
1

2

Interoperability with Windows

using CIFS File Sharing with

Kerberos Authentication

Jeff Layton
Senior Software Engineer, Red Hat
June 23, 2010

3

Who is this person?

● Around a decade of work as Unix sysadmin
● Member of file system engineering team at Red

Hat since 2006
● Joined worldwide Samba team in 2008
● Primarily work on NFS and CIFS, but also

dabble in generic VFS layer (and other places)
● Maintain the cifs-utils package upstream, and in

Fedora and RHEL

4

Overview

● Basic Kerberos Concepts

● CIFS and Kerberos 5

● Problems with current implementation

● Deployment scenarios and recommendations

● Future directions

5

Introduction to Kerberos

6

What is Kerberos?

● Secure authentication over insecure networks:
● Verify identity without exposing passwords to network
● Relies on a trusted 3rd party – the Key Distribution

Center (KDC)
● All entities (users and services) are considered

“principals” to the KDC
● Authentication is mutual

7

A Brief History of Kerberos

● Invented at MIT, first publication of v4 in the 1980's

● v5 published in 1993

● Most Unix-like OS's have had it for many years

● Microsoft adopted it as the basis of its authentication
model with Windows 2000

8

Overview of Kerberos Authentication

1) Get Ticket Granting Ticket (TGT)

2) Use TGT to get service ticket

3) Use service ticket to establish server session

9

Krb5 Principal Format

● primary: user or service name (e.g. “nfs”, “cifs”, or
“host”)

● instance: optional qualifier. Usually FQDN for service
principals. Sometimes “/admin” for user principals.

● realm: all principals are unique within a realm.
Convention is to use DNS domain name in uppercase.

primary/instance@REALM

mailto:primary/instance@REALM

10

Examples of Principals

● User Principals:

● jlayton@EXAMPLE.COM
● jlayton/admin@EXAMPLE.COM

● Service Principals:

● host/server.example.com@EXAMPLE.COM
● cifs/server.example.com@EXAMPLE.COM

11

Authentication Layers

● GSSAPI: Generic Security Services Application
Programming Interface. A standard plugin interface for
authentication schemes.

● SPNEGO: Simple Protected GSSAPI Negotiation
Mechanism. A way for client and server to agree on an
authentication method to use.

SPNEGO

GSSAPI

KRB5

12

CIFS and Kerberos 5

13

CIFS Authentication with KRB5

● Client sends NegProt req with extended security bit set

● Server replies with list of auth methods that it supports
(via SPNEGO)

● Client sends Session Setup request with SPNEGO
blob that contains KRB5 ticket wrapped in GSSAPI

14

CIFS+KRB5 Upcall Process

● mount.cifs reqests krb5
auth

● cifs calls into keys API for
SPNEGO blob

● keys api calls out to
/sbin/request_key

● request_key calls
cifs.upcall which builds
SPNEGO blob

15

Requirements for CIFS + krb5

● Linux kernel that supports SPNEGO upcalls

● Support first went into mainline in 2.6.24
● Also backported to RHEL5.3

● Client Configured for krb5 (/etc/krb5.conf)

● /sbin/request-key

● part of the “keyutils” package
● /usr/sbin/cifs.upcall

● RHEL5 & Fedora (pre F13): samba-client package
● RHEL6 & F13+: cifs-utils package

16

Basic krb5.conf configuration

● Easiest to use system-config-authentication

● Basic config follows:

[realms]
 EXAMPLE.COM = {
 kdc = ad.example.com:88
 admin_server = ad.example.com:749
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

17

Configuring /etc/request-key.conf

#OPERATION TYPE D C PROGRAM ARG1 ARG2...
#========= =========== = = ========================
create cifs.spnego * * /usr/sbin/cifs.upcall %k
create dns_resolver * * /usr/sbin/cifs.upcall %k

Tells request-key program what program it should run
and how. Note that cifs also uses this to handle DNS
resolution for DFS (see cifs.upcall(8)):

/etc/request-key.conf:

18

Simple Mount with krb5

● Get a krb5 ticket for the user as whom you'll be
authenticating.

● Then mount the share with the sec=krb5 option
● Hostname in UNC much match service principal!

kinit testuser@EXAMPLE.COM
Password for testuser@EXAMPLE.COM:

mount -t cifs -o sec=krb5 \
//server.example.com/export /mnt/cifs

19

Problems with Current
Implementation

20

The NFS Mount Model

● “Traditional” network filesystem for unix is NFS

● User creds are sent to the server in each call

● No one “owns” the connection to the server

21

The CIFS Mount Model Today

● Only one CIFS session per mount

● One set of credentials per CIFS session

● Other users who use the mount are using the same
credentials as the user who “owns” the mount

22

POSIX Extensions

● CIFS enables POSIX extensions by default

● Problems with modes and ownership:
● uid/gid may not match on client and server
● uid=/gid= mount options override ownership but not

mode. The result is permissions that have no basis in
reality.

● all ops on the server are done using mount creds, but
VFS enforces these permissions locally. The client's
VFS may limit a user from doing ops that the server
would allow

23

File Creation and Permissions

● First test:
● Mount cifs share with one user's credentials and with

unix extensions enabled
● Share is world-writable
● “touch” file in share as another user

$ touch testfile
touch: cannot touch `testfile': Permission denied

24

What happened?

● File was created on
server using mount
credentials

● CIFS attempts to enforce
permissions on client

● That can't fix ownership

● File is created but later
operations fail!

25

Permissions Enforcement

● Second test:
● Mount share with one user's credentials and without

unix permissions
● As another user, access a file that should be accessible

by only that user.
● You can't enforce permissions correctly if you don't

know what they should be

● Even if you do, checking on the client is racy –
permissions can change after you check them but
before they are enforced

26

So there are problems...

● Summary:
● POSIX extensions aren't terribly useful as implemented

by CIFS VFS
● “shared” mounts doesn't work as expected

● Recommendations:
● Limit permissions to the user who owns the creds
● Maybe disable unix extensions altogether?

27

Deploying CIFS with
Kerberos 5

28

User mounts in /etc/fstab

● mount(8) allows unprivileged users to mount
filesystems if:

● /bin/mount and mount helper are setuid root (not
recommended with the version that ships in RHEL4/5)

● the user owns the mountpoint
● mount is in /etc/fstab with “user” option (distinct from

user= option that CIFS uses)

29

User mounts in /etc/fstab

/etc/fstab:

//server/share /home/testuser/cifs \
sec=krb5,user,nounix,file_mode=0700, \
dir_mode=0700,noauto 0 0

Then, as unprivileged user:
testuser@client$ kinit

Password for testuser@EXAMPLE.COM:

testuser@client$ mount /home/testuser/cifs

30

Using autofs

● Another possibility is to use autofs:

jlayton \
-fstype=cifs,sec=krb5,uid=$UID,gid=$GID \
\\\\server.example.com\\jlayton

● How do we ensure that the “right” user gets the
mount?

31

Using pam_mount

● Linux PAM module that can mount filesystems on login
● PAM == Pluggable Authentication Modules

● Users can configure their own set of mounts (within
limits set by admin)

● Most useful when combined with pam_krb5

● see pam_mount(8) and pam_mount.conf(5)

32

What about MultiuserMount?

● Can be enabled via:

/proc/fs/cifs/MultiuserMount

● When there are multiple sessions to the same server,
use one that's owned by my UID

● Problems with this approach:
● Requires a separate mount for each user
● Users w/o a mount use “default” creds
● Permissions and file ownership, writeback...

33

MultiuserMount Redux

● Patchset in progress to do multiuser mounts the “right
way” (renamed “multisession mounts” to avoid
confusion)

● Have multiple sessions per mount

● Sessions are established on an as-needed basis

● Server handles permissions

● Goal: as easy as Kerberized NFS (or easier)

34

Questions?

35

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

