SUMIT

JBoss WORLD

PRESENTED BY RED HAT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com

STORAGE RECONFIGURATION WITH RED HAT ENTERPRISE LINUX AND RED HAT ENTERPRISE VIRTUALIZATION

Ian Pilcher, RHCA – Sr. Solution Architect Tom Coughlan – Sr. Engineering Manager Red Hat, Inc.

June 25, 2010

Objectives

- Add additional LUNs to a Red Hat Enterprise Linux (RHEL) server
- Expand LUNs used by a RHEL server
- Make use of additional/expanded LUNs
- Add additional LUNs to a Red Hat Enterprise Virtualization (RHEV) storage pool
- Overcommit RHEV guest storage with "sparse provisioning"
- Use RHEV templates to ease deployment of guests
- Manage guest updates and testing with RHEV snapshots

Environment

Web Front-End Web Front-End Web Front-End **Application RHEV Guest RHEV Guest RHEV Guest** Layer Database DBMS- PostgreSQL, MySQL, Oracle, DB2, etc. Layer server server hba 1 hba 2 hba 1 hba 2 SAN₂ SAN 1 cntrlr 1 cntrlr 2 **RAID JBoss** SUMIT WORLD

Application Tier Setup

- Create "master" guest
- "Unconfigure" master guest
- Shut down master guest
- Create template
- Create guests from template
- Start guests

Creating the "Master" Guest

- Define the guest
 - CPUs
 - Memory
 - Disks
 - NICs
- Set up operating system
- Set up applications

Creating the Template and Guests

- "Unconfigure" master guest
 - SSH host keys
 - MAC address(es)
 - Use DHCP
 - "Firstboot" scripts?
 - Shut down
- Create template
- Create guests

Guest Virtual Disks

- Storage types
 - NFS files (possibly sparse)
 - iSCSI and Fibre-Channel logical volumes
- "Preallocated" raw image
- "Thinly provisioned" qcow2
 - Holds changes relative to "backing file"
 - Changes to backing file will corrupt qcow2 data

Templates

- Complete copy of guest disk
- Independent of guest disk once created
- Derived guests
 - "Cloned" full copy

JBoss

• "Thin" (shown)

SUMMIT

Thin Provisioning in Action

	Name	Cluster	Host	IP Address	Memory	CPU	Network	Display	Status	Uptime
	web_master	iSCSI			0%	0%	0%		Down	
•	web01	iSCSI	host3.rhev.dfw.		0%	77%	0%	VNC	Powering Up	< 1 min
•	web02	iSCSI	host3.rhev.dfw.		0%	99%	0%	VNC	Powering Up	< 1 min
•	web03	iSCSI	host3.rhev.dfw.		0%	95%	0%	VNC	Powering Up	< 1 min
•	web04	iSCSI	host3.rhev.dfw.		0%	82%	0%	VNC	Powering Up	< 1 min
•	web05	iSCSI	host3.rhev.dfw.		0%	48%	0%	VNC	Powering Up	< 1 min
•	web06	iSCSI	host3.rhev.dfw.		0%	30%	0%	VNC	Powering Up	< 1 min
•	web07	iSCSI	host3.rhev.dfw.		0%	0%	0%	VNC	Powering Up	< 1 min
•	web08	iSCSI	host3.rhev.dfw.		0%	0%	0%	VNC	Powering Up	< 1 min
•	web09	iSCSI	host3.rhev.dfw.		0%	0%	0%	VNC	Powering Up	< 1 min
•	web10	iSCSI	host3.rhev.dfw.		0%	79%	0%	VNC	Up	< 1 min

Name	Туре	Cross Data-Center Statu	s Avail.
fcp_data	Data (Ma	ster) Active	2,734 GE
▲ iscsi_data	Data (Ma	ster) Active	10 GE
▲ nfs_iso	ISO	Active	198 GB
General Data Center	Virtual Machines Te	emplates	
General Data Center	Virtual Machines Te	emplates	
		emplates	
Size:	39 GB	emplates	

Environment

Objective: Enlarge the existing LUN, and add a new LUN

The Names of Things

"Attached scsi disk sdc at scsi3, channel 0, id 2, lun 5"...

"Attached scsi disk sdd at scsi4, channel 0, id 8, lun 5"...

The mpath virtual device:

Multipath will notice the matching WWID for sdc and sdd:

multipath -ll

```
mpath3 (3600508b400105e210000900000490000)
[size=100 GB][features="0"][hwhandler="0"]
\_ round-robin 0 [prio=1][active]
\_ 3:0:2:5 sdc 8:32 [active][ready]
\_ round-robin 0 [prio=1][enabled]
\_ 4:0:8:5 sdd 8:48 [active][ready]
```

Be aware: The WWID is the only persistent name for the device!

Add New Storage

You: Hello, I would like to request a 100GB increase in the size of LUN 5 (WWID=3600508b400105e210000900000490000), and I'd like a second LUN at 300 GB.

Storage Admin: I am *Mordac* the preventer of information services...

<much later>

Storage Admin: Okay, it's done.

You: Ummm, would you please tell me the WWNN of the storage server, so I can identify the paths to it, and the new LUN number?

Storage Admin: <more abuse...>

Storage Admin: 5000-1FE1-5009-7080, LUN 16

You: Thank-you.

Make the system aware of the new storage

We will add a LUN while the system is running.

– so use the least disruptive scan possible, to probe just the device we want:

find the paths to the storage server whose WWNN=50001FE150097080

grep -i 50001FE150097080 /sys/class/fc_transport/*/node_name

/sys/class/fc_transport/target3:0:2/node_name:0x50001fe150097080

/sys/class/fc_transport/target4:0:8/node_name:0x50001fe150097080

probe each path for LUN=16

echo "0 2 16" > /sys/class/scsi_host/host3/scan

echo "0 8 16" > /sys/class/scsi_host/host4/scan

Check /var/log/messages...

A new multipath LUN is added

```
kernel: SCSI device sdk: 629145600 512-byte hdwr sectors (322123 MB)
kernel: sd 3:0:2:16: Attached scsi disk sdk
kernel: sd 3:0:2:16: Attached scsi generic sg12 type 0
kernel: SCSI device sdl: 629145600 512-byte hdwr sectors (322123 MB)
kernel: sd 4:0:8:16: Attached scsi disk sdl
kernel: sd 4:0:8:16: Attached scsi generic sg13 type 0
multipath -ll
mpath5 (3600508b400105e210000c000003c0000) dm-9
[size=300G][features=1 queue_if_no_path][hwhandler=0][rw]
\_ round-robin 0 [prio=100][enabled]
\_ 3:0:2:16 sdk 8:128 [active][ready]
\_ 4:0:8:16 sdl 8:144 [active][ready]
```


SUMMI

Increase the size of an existing LUN

```
echo 1 > /sys/block/sdc/device/rescan
echo 1 > /sys/block/sdd/device/rescan
kernel: sdc: detected capacity change from 107374182400 to 214748364800
kernel: SCSI device sdc: 419430400 512-byte hdwr sectors (214748 MB)
kernel: sdd: detected capacity change from 107374182400 to 214748364800
kernel: SCSI device sdd: 419430400 512-byte hdwr sectors (214748 MB)
multipathd -k"resize map mpath4"
multipath -ll
mpath3 (3600508b400105e210000900000490000)
[size=200 GB][features="0"][hwhandler="0"]
\_ round-robin 0 [prio=1][active]
\_ 3:0:2:5 sdc 8:32 [active][ready]
\_ round-robin 0 [prio=1][enabled]
\_ 4:0:8:5 sdd 8:48 [active][ready]
```


SUMMI

We've doubled the size of LUN 5 and added LUN 16

Application Tier Upgrade

- Create master guest snapshot
- Add additional virtual disk to master guest
 - Expand storage pool
- Boot master guest
- Set up new virtual disk
 - fdisk, pvcreate, vgextend, lvextend, resize2fs
- Upgrade master guest
 - Operating system, applications, etc.

- Test
 - Revert to snapshot if necessary
- Unconfigure
 - SSH host keys
- Shutdown
- Create new template
- Create **new** guests from new template
- Transition from old guests to new guests

Creating a Snapshot

Before After

Original "base image" is now snapshot

Creating Another Snapshot

Snapshot Undo/Commit

- Available when snapshot is previewed
- "Undo"
 - Preview is discarded
- "Commit"
 - Subsequent snapshots discarded
 - Guest "attached" to preview

Deleting a Snapshot

SUMIT

Expanding the Storage Pool

Summary

- Red Hat Enterprise Linux
 - LUN(s)
 - Expand
 - Add
 - Rescanning
 - Multipath

- Red Hat Enterprise Virtualization
 - Guest disks
 - Pre-allocated
 - Thin
 - Templates & guests
 - Cloned
 - Thin
 - Snapshots
 - Storage pools

Please Turn In Your Evaluations

Thank

You!

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

#summitjbw

READ THE BLOG

http://summitblog.redhat.com/

