After the tracepoint experiment ends, you use gdb commands for examining the trace data. The basic idea is that each tracepoint collects a trace snapshot every time it is hit and another snapshot every time it single-steps. All these snapshots are consecutively numbered from zero and go into a buffer, and you can examine them later. The way you examine them is to focus on a specific trace snapshot. When the remote stub is focused on a trace snapshot, it will respond to all gdb requests for memory and registers by reading from the buffer which belongs to that snapshot, rather than from real memory or registers of the program being debugged. This means that all gdb commands (print, info registers, backtrace, etc.) will behave as if we were currently debugging the program state as it was when the tracepoint occurred. Any requests for data that are not in the buffer will fail.
The basic command for selecting a trace snapshot from the buffer is tfind n, which finds trace snapshot number n, counting from zero. If no argument n is given, the next snapshot is selected.
Here are the various forms of using the tfind command.
Find the first snapshot in the buffer. This is a synonym for tfind 0 (since 0 is the number of the first snapshot).
Stop debugging trace snapshots, resume live debugging.
Same as tfind none.
No argument means find the next trace snapshot.
Find the previous trace snapshot before the current one. This permits retracing earlier steps.
Find the next snapshot associated with tracepoint num. Search proceeds forward from the last examined trace snapshot. If no argument num is given, it means find the next snapshot collected for the same tracepoint as the current snapshot.
Find the next snapshot associated with the value addr of the program counter. Search proceeds forward from the last examined trace snapshot. If no argument addr is given, it means find the next snapshot with the same value of PC as the current snapshot.
Find the next snapshot whose PC is outside the given range of addresses.
Find the next snapshot whose PC is between addr1 and addr2.
Find the next snapshot associated with the source line n. If the optional argument file is given, refer to line n in that source file. Search proceeds forward from the last examined trace snapshot. If no argument n is given, it means find the next line other than the one currently being examined; thus saying tfind line repeatedly can appear to have the same effect as stepping from line to line in a live debugging session.
The default arguments for the tfind commands are specifically
designed to make it easy to scan through the trace buffer. For
instance, tfind with no argument selects the next trace
snapshot, and tfind - with no argument selects the previous
trace snapshot. So, by giving one tfind command, and then
simply hitting
In addition to letting you scan through the trace buffer manually, these commands make it easy to construct gdb scripts that scan through the trace buffer and print out whatever collected data you are interested in. Thus, if we want to examine the PC, FP, and SP registers from each trace frame in the buffer, we can say this:
(gdb) tfind start (gdb) while ($trace_frame != -1) > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \ $trace_frame, $pc, $sp, $fp > tfind > end Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14 |
Or, if we want to examine the variable X at each source line in the buffer:
(gdb) tfind start (gdb) while ($trace_frame != -1) > printf "Frame %d, X == %d\n", $trace_frame, X > tfind line > end Frame 0, X = 1 Frame 7, X = 2 Frame 13, X = 255 |
This command takes no arguments. It prints all the data collected at the current trace snapshot.
(gdb) trace 444 (gdb) actions Enter actions for tracepoint #2, one per line: > collect $regs, $locals, $args, gdb_long_test > end (gdb) tstart (gdb) tfind line 444 #0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66) at gdb_test.c:444 444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", ) (gdb) tdump Data collected at tracepoint 2, trace frame 1: d0 0xc4aa0085 -995491707 d1 0x18 24 d2 0x80 128 d3 0x33 51 d4 0x71aea3d 119204413 d5 0x22 34 d6 0xe0 224 d7 0x380035 3670069 a0 0x19e24a 1696330 a1 0x3000668 50333288 a2 0x100 256 a3 0x322000 3284992 a4 0x3000698 50333336 a5 0x1ad3cc 1758156 fp 0x30bf3c 0x30bf3c sp 0x30bf34 0x30bf34 ps 0x0 0 pc 0x20b2c8 0x20b2c8 fpcontrol 0x0 0 fpstatus 0x0 0 fpiaddr 0x0 0 p = 0x20e5b4 "gdb-test" p1 = (void *) 0x11 p2 = (void *) 0x22 p3 = (void *) 0x33 p4 = (void *) 0x44 p5 = (void *) 0x55 p6 = (void *) 0x66 gdb_long_test = 17 '\021' (gdb) |
This command saves all current tracepoint definitions together with their actions and passcounts, into a file filename suitable for use in a later debugging session. To read the saved tracepoint definitions, use the source command (refer to Section 22.3 Command files).