guest performance
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Huge Pages



Understanding Hugepages

● 2M pages vs 4K standard Linux page size
● Virtual to physical page map is 512 times smaller
● TLB cache can map more memory resulting in fewer 

cache misses
● Huge pages pinned
● Configuring huge pages (4G memory of huge pages)

● echo 2048 > /proc/sys/vm/nr_hugepages
● vi /etc/sysctl.conf (vm.nr_hugepages = 2048)
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Using NUMA 



Understanding NonUniform Memory Access (NUMA)
●Multi core – Multi socket architectures

● NUMA needed for scaling
● RHEL 5 / 6 completely NUMA aware
● KVM guests draw benefits of NUMA

● Additional performance improvements to be gained by 
enforcing NUMA placement

●How to enforce NUMA placement
● numactl – cpu and memory pinning
● taskset – cpu pinning
● libvirt – cpu pinning in libvirt -  “<vcpus cpuset='0-3'>4</vcpus>”



KVM Performance – AMD Istanbul - 24 cpu
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Wrap it Up



Wrap up

● KVM is a loadable module

● KVM inherits all the kernel features

● KVM can be tuned effectively 
● Make sure you understand what is going on under the 

covers
● Are you hitting page cache on the host ?

● throughput vs latency numbers 

● Look at using NUMA

● Huge Pages can help x86_64 hardware TLB

● Choose appropriate elevators (Deadline vs CFQ)



Wrap up (cont)

● Understand the network model
● Pinning can help
● Not always easy

● Device Assignment for high throughput / low latency

● Need specific HW
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