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Who is this person?

● Around a decade of work as Unix sysadmin
● Member of file system engineering team at Red 

Hat since 2006
● Joined worldwide Samba team in 2008
● Primarily work on NFS and CIFS, but also 

dabble in generic VFS layer (and other places)
● Maintain the cifs-utils package upstream, and in 

Fedora and RHEL
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Overview

● Basic Kerberos Concepts

● CIFS and Kerberos 5

● Problems with current implementation

● Deployment scenarios and recommendations

● Future directions
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Introduction to Kerberos
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What is Kerberos?

● Secure authentication over insecure networks:
● Verify identity without exposing passwords to network
● Relies on a trusted 3rd party – the Key Distribution 

Center (KDC)
● All entities (users and services) are considered 

“principals” to the KDC
● Authentication is mutual
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A Brief History of Kerberos

● Invented at MIT, first publication of v4 in the 1980's

● v5 published in 1993

● Most Unix-like OS's have had it for many years

● Microsoft adopted it as the basis of its authentication 
model with Windows 2000
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Overview of Kerberos Authentication

1) Get Ticket Granting Ticket (TGT)

2) Use TGT to get service ticket

3) Use service ticket to establish server session
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Krb5 Principal Format

● primary: user or service name (e.g. “nfs”, “cifs”, or 
“host”)

● instance: optional qualifier. Usually FQDN for service 
principals. Sometimes “/admin” for user principals.

● realm:  all principals are unique within a realm. 
Convention is to use DNS domain name in uppercase.

primary/instance@REALM

mailto:primary/instance@REALM


10

Examples of Principals

● User Principals:

● jlayton@EXAMPLE.COM
● jlayton/admin@EXAMPLE.COM

● Service Principals:

● host/server.example.com@EXAMPLE.COM
● cifs/server.example.com@EXAMPLE.COM
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Authentication Layers

● GSSAPI: Generic Security Services Application 
Programming Interface. A standard plugin interface for 
authentication schemes.

● SPNEGO: Simple Protected GSSAPI Negotiation 
Mechanism. A way for client and server to agree on an 
authentication method to use.

SPNEGO

GSSAPI

KRB5
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CIFS and Kerberos 5
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CIFS Authentication with KRB5

● Client sends NegProt req with extended security bit set

● Server replies with list of auth methods that it supports 
(via SPNEGO)

● Client sends Session Setup request with SPNEGO 
blob that contains KRB5 ticket wrapped in GSSAPI
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CIFS+KRB5 Upcall Process

●  mount.cifs reqests krb5 
auth

●  cifs calls into keys API for 
SPNEGO blob

●  keys api calls out to 
/sbin/request_key

●  request_key calls 
cifs.upcall which builds 
SPNEGO blob
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Requirements for CIFS + krb5

● Linux kernel that supports SPNEGO upcalls

● Support first went into mainline in 2.6.24
● Also backported to RHEL5.3

● Client Configured for krb5 (/etc/krb5.conf)

● /sbin/request-key

● part of the “keyutils” package
● /usr/sbin/cifs.upcall

● RHEL5 & Fedora (pre F13): samba-client package
● RHEL6 & F13+: cifs-utils package
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Basic krb5.conf configuration

● Easiest to use system-config-authentication

● Basic config follows:

[realms]
 EXAMPLE.COM = {
   kdc = ad.example.com:88
   admin_server = ad.example.com:749
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
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Configuring /etc/request-key.conf

#OPERATION  TYPE         D C PROGRAM ARG1 ARG2...
#=========  ===========  = = ========================
create      cifs.spnego  * * /usr/sbin/cifs.upcall %k
create      dns_resolver * * /usr/sbin/cifs.upcall %k

Tells request-key program what program it should run 
and how. Note that cifs also uses this to handle DNS 
resolution for DFS (see cifs.upcall(8)):

/etc/request-key.conf:
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Simple Mount with krb5

● Get a krb5 ticket for the user as whom you'll be 
authenticating.

● Then mount the share with the sec=krb5 option
● Hostname in UNC much match service principal!

# kinit testuser@EXAMPLE.COM
Password for testuser@EXAMPLE.COM:

# mount -t cifs -o sec=krb5 \ 
//server.example.com/export /mnt/cifs
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Problems with Current 
Implementation
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The NFS Mount Model

● “Traditional” network filesystem for unix is NFS

● User creds are sent to the server in each call

● No one “owns” the connection to the server
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The CIFS Mount Model Today

● Only one CIFS session per mount

● One set of credentials per CIFS session

● Other users who use the mount are using the same 
credentials as the user who “owns” the mount
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POSIX Extensions

● CIFS enables POSIX extensions by default

● Problems with modes and ownership:
● uid/gid may not match on client and server
● uid=/gid= mount options override ownership but not 

mode. The result is permissions that have no basis in 
reality.

● all ops on the server are done using mount creds, but 
VFS enforces these permissions locally. The client's 
VFS may limit a user from doing ops that the server 
would allow
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File Creation and Permissions

● First test:
● Mount cifs share with one user's credentials and with 

unix extensions enabled
● Share is world-writable
● “touch” file in share as another user

$ touch testfile
touch: cannot touch `testfile': Permission denied
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What happened?

● File was created on 
server using mount 
credentials

● CIFS attempts to enforce 
permissions on client

● That can't fix ownership

● File is created but later 
operations fail!
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Permissions Enforcement

● Second test:
● Mount share with one user's credentials and without 

unix permissions
● As another user, access a file that should be accessible 

by only that user.
● You can't enforce permissions correctly if you don't 

know what they should be

● Even if you do, checking on the client is racy – 
permissions can change after you check them but 
before they are enforced
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So there are problems...

● Summary:
● POSIX extensions aren't terribly useful as implemented 

by CIFS VFS
● “shared” mounts doesn't work as expected

● Recommendations:
● Limit permissions to the user who owns the creds
● Maybe disable unix extensions altogether?
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Deploying CIFS with
Kerberos 5
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User mounts in /etc/fstab

● mount(8) allows unprivileged users to mount 
filesystems if:

● /bin/mount and mount helper are setuid root (not 
recommended with the version that ships in RHEL4/5)

● the user owns the mountpoint
● mount is in /etc/fstab with “user” option (distinct from 

user= option that CIFS uses)
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User mounts in /etc/fstab

/etc/fstab:

//server/share /home/testuser/cifs \
sec=krb5,user,nounix,file_mode=0700, \
dir_mode=0700,noauto 0 0

Then, as unprivileged user:
testuser@client$ kinit

Password for testuser@EXAMPLE.COM:

testuser@client$ mount /home/testuser/cifs
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Using autofs

● Another possibility is to use autofs:

jlayton \
-fstype=cifs,sec=krb5,uid=$UID,gid=$GID \
\\\\server.example.com\\jlayton

● How do we ensure that the “right” user gets the 
mount?



31

Using pam_mount

● Linux PAM module that can mount filesystems on login
● PAM == Pluggable Authentication Modules

● Users can configure their own set of mounts (within 
limits set by admin)

● Most useful when combined with pam_krb5

● see pam_mount(8) and pam_mount.conf(5)
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What about MultiuserMount?

● Can be enabled via:

/proc/fs/cifs/MultiuserMount

● When there are multiple sessions to the same server, 
use one that's owned by my UID

● Problems with this approach:
● Requires a separate mount for each user
● Users w/o a mount use “default” creds
● Permissions and file ownership, writeback...
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MultiuserMount Redux

● Patchset in progress to do multiuser mounts the “right 
way” (renamed “multisession mounts” to avoid 
confusion)

● Have multiple sessions per mount

● Sessions are established on an as-needed basis

● Server handles permissions

● Goal: as easy as Kerberized NFS (or easier)
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Questions?
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