

Achieving Peak Performance

from Red Hat KVM-Based

Virtualization
Mark Wagner, Sanjay Rao
Principal SW Engineers, Red Hat
June 23, 2010

Overview

This talk will cover a wide range of topics related to KVM
performance

● RHEL5 and RHEL6
● RHEL6 data is NOT final and subject to change

● Command line vs libvirt
● Use libvirt where possible, not all features in all releases

● We will not cover the RHEV products
● Some stuff may apply but...

What we tell You
● Some of the Basics

● A quick, high level overview of KVM

● Some block IO basics
● Some examples using database workloads

● A deeper dive into networking
● Virtio-net, vhost-net, SR-IOV

● Huge Pages

● Non-uniform Memory Allocation (NUMA) and affinity settings

● Wrap up

A quick KVM primer

Quick Overview – KVM Architecture
● Guests run as a process in userspace on the host

● Guests inherits features from the kernel (NUMA, huge
pages, support for new hardware)

● Disk and Network IO through host (most of the time)
● IO settings in host can make a big difference in guest IO

performance
● Need to understand host buffer caching

● Proper settings to achieve true direct IO from the guest
● Deadline scheduler (on host) typically gives best performance

● Network typically goes through a software bridge

● Device assignment can help with network performance

Quick Overview - KVM Architecture

Linux

Driver Driver Driver

Hardware

User
VM

User
VM

User
VM

KVM

Ordinary
Linux

Process

Ordinary
Linux

Process

Ordinary
Linux

Process

Modules

I/O – virtio

● Most devices emulated in userspace
● With fairly low performance

● Paravirtualized I/O is the traditional way to accelerate I/O
● Virtio is a framework and set of drivers:

● A hypervisor-independent, domain-independent,
bus‑independent protocol for transferring buffers

● A binding layer for attaching virtio to a bus (e.g. pci)
● Domain specific guest drivers (networking, storage, etc.)

● RHEL 3/4/5, Windows XP/Server 2003/Server 2008
● Hypervisor specific host support

KVM Execution model

● Three modes for thread execution instead of the traditional two:

● User mode

● Kernel mode

● Guest mode

● A virtual CPU is implemented using a Linux thread

● The Linux scheduler is responsible for scheduling a virtual CPU,
as it is a normal thread

● Understanding these help when tuning

KVM Execution Model

Native Guest
Execution

Kernel
exit handler

Userspace
exit handler

Switch to
Guest Mode

ioctl()

Userspace
Kernel

Guest

KVM_RUN

VMENTER

VMEXIT

I/O – virtio

● Most devices emulated in userspace

● With fairly low performance

● Paravirtualized I/O is the traditional way to accelerate I/O

● Virtio is a framework and set of drivers:

● A hypervisor-independent, domain-independent,
bus‑independent protocol for transferring buffers

● A binding layer for attaching virtio to a bus (e.g. pci)

● Domain specific guest drivers (networking, storage, etc.)
● RHEL 3/4/5/6, Windows XP/Server 2003/Server 2008

● Hypervisor specific host support

Disk IO

IO Elevators

●Deadline
● Two queues – one for read and one for write
● IOs dispatched based on time spent in queue

●CFQ (Completely Fair Queuing)

● Per process queue
● Each process queue gets a fixed time slice (based on

process priority – to maintain fairness)
●How to configure

● Boot command line (elevator=deadline/cfq)
● echo “deadline” > /sys/class/block/sda/queue/scheduler

Performance Differences based on IO Elevators

1Guest 2Guests

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

-2

0

2

4

6

8

10

IO Elevator testing

OTLP workload

Deadline CFQ % difference

OLTP Transactions

N
o

 o
f G

u
e

s t
s

%
 D

if
fe

re
n

c
e

1 Guest 2 Guest

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

0

5

10

15

20

25

aio=threads aio=native % Diff

%
 D

if
fe

re
n

ce

Multi guest database testing with different
AIO settings (new with RHEL6)

KVM Performance – RHEL6 aio=kernel
Win2k8 Intel 24cpu, 64GB, FC IOmeter

2k 4k 8K 16K 32K 64K

0

50

100

150

200

250

300

350

400

450

Sequential Reads

r5kvm r6aio_native metal

M
B

/s
e

c

2k 4k 8K 16K 32K 64K

0

10

20

30

40

50

60

70

80

90

100

Sequential Reads

r5kvm r6aio_native metal

%
C

P
U

KVM Performance – RHEL6 aio=kernel
Win2k8 Intel 24cpu, 64GB, FC IOmeter

2k 4k 8K 16K 32K 64K

0

10

20

30

40

50

60

70

80

90

100

Sequential Writes

r5kvm r6aio_native metal

%
C

P
U

2k 4k 8K 16K 32K 64K

0

50

100

150

200

250

300

350

400

Sequential Writes

r5kvm r6aio_native metal

M
B

/s
e

c

Networking

Virtio net

● Provides acceptable performance

● Typically via a bridge / tap device
● Bridge is shared across multiple guests
● Throughput is acceptable
● Latency is not so good

● Changes for RHEL6
● Moving to vhost-net
● If you use scripts, you may need to modify them

virtio network architecture

Guest VM

kernel/HV

QEMU

tap

bridge

NIC

virtio-net guest driver

rxtx

virtio-net host driver

virtio data

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65507

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Virtio performance - Single Stream Netperf

Guest <-> External, Host <-> External

virtio E->G virtio G->E E -> H H -> E

Message Size (Bytes)

T
hr

ou
gh

pu
t (

M
bi

ts
 /

se
c)

Device Assignment / SR-IOV

● Big win in lowering latency and improving throughput

● Essentially allows device to be accessed from guest

● First vendor to supply this

● Need driver / HW that supports functionality
● Only a few drivers in RHEL5.5
● Additional drivers / HW coming in RHEL6

PCI device assignment network (vt-d/SR-IOV)

Guest VM

kernel/HV

QEMU

tx rx

VF NIC #1

Physical NIC

VF NIC #2

SR-IOV vs Bridged Performance

8 16 32 64 128 256 512 1024 2048

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0

200

400

600

800

1,000

1,200

1,400

1,600

Perftest - Bare Metal and KVM

 Lines = Messages / Sec Columns = MBytes/sec

1 Bridged Guest MB/sec 2 Bridged Guests MB/Sec 1 SR-IOV Guests MB/Sec 2 SR-IOV Guests MB/Sec Bare Metal MB/sec
1 Bridged Guest Msg/Sec 2 Bridged Guests Msg/Sec 1 SR-IOV Guests Msg/Sec 2 SR-IOV GuestsMsg/Sec Bare Metal Msg/Sec

Message Size (Bytes)

M
e

ss
a

g
e

s
/ S

e
c

T
h

ro
u

g
h

p
u

t (
M

B
yt

e
s

/ s
e

c)

Vhost-net

● Moves host side driver from user space to kernel

● Less context switching
● Low latency
● MSI
● One less copy

In-Kernel vhost-net architecture (RHEL6)

Kernel/HV

QEMU

Guest VM

tap / macvtap

NIC

virtio-net guest driver

rxtx

vhost-net host driver

bridge

Vhost vs virtio data

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65507

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

RHEL6.0 - vhost_net - single stream netperf

Host <-> External vs Guest <-> External

G->E Rate E->G Rate H->E Rate E->H Rate

Message Size

M
b

its
 /

se
c

Latency comparison – RHEL 6

1 64
765

61478 21 35
125

195
384

1027
2048

4093
12288

24573
32771

65536

0

50

100

150

200

250

300

350

400

Network Latency by guest interface method

Guest Receive (Lower is better)

host RX virtio RX vhost RX
macvtap RX SR-IOV RX Macvtap + vhost RX

Message Size (Bytes)

L
a

te
n

cy
 (

u
se

cs
)

IO-Cache

KVM IO Cache Settings

●Cache=none
● IO from the guest in not cached

●Cache=writethrough
● IO from the guest is cached and written through on the host
● Potential scaling problems with this option with multiple guests

(host cpu used to maintain cache)

●Cache=writeback
● Not supported

●Configure IO-Cache per disk in qemu command line or libvirt

Effect of IO Cache settings on Guest performance

1Guest 2Guests 4Guests

0

50000

100000

150000

200000

250000

300000

0

5

10

15

20

25

KVM Cache settings

OLTP workload

Cache=none Cache=WT % Diff

OLTP transactions

N
o

. o
f G

u
e

s t
s

%
 d

if
fe

re
n

c
e

Huge Pages

Understanding Hugepages

● 2M pages vs 4K standard Linux page size
● Virtual to physical page map is 512 times smaller
● TLB cache can map more memory resulting in fewer

cache misses
● Huge pages pinned
● Configuring huge pages (4G memory of huge pages)

● echo 2048 > /proc/sys/vm/nr_hugepages
● vi /etc/sysctl.conf (vm.nr_hugepages = 2048)

10U 20U 40U 60U

0.00

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

KVM guest runs with and without Huge Pages

1 Guest 2 Guests 4 Guests
1 Guest –
Huge pages

2 Guests –
Huge Pages

4 Guests –
Huge pages

Using huge pages with libvirt, gives a significant performance boost

1 Guest 2 Guests 4 Guests

0.00

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

0

2

4

6

8

10

12

14

16

18

Multi guest runs
with and without Huge pages

Regular pg huge pages % Diff

Number of Guests

T
o

ta
l T

ra
n

s
/ m

in

AMD – Magny Cours – RHEL5.5 – KVM

Using NUMA

Understanding NonUniform Memory Access (NUMA)
●Multi core – Multi socket architectures

● NUMA needed for scaling
● RHEL 5 / 6 completely NUMA aware
● KVM guests draw benefits of NUMA

● Additional performance improvements to be gained by
enforcing NUMA placement

●How to enforce NUMA placement
● numactl – cpu and memory pinning
● taskset – cpu pinning
● libvirt – cpu pinning in libvirt - “<vcpus cpuset='0-3'>4</vcpus>”

KVM Performance – AMD Istanbul - 24 cpu
Effect of NUMA on multiple guests running OLTP

4Guest-24vcpu-56G 4Guest-24vcpu-56G-NUMA

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

0

5

10

15

20

25

30

35

28.6

Guest 4
Guest 3
Guest 2
Guest 1
% improvement

10U 20U 40U 60U

0

100000

200000

300000

400000

500000

600000

700000

Comparison between Guest NUMA pinning
using numactl vs libvirt (vcpuset)

NUMA on 4 RHEL5 guest
– (RHEL5.5 KVM)

NUMA pin – 4 RHEL5
guest – (RHEL5.5 KVM) –
numactl

NUMA pin – 4 RHEL5
guest – (RHEL5.5 KVM) –
libvirt

user count

tr
a

n
s/

m
i n

AMD – Magny Cours – RHEL5.5 – KVM

10U 20U 40U 60U

0

100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

Comparison between multiguest
using huge pages vs huge pages + NUMA cpu pin

4 RHEL5 guest –
(RHEL5.5 KVM) – huge
pages

4 RHEL5 guest –
(RHEL5.5 KVM) – huge
pages – vcpu set

% diff

%
 D

if
fe

re
n

c
e

AMD – Magny Cours – RHEL5.5 – KVM

Wrap it Up

Wrap up

● KVM is a loadable module

● KVM inherits all the kernel features

● KVM can be tuned effectively
● Make sure you understand what is going on under the

covers
● Are you hitting page cache on the host ?

● throughput vs latency numbers

● Look at using NUMA

● Huge Pages can help x86_64 hardware TLB

● Choose appropriate elevators (Deadline vs CFQ)

Wrap up (cont)

● Understand the network model
● Pinning can help
● Not always easy

● Device Assignment for high throughput / low latency

● Need specific HW

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

