

Case Study: Deploying Data
Centers with Puppet

Rafael Brito
Lead Analyst, NYSE Euronext
Michael DeHaan
Product Manager, Puppet Labs
Jun 23, 2010

Objective of this Presentation

Share to the community the solution arrived by NYSE
Euronext System Architecture and Engineering (SAE) to
address the technical challenges imposed by the
Business Strategy of the company:

 Consolidate various Data Centers across the globe in
two brand-new state-of-the-art facilities, one in the US and
another in Europe;

 Adapt a Global standard process to build and configure
servers and applications across multiple countries and teams;

 Quickly deploy changes in large scale in an automated
way.

Main Tools Used in the Solution

 RHEL Kickstart

We have a single, very frugal kickstart profile for each RHEL release
for the entire company.

 RH Network Satellite

- Manage packages of the OS, Third Parties and Home-grown
RPMs.

- Manage patches and upgrades.

 Puppet

- Work horse of this model

- Common framework to apply and configure the Global standard
server configuration and particularities of each environment and
applications.

What is Puppet? Not a child’s toy.

 High Level Configuration Management Tool and Framework. No
more bash scripts.

 We focus on *what* things that need to be done instead on
how things are done.

 Idempotent

 Example of puppet code (called manifests) to set permission a
file:

file { “/etc/resolv.conf”:

permission => 0444,

owner => root, group => root,

}

 Michael will give a quick overview of the tool

Puppet: An Infrastructure Hub

Provisioning OS (kickstart +

puppet), Environment, &

Applications

Applies, Enforces, and Reports

On

Configuration

Updates OS Packages, and

Applications (using RHN &

Satellite)

Assists with setup of
Monitoring, Firewalls,
& Aux. Services

Puppet

Puppet At A Glance

Your Systems

Puppet Modules

Applications

Operating System

Configurations

Puppet Modules In
Source Control

Puppet Dashboard

Database

Reports

Puppet Master

Central Server

Can Help Assist in Red Hat
Migrations

Puppet: Cross Platform Management of:

Web
Applications

Databases Users Groups

Monitoring
Commands

(Exec)
Cron Services

Config Files
Mount
Points

SSH Keys Packages

And More. It‟s Also User Extensible.

Puppet: A Declarative System

user { „mpdehaan‟:

home => „/home/mpdehaan‟,

shell => „/bin/bash‟,

ensure => present,

groups => [„wheel‟, „magic‟, ‟cdrom‟],

comment => „‟,

}

Puppet: A Model Based System

Package

Service

File

Puppet Master

if changed, restart

templates out

requires

Back to NYX Solution: The Three Configuration
Layers Approach

We have organized our configuration needs in three levels:

Base: All NYX global customizations on top of the RHEL default
settings. These must be propagated across the enterprise.

Example: global standard size for /usr file system, kernel parameter
kernel.core_pattern = /var/crash/core.%e.%p.%h

Zone (or environment or network): Configuration items common to a specific
network or environment. Zone layer inherits the Base layer with the ability to
override anything if necessary.

Example: /etc/resolv.conf file across one given production network.

Application: Any specific configuration required by any given application. This
layer inherits the Zone layer and has the ability to change anything set on the
previous two layers.

Example: UTP application requires a 50GB /appl file system and a “qt” package
installed.

The Puppet Modules behind of this approach

An example of the modules-base manifests

NYX Global Build customizes 250+ items on top of RHEL default OS.

All servers necessarily include the class “base” that setup the servers same way
globally

class base::setup {

include ssh::setup

include banners::setup

include sysctl::setup

include services::setup

include yum::setup

include bootloader::setup

include sudo::setup

include hardware::setup

and many more classes

}

An example of the modules-zones manifests

The organization has 30+ zones or environments across the globe, including production,
QA, development networks, which one with own settings. Every server must belong to
a zone.

Example of a zone class and some of its settings:

class us_trading::setup {

$country = 'us'

$searchpath = 'nyx.com'

$domain = 'nyx.com'

$nameservers = ["10.0.X.X", "10.0.X.X"]

$timeservers = ["10.0.X.X version 3 prefer", "10.0.X.X"]

$syslogserver = "10.0.X.X"

Including the base class

include base::setup

}

An example of the modules-app manifests

We have more than 60+ different applications requiring their
own settings (kernel parameters, file systems, users,
packages).

class sg::setup {

package { ["libxslt", "libmng"]:

ensure => present,

}

lvm::config_lvm { "tcpdump":

mount_point => "/tcpdump", lvname => "ltcpdump", vgname => vg00,

lvsize => "5G", fstype => "ext3", owner => “myuser",

group => "users", mode => "0755",

}

}

How the three layers work together

 The zone class usually sets variables that will be used by
modules-base for configuration.

 The zone class necessarily includes the modules-base.

 All servers must belong to one zone.

 The application module is coded to be pluggable to any zone
(i.e. match engine application module can be on a QA
environment or production environment)

 The ability to build anything, anywhere and mimic Production
config to QA environment and vice-versa.

 The modules-app can override settings inherit on modules-
zones. The modules-zones can override settings inherit on
modules-base.

The Last Piece: the Node Definition File

The node definition is the entity that assigns the server
to the zone and application modules.

node "buildtest.nyx.com" {

Zone Class

include corplan::setup

Application Class

include sg::setup

Networking

network::interface::setup {"bond0":

ensure => present,

config_type => bonded,

ip => "10.0.0.100",

netmask => "255.255.255.0",

slave0 => "eth0",

slave1 => "eth1",

gateway => "10.0.0.254",

arp_target => "10.0.0.254",

arp_interval => "3000",

}

}

The NYX Build Server Components

 TFTP / PXE Server

 Proxy of the Satellite Server

 Apache Server

 MySQL Server

 Puppet Server

Automated Installation Process – In a Nutshell

Server out
of the box

Register
Serial
Number and
the MAC
address and
reboots
server.

Custom PXE
generated that has
hostname and OS
version (RHEL4 or
RHEL5).

PXE Boot for
1st time

Reboot

PXE Boot for
2nd time

Start the
RHEL
installation
with the
minimum
packages and
Global
Standard File
Systems
setup and
sizes.

Register the new
server on the satellite
server and puppet
client is installed

Continue

PreBoot Phase

Phase 0

Automated Installation Process – Overview Cont.

Reboot

Puppet via
init.d process

Puppet client looks up
the node definition file
and executes at least
the modules-base
code.

Boot from disk,
lean OS
loaded

Phase2 init
script

Puppet is
executed
again to
perform the
entire
configuration
for the zone
and
application.

Server has all
configuration (including
networking) and it
shutdowns itself to be
transferred to the rack.

Phase 1

Phase 2

Data Center Deployment: Numbers and Lessons

 One server gets completely installed in 20 minutes in
unattended mode

 We usually install up to 15 servers in parallel (after upgrading
mongrel to apache).

 Usually, one individual in one day can install up to 50 servers
by himself

 The most difficult part was getting the requirements of each
application

Ancillary Tools for This Project

 Subversion

– we had to disseminate the culture of version control among many individuals
and teams.

– Each layer of the modules and node definitions have its own subversion
repositoriy

 Web Subversion

 OpenGrok (search the manifests)

 Redmine (ticket and changes control)

 Tidal Scheduler – To execute puppet client once the servers are in the
production network

Next Steps on this Process

 Run puppet to deploy changes across the board on the day-by-day basis.
This will require more a cultural change and coordination across more
departments.

 Run puppet in report mode daily (no-intrusive) to detect discrepancies
between the reality and the puppet manifests

 Use puppet dashboard as a central database of Node definitions (called
External Node Classifier)

 Create more custom facts and types in ruby (diminish the number of execs
inside the manifests).

Thank you!

Q & A

