
Vratislav Podzimek Petr Bokoč

Red Hat Enterprise Linux
7
Anaconda Customization Guide

Customizing and enhancing the installer

Red Hat Enterprise Linux 7 Anaconda Customization Guide

Customizing and enhancing the installer

Vratislav Podzimek
vpodzime@redhat.com

Petr Bokoč
pbokoc@redhat.com

Legal Notice

Copyright © 2015 Red Hat, Inc. and others.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Anaconda is the installer used by Red Hat Enterprise Linux, Fedora, and their derivatives. This
document contains information necessary for customizing it. Developers who wish to expand the
base functionality of the installer will find information about Anaconda architecture, its add-on API
and provided helper functions, and examples which will help in creating custom add-ons. This guide
also provides instructions for those wishing to customize visual aspects of the installer, such as the
boot menu color scheme and background or branding and chroming within the graphical user
interface.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

⁠1. Introduction to Anaconda Customization

⁠2. Working with ISO Images
⁠2.1. Extracting Red Hat Enterprise Linux Boot Images
⁠2.2. Creating a product.img File
⁠2.3. Creating Custom Boot Images

⁠3. Customizing the Boot Menu
⁠3.1. Systems with BIOS Firmware
⁠3.2. Systems with UEFI Firmware

⁠4. Branding and Chroming the Graphical User Interface
⁠4.1. Customizing Graphical Elements
⁠4.2. Customizing the Product Name

⁠5. Developing Installer Add-ons
⁠5.1. Introduction to Anaconda and Add-ons
⁠5.2. Architecture of Anaconda
⁠5.3. The Hub & Spoke model
⁠5.4. Threads and Communication
⁠5.5. Anaconda Add-on Structure
⁠5.6. Writing an Anaconda add-on
⁠5.7. Deploying and testing an Anaconda add-on

⁠A. Revision History

⁠Index

2

2
2
3
5

6
6
9

11
11
12

14
14
15
16
18
18
19
36

37

37

Table of Contents

1

1. Introduction to Anaconda Customization

The Red Hat Enterprise Linux and Fedora installation program, Anaconda, brings many improvements in its
most recent versions. One of these improvements is enhanced customizability. You can now write add-ons to
extend the base installer functionality, and there are also more options for changing the appearance of the
graphical user interface.

This document will explain how to customize the following:

Boot menu - pre-configured options, color scheme and background

Appearance of the graphical interface - logo, backgrounds, product name

Installer functionality - add-ons which can enhance the installer by adding new Kickstart commands and
new screens in the graphical and textual user interfaces

Some of the topics discussed in this book require significant pre-existing knowledge. In particular, developing
custom Anaconda add-ons requires knowledge of Python, making changes to the boot menu requires
involves editing plain text configuration files, and visual customizations of the installer require familiarity with
computer graphics and cascading style sheets (CSS).

Also note that this document only applies to Red Hat Enterprise Linux 7 and Fedora 17 and later.

Important

Procedures described in this book are written for Red Hat Enterprise Linux 7 or a similar system. On
other systems, the tools and applications used (such as genisoimage for creating custom ISO
images) may be different, and procedures may need to be adjusted.

2. Working with ISO Images

This section will explain how to extract an ISO image provided by Red Hat, and how to create a new boot
image containing changes you made following other procedures in this book.

2.1. Extracting Red Hat Enterprise Linux Boot Images

Before you start customizing the installer, you must download Red Hat-provided boot images. These images
will be required to perform all procedures described in this book.

You can obtain Red Hat Enterprise Linux 7 boot media from the Red Hat Customer Portal after logging in to
your account. Your account must have sufficient entitlements to download Red Hat Enterprise Linux 7
images.

Download either the Binary DVD or Boot ISO image from the Customer Portal. Either of these can be
modified using procedures in this guide; other available downloads, such as the KVM Guest Image or
Supplementary DVD can not. The variant of the image (such as Server or ComputeNode) does not
matter in this case; any variant can be used.

For detailed download instructions and description of the Binary DVD and Boot ISO downloads, see the
Red Hat Enterprise Linux 7 Installation Guide.

After your chosen iso image finishes downloading, follow the procedure below to extract its contents in order
to prepare for their modification.

Anaconda Customization Guide

2

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.1/x86_64/product-downloads
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-download-red-hat-enterprise-linux.html

Procedure 1. Extracting ISO Images

1. Mount the downloaded image.

mount -t iso9660 -o loop path/to/image.iso /mnt/iso

Replace path/to/image.iso with the path to the downloaded ISO. Also make sure that the target
directory (/mnt/iso) exists and nothing else is currently mounted there.

2. Create a working directory - a directory where you want to place the contents of the ISO image.

$ mkdir /tmp/ISO

3. Copy all contents of the mounted image to your new working directory. Make sure to use the -p
option to preserve file and directory permissions and ownership.

cp -pRf /mnt/iso /tmp/ISO

4. Unmount the image.

umount /mnt/iso

After you finish unpacking, the ISO image is extracted in your /tmp/ISO where you can modify its contents.
Continue with Section 3, “Customizing the Boot Menu” or Section 5, “Developing Installer Add-ons”. Once
you finish making changes, create a new, modified ISO image using the instructions in Section 2.3, “Creating
Custom Boot Images”.

2.2. Creating a product.img File

A product.img image file is an archive containing files which replace existing files or add new ones in the
installer runtime. During boot, Anaconda loads this file from the images/ directory on the boot media. Then,
it uses files present inside this file to replace identically named files in the installer's file system; this is
necessary to customize the installer (for example, for replacing default images with custom ones). The
product.img image must contain a directory structure identical to the installer.

Specifically, two topics discussed in this guide require you to create a product image. The table below lists
the correct locations inside the image file directory structure:

Table 1. Locations of Add-ons and Anaconda Visuals

Type of custom content File system location
Pixmaps (logo, side bar, top bar, etc.) /usr/share/anaconda/pixmaps/

Banners for the installation progress
screen

/usr/share/anaconda/pixmaps/rnotes/en/

GUI stylesheet /usr/share/anaconda/anaconda-gtk.css

Installclasses (for changing the product
name)

/run/install/product/pyanaconda/installclasses
/

Anaconda add-ons /usr/share/anaconda/addons/

The procedure below explains how to create a valid product.img file.

Procedure 2. Creating product.img

⁠1. Introduction to Anaconda Customization

3

1. Navigate to a working directory such as /tmp, and create a subdirectory named product/:

$ cd /tmp

$ mkdir product/

2. Create a directory structure which is identical to the location of the file you want to replace. For
example, if you want to test an add-on, which belongs in the /usr/share/anaconda/addons
directory on the installation system; create the same structure in your working directory:

$ mkdir -p product/usr/share/anaconda/addons

Note

You can browse the installer's runtime file system by booting the installation, switching to
virtual console 1 (Ctrl+Alt+F1) and then switching to the second tmux window (Ctrl+b 2).
This opens a shell prompt which you can use to browse the file system.

3. Place your customized files (in this example, custom add-on for Anaconda) into the newly created
directory:

$ cp -r ~/path/to/custom/addon/ product/usr/share/anaconda/addons/

4. Repeat the two steps above (create a directory structure and move modified files into it) for every file
you want to add to the installer.

5. Change into the product/ directory, and create the product.img archive:

$ cd product

$ find . | cpio -c -o | gzip -9cv > ../product.img

This creates a product.img file one level above the product/ directory.

6. Move the product.img file to the images/ directory of the extracted ISO image.

After finishing this procedure, your customizations are placed in the correct directory. You can continue with
Section 2.3, “Creating Custom Boot Images” to create a new bootable ISO image with your changes
included. The product.img file will be automatically loaded when starting the installer.

Anaconda Customization Guide

4

Note

Instead of adding the product.img file on the boot media, you can place this file into a different
location and use the inst.updates= boot option at the boot menu to load it. In that case, the image
file can have any name, and it can be placed in any location (USB flash drive, hard disk, HTTP, FTP
or NFS server), as long as this location is reachable from the installation system.

See the Red Hat Enterprise Linux 7 Installation Guide for more information about Anaconda boot
options.

2.3. Creating Custom Boot Images

When you finish customizing boot images provided by Red Hat, you must create a new image which includes
changes you made. To do this, follow the procedure below.

Procedure 3. Creating ISO Images

1. Make sure that all of your changes are included in the working directory. For example, if you are
testing an add-on, make sure to place the product.img in the images/ directory.

2. Make sure your current working directory is the top-level directory of the extracted ISO image - e.g.
/tmp/ISO/iso.

3. Create the new ISO image using genisoimage:

genisoimage -U -r -v -T -J -joliet-long -V "RHEL-7.1 Server.x86_64"
-volset "RHEL-7.1 Server.x86_64" -A "RHEL-7.1 Server.x86_64" -b
isolinux/isolinux.bin -c isolinux/boot.cat -no-emul-boot -boot-load-
size 4 -boot-info-table -eltorito-alt-boot -e images/efiboot.img -no-
emul-boot -o ../NEWISO.iso .

In the above example:

Make sure that values for the -V, -volset, and -A options match the image's boot loader
configuration, if you are using the LABEL= directive for options which require a location to load a
file on the same disk. If your boot loader configuration (isolinux/isolinux.cfg for BIOS and
EFI/BOOT/grub.cfg for UEFI) uses the inst.stage2=LABEL=disk_label stanza to load
the second stage of the installer from the same disk, then the disk labels must match.

Important

In boot loader configuration files, replace all spaces in disk labels with \x20. For
example, if you create an ISO image with a label of RHEL 7.1, boot loader configuration
should use RHEL\x207.1 to refer to this label.

Replace the value of the -o option (-o ../NEWISO.iso) with the file name of your new image.
The value in the example will create file NEWISO.iso in the directory above the current one.

For more information about this command, see the genisoimage(1) man page.

⁠1. Introduction to Anaconda Customization

5

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html

4. Implant an MD5 checksum into the image. Without performing this step, image verification check (the
rd.live.check option in the boot loader configuration) will fail and you will not be able to continue
with the installation.

implantisomd5 ../NEWISO.iso

In the above example, replace ../NEWISO.iso with the file name and location of the ISO image you
have created in the previous step.

After finishing this procedure, you can write the new ISO image to physical media or a network server to boot
it on physical hardware, or you can use it to start installing a virtual machine. See the Red Hat
Enterprise Linux 7 Installation Guide for instructions on preparing boot media or network server, and the
Red Hat Enterprise Linux 7 Virtualization Getting Started Guide for instructions on creating virtual machines
with ISO images.

3. Customizing the Boot Menu

This section contains information necessary for customizing the boot menu - the menu which appears after
you boot your system from an installation image. Normally, this menu allows you to choose between options
such as Install Red Hat Enterprise Linux, Boot from local drive or Rescue an
installed system. These options can be customized and additional options can be added, and the visual
style (colors and background) can be changed.

There are two different boot loaders on installation media. The ISOLINUX boot loader is used on systems
with BIOS firmware, and the GRUB2 boot loader is used on systems with UEFI firmware. Both are present on
all images for AMD64 and Intel 64 systems provided by Red Hat.

Customizing boot menu options can be especially useful with Kickstart. Kickstart files must be provided to the
installer before the installation begins. Normally, this is done by manually editing one of the existing boot
options and adding the inst.ks= boot option; if you edit boot loader configuration files on the media, you
can add this option to one of the pre-configured entries.

Before you begin customizing the boot loader, follow Procedure 1, “Extracting ISO Images” to unpack the ISO
image you want to modify into a working directory. After you finish your modifications, follow Procedure 3,
“Creating ISO Images” to create a new bootable ISO image.

3.1. Systems with BIOS Firmware

The ISOLINUX boot loader is used on systems with BIOS firmware.

Anaconda Customization Guide

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Getting_Started_Guide/sec-Virtualization_Getting_Started-Quickstart_Virt-Manager.html

Figure 1. ISOLINUX Boot Menu

The isolinux/isolinux.cfg configuration file on the boot media contains directives for setting the color
scheme and the structure of the menu (entries and submenus).

In the configuration file, the default menu entry for Red Hat Enterprise Linux, Test this media &
Install Red Hat Enterprise Linux 7, is defined in the following block:

label check
 menu label Test this ^media & install Red Hat Enterprise Linux 7.1
 menu default
 kernel vmlinuz
 append initrd=initrd.img inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64
rd.live.check quiet

Notable options in the above example are:

menu label - determines how the entry will be named in the menu. The ̂ character determines its
keyboard shortcut (the m key).

menu default - makes this option selected by default, even though it is not the first option in the list.

kernel - loads the installer kernel. In most cases it should not be changed.

append - contains additional kernel options. The initrd= and inst.stage2 options are mandatory;
you can add others.

⁠3. Customizing the Boot Menu

7

Usable options which are specific to Anaconda are listed in the Red Hat Enterprise Linux 7 Installation
Guide. One of the notable options is inst.ks=, which allows you to specify a location of a Kickstart file.
Therefore, you can place a Kickstart file on the boot ISO image and use this option to use it; for example,
you can place a file named kickstart.ks into the image's root directory and use
inst.ks=hd:LABEL=RHEL-7.1\x20x86_64:/kickstart.ks.

You can also use dracut options which are listed on the dracut.cmdline(7) man page.

Important

When using a disk label to refer to a certain drive (as seen in the
inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64 option above), replace all spaces with \x20.

Other important options which are not part of menu entry definitions include:

timeout - determines how long will the boot menu displayed before the default menu entry is
automatically used. The default value it 600, which means the menu will be displayed for 60 seconds.
Setting this value to 0 disables the timeout completely.

Note

Setting the timeout to a low value such as 1 is useful when performing a headless installation as
you will not have to wait for the 60 second default timeout to finish.

menu begin and menu end - determines a start and end of a submenu block, allowing you to add
additional options such as troubleshooting and grouping them in a submenu. A simple submenu with two
options (one to continue and one to go back to the main menu) will look similar to the following:

menu begin ^Troubleshooting
 menu title Troubleshooting

label rescue
 menu label ^Rescue a Red Hat Enterprise Linux system
 kernel vmlinuz
 append initrd=initrd.img inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64 rescue
quiet

menu separator

label returntomain
 menu label Return to ^main menu
 menu exit

menu end

As you can see in the above example, the submenu entry definitions are similar to normal menu entries,
but grouped between menu begin and menu end statements. The menu exit line in the second option
exits the submenu and goes back to the main menu.

Anaconda Customization Guide

8

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html

menu background - the menu background. Can either be a solid color (see menu color below), or an
image in a PNG, JPEG or LSS16 format. When using an image, make sure its dimensions correspond to
the resolution set using the set resolution statement. Default dimensions are 640x480.

menu color - determines the color of a menu element. The full format is:

menu color element ansi foreground background shadow

Most important parts of this command are element (determines which element the color will apply to) and
foreground and background which determine the actual colors. Colors are described using an #AARRGGBB
notation in hexadecimal format; the first pair of digits (AA) determines opacity (00 for fully transparent, ff
for fully opaque).

See the Syslinux Wiki for detailed information about available elements, ANSI values, shadow settings
and other visual customization options.

menu help textfile - creates a menu entry which, when selected, displays a help text file.

For a complete list of ISOLINUX configuration file options, see the Syslinux Wiki.

3.2. Systems with UEFI Firmware

The GRUB2 boot loader is used on systems with UEFI firmware.

The GRUB2 configuration file is EFI/BOOT/grub.cfg on the boot media. The configuration file contains a
list of preconfigured menu entries and other directives which control the appearanace and functionality of the
boot menu.

In the configuration file, the default menu entry for Red Hat Enterprise Linux (Test this media &
install Red Hat Enterprise Linux 7.1) is defined in the following block:

menuentry 'Test this media & install Red Hat Enterprise Linux 7.1' --class
fedora --class gnu-linux --class gnu --class os {
 linuxefi /images/pxeboot/vmlinuz inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64
rd.live.check quiet
 initrdefi /images/pxeboot/initrd.img
}

Notable options in the above example are:

menuentry - the option that defines the menu entry. The title of the entry is in single or double quotes ('
or "). The --class option can be used to group menu entries into different classes, which can then be
styled differently using GRUB2 themes.

Note

Each menu entry definition must be enclosed in curly braces ({}) as shown in the above example.

linuxefi - this option defines which kernel will be booted (/images/pxeboot/vmlinuz in the above
example) as well as additional options. Customize these options to change the behavior of the boot entry.

Usable options which are specific to Anaconda are listed in the Red Hat Enterprise Linux 7 Installation
Guide. One of the notable options is inst.ks=, which allows you to specify a location of a Kickstart file.
Therefore, you can place a Kickstart file on the boot ISO image and use this option to use it; for example,

⁠3. Customizing the Boot Menu

9

http://www.syslinux.org/wiki/index.php/Comboot/menu.c32
http://www.syslinux.org/wiki/index.php/Comboot/menu.c32
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html

you can place a file named kickstart.ks into the image's root directory and use
inst.ks=hd:LABEL=RHEL-7.1\x20x86_64:/kickstart.ks.

You can also use dracut options which are listed on the dracut.cmdline(7) man page.

Important

When using a disk label to refer to a certain drive (as seen in the
inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64 option above), replace all spaces with \x20.

initrdefi - location of the initial RAM disk (initrd) image to be loaded.

Other options used in the grub.cfg configuration file are:

set timeout - determines how long will the boot menu displayed before the default menu entry is
automatically used. The default value it 60, which means the menu will be displayed for 60 seconds.
Setting this value to -1 disables the timeout completely.

Note

Setting the timeout to 0 is useful when performing a headless installation, because this setting will
immediately activate the default boot entry.

submenu - definition of a submenu block. This allows you to create a sub-menu and group some entries
under it, instead of displaying them in the main menu. In the default configuration, there is a
Troubleshooting submenu which contains entries for rescuing an existing system.

The title of the entry is in single or double quotes (' or ").

The submenu block contains one or more menuentry definitions as described above, and the entire
block is enclosed in curly braces ({}). For example:

submenu 'Submenu title' {
 menuentry 'Submenu option 1' {
 linuxefi /images/vmlinuz inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64
xdriver=vesa nomodeset quiet
 initrdefi /images/pxeboot/initrd.img
 }
 menuentry 'Submenu option 2' {
 linuxefi /images/vmlinuz inst.stage2=hd:LABEL=RHEL-7.1\x20x86_64
rescue quiet
 initrdefi /images/initrd.img
 }
}

set default - this option determines which entry will be selected by default. Note that entry numbers
start from 0; if you want to make the third entry the default one, use set default=2, etc.

theme - location of a directory which contains a GRUB2 theme files. Themes can be used to customize
visual aspects of the boot loader - background, fonts, and colors of specific elements.

Anaconda Customization Guide

10

Full description of the theme file format is beyond the scope of this document. For information about
creating custom themes, see the GNU GRUB Manual 2.00.

For additional information about customizing the boot menu, see the GNU GRUB Manual 2.00. Also see the
Red Hat Enterprise Linux 7 System Administrator's Guide for more general information about GRUB2.

4. Branding and Chroming the Graphical User Interface

The following sections describe changing the appearance of the graphical user interface (GUI) of the
Anaconda installer.

There are several elements in the graphical user interface of Anaconda which can be changed to customize
the look of the installer. To customize the installer's appearance, you must create a custom product.img
file containing a custom installclass (to change the product name displayed in the installer) and your own
branding material. The product.img file is not an installation image; it is used to supplement the full
installation ISO image by loading your customizations and using them to overwrite files included on the boot
image by default.

See Section 2, “Working with ISO Images” for information about extracting boot images provided by Red Hat,
creating a product.img file and adding this file to the ISO images.

4.1. Customizing Graphical Elements

Graphical elements of the installer which can be changed are stored in the
/usr/share/anaconda/pixmaps/ directory in the installer runtime file system. This directory contains the
following files:

pixmaps
├─ anaconda-selected-icon.svg
├─ dialog-warning-symbolic.svg
├─ right-arrow-icon.png
├─ rnotes
│ └─ en
│ ├─ RHEL_7_InstallerBanner_Andreas_750x120_11649367_1213jw.png
│ ├─ RHEL_7_InstallerBanner_Blog_750x120_11649367_1213jw.png
│ ├─
RHEL_7_InstallerBanner_CPAccess_CommandLine_750x120_11649367_1213jw.png
│ ├─ RHEL_7_InstallerBanner_CPAccess_Desktop_750x120_11649367_1213jw.png
│ ├─ RHEL_7_InstallerBanner_CPAccess_Help_750x120_11649367_1213jw.png
│ ├─ RHEL_7_InstallerBanner_Middleware_750x120_11649367_1213jw.png
│ ├─ RHEL_7_InstallerBanner_OPSEN_750x120_11649367_1213cd.png
│ ├─ RHEL_7_InstallerBanner_RHDev_Program_750x120_11649367_1213cd.png
│ ├─ RHEL_7_InstallerBanner_RHELStandardize_750x120_11649367_1213jw.png
│ └─ RHEL_7_InstallerBanner_Satellite_750x120_11649367_1213cd.png
├─ sidebar-bg.png
├─ sidebar-logo.png
└─ topbar-bg.png

Additionally, the /usr/share/anaconda/ directory contains a CSS stylesheet named anaconda-
gtk.css, which determines the file names and parameters of the main UI elements - the logo and the
backgrounds for the side bar and top bar. The file has the following contents:

/* vendor-specific colors/images */

⁠4. Branding and Chroming the Graphical User Interface

11

https://www.gnu.org/software/grub/manual/grub.html#Theme-file-format
https://www.gnu.org/software/grub/manual/grub.html#Theme-file-format
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Working_with_the_GRUB_2_Boot_Loader.html

@define-color redhat #021519;

/* logo and sidebar classes for RHEL */

.logo-sidebar {
 background-image: url('/usr/share/anaconda/pixmaps/sidebar-bg.png');
 background-color: @redhat;
 background-repeat: no-repeat;
}

.logo {
 background-image: url('/usr/share/anaconda/pixmaps/sidebar-logo.png');
 background-position: 50% 20px;
 background-repeat: no-repeat;
 background-color: transparent;
}

AnacondaSpokeWindow #nav-box {
 background-color: @redhat;
 background-image: url('/usr/share/anaconda/pixmaps/topbar-bg.png');
 background-repeat: no-repeat;
 color: white;
}

AnacondaSpokeWindow #layout-indicator {
 color: black;
}

The most imporant part of the CSS file is the way it handles scaling based on resolution. The PNG image
backgrounds do not scale, they are always displayed in their true dimensions. Instead, the backgrounds have
a transparent background, and the style sheet defines a matching background color on the @define-color
line. Therefore, the background images "fade" into the background color, which means that the backgrounds
work on all resolutions without a need for image scaling.

You could also change the background-repeat parameters to tile the background, or, if you are confident
that every system you will be installing on will have the same display resolution, you can use background
images which fill the entire bar.

The rnotes/ directory contains a set of banners. During the installation, banner graphics cycle along the
bottom of the screen, approximately once per minute.

Any of the files listed above can be customized. Once you do so, follow the instructions in Section 2.2,
“Creating a product.img File” to create your own product.img with custom graphics, and then Section 2.3,
“Creating Custom Boot Images” to create a new bootable ISO image with your changes included.

4.2. Customizing the Product Name

Apart from graphical elements described in the previous section, you can also customize the product name
displayed during the installation. This product name is shown in the top right corner in all screens.

To change the product name, you must create a custom installation class. Create a new file named
custom.py with content similar to the example below:

Example 1. Creating a Custom Installclass

Anaconda Customization Guide

12

from pyanaconda.installclass import BaseInstallClass
from pyanaconda.product import productName
from pyanaconda import network
from pyanaconda import nm

class CustomBaseInstallClass(BaseInstallClass):
 name = "My Distribution"
 sortPriority = 30000
 if not productName.startswith("My Distribution"):
 hidden = True
 defaultFS = "xfs"
 bootloaderTimeoutDefault = 5
 bootloaderExtraArgs = []

 ignoredPackages = ["ntfsprogs"]

 installUpdates = False

 _l10n_domain = "comps"

 efi_dir = "redhat"

 help_placeholder = "RHEL7Placeholder.html"
 help_placeholder_with_links = "RHEL7PlaceholderWithLinks.html"

 def configure(self, anaconda):
 BaseInstallClass.configure(self, anaconda)
 BaseInstallClass.setDefaultPartitioning(self, anaconda.storage)

 def setNetworkOnbootDefault(self, ksdata):
 if ksdata.method.method not in ("url", "nfs"):
 return
 if network.has_some_wired_autoconnect_device():
 return
 dev = network.default_route_device()
 if not dev:
 return
 if nm.nm_device_type_is_wifi(dev):
 return
 network.update_onboot_value(dev, "yes", ksdata)

 def __init__(self):
 BaseInstallClass.__init__(self)

The file above determines the installer defaults (such as the default file system, etc.), but the part relevant to
this procedure is the following block:

class CustomBaseInstallClass(BaseInstallClass):
 name = "My Distribution"
 sortPriority = 30000
 if not productName.startswith("My Distribution"):
 hidden = True

⁠4. Branding and Chroming the Graphical User Interface

13

Change My Distribution to the name which you want to display in the installer. Also make sure that the
sortPriority attribute is set to more than 20000; this makes sure that the new installation class will be
loaded first.

Warning

Do not change any other attributes or class names in the file - otherwise you may cause the installer
to behave unpredictably.

After you create the custom installclass, follow the steps in Section 2.2, “Creating a product.img File” to create
a new product.img file containing your customizations, and the Section 2.3, “Creating Custom Boot
Images” to create a new bootable ISO file with your changes included.

5. Developing Installer Add-ons

5.1. Introduction to Anaconda and Add-ons

5.1.1. Introduction to Anaconda

Anaconda is the operating system installer used in Fedora, Red Hat Enterprise Linux, and their derivatives. It
is a set of Python modules and scripts together with some additional files like Gtk widgets (written in C),
systemd units, and dracut libraries. Together, they form a tool that allows users to set parameters of the
resulting (target) system and then set such a system up on a machine. The installation process has four
major steps:

installation destination preparation (usually disk partitioning)

package and data installation

boot loader installation and configuration

configuration of the newly installed system

There are three ways you can control the installer and specify installation options. The most common
approach is to use the graphical user interface (GUI). This interface is meant to allow users to install the
system interactively with little or no configuration required before beginning the installation, and it should
cover all common use cases, including setting up complicated partitioning layouts.

The graphical interface also supports remote access over VNC, which allows you to use the GUI even on
systems with no graphics cards or even attached monitor. However, there are still cases where this is not
desired, but at the same time, you may want to perform an interactive installation. For these cases, a text
mode (TUI) is available. The TUI works in a way similar to a monochrome line printer, which allows it to work
even on serial consoles which do not support cursor movement, colors and other advanced features. The text
mode is limited in that it only allows you to customize most common options, such as network settings,
language options or installation (package) source; advanced features such as manual partitioning are not
available in this interface.

The third way to install a system using Anaconda is by using a Kickstart file - a plain text file with shell-like
syntax which can contain data to drive the installation process. A Kickstart file allows you to partially or
completely automate the installation. A certain set of commands which configures all required areas is
necessary to completely automate the installation; if one or more of the required commands is missing, the
installation will require interaction. If all required commands are present, the installation will be performed in a
completely automatic way, without any need for interaction.

Anaconda Customization Guide

14

Kickstart provides the highest amount of options, covering use cases where neither the TUI nor the GUI is
sufficient. Every feature in Anaconda must always be supported in Kickstart; other interfaces follow only
subsets of all available options, which allows them to remain clear.

5.1.2. Firstboot and Initial Setup

The first boot of the newly installed system is traditionally considered a part of the installation process as well,
because some parts of configuration such as user creation are often performed at this point. Previously, the
Firstboot tool has been used for this purpose, allowing you to register your newly installer Red Hat
Enterprise Linux system or configure Kdump. However, Firstboot relies on no longer maintained tools such

as Gtk2 and the pygtk2 module. ⁠ For this reason, a new tool called Initial Setup was developed, which
reuses code from Anaconda. This allows add-ons developed for Anaconda to be easily reused in Initial
Setup. This topic is further discussed in Section 5.6, “Writing an Anaconda add-on”.

5.1.3. Anaconda and Initial Setup Add-ons

Installing a new operating system is a vastly complicated use case - each user may want to do something
slightly different. Designing an installer for every corner case would cause it to be cluttered with rarely-used
functionality. For this reason, when the installer was being rewritten into its current form, it gained support for
add-ons.

Anaconda add-ons can be used to add your own Kickstart commands and options as well as new
configuration screens in the graphical and text-based user interface, depending on your specific use case.
Each add-on must have Kickstart support; the GUI and TUI are optional, but can be very helpful.

In current releases of Red Hat Enterprise Linux (7.1 and later) and Fedora ⁠ (21 and later), one add-on is
included by default: The Kdump add-on, which adds support for configuring kernel crash dumping during the
installation. This add-on has full support in Kickstart (using the %addon com_redhat_kdump command and
its options) and is fully integrated as an additional screen in the text-based and graphical interfaces. You can
develop other add-ons in the same way and add them to the default installer using procedures described
further in this guide.

5.1.4. Additional Information

Following links contain additional information about Anaconda and Initial Setup:

The Anaconda page on Fedora Project Wiki contains provides more information about the installer.

Information about development of Anaconda into its current version is available at the
Anaconda/NewInstaller Wiki page.

The Kickstart Installations chapter of the Red Hat Enterprise Linux 7 Installation Guide provides full
documentation of Kickstart, including a list of all supported commands and options.

The Installing Using Anaconda chapter of the Red Hat Enterprise Linux 7 Installation Guide describes the
installation process in the graphical and text user interfaces.

For information about tools used for after-installation configuration, see Initial Setup and Firstboot.

5.2. Architecture of Anaconda

Anaconda is a set of Python modules and scripts. It also uses several external packages and libraries, some
of which were created specifically for the installer. Major components of this toolset include the following
packages:

[1]

[2]

⁠5. Developing Installer Add-ons

15

http://fedoraproject.org/wiki/Anaconda
https://fedoraproject.org/wiki/Anaconda/NewInstaller
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-kickstart-installations.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-installing-using-anaconda-x86.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-initial-setup.html

pykickstart - used to parse and validate Kickstart files and also to provide a data structure which
stores values which drive the installation

yum - the package manager which handles installation of packages and resolving dependencies

blivet - originally split from the anaconda package as pyanaconda.storage; used to handle all activities
related to storage management

pyanaconda - package containing the core of the user interface and modules for functionality unique to
Anaconda, such as keyboard and timezone selection, network configuration, and user creation, as well
as a number of utilities and system-oriented functions

python-meh - contains an exception handler which gathers and stores additional system information in
case of a crash and passes this information to the libreport library, which itself is a part of the ABRT
Project.

The life cycle of data during the installation process is straightforward. If a Kickstart file is provided, it is
processed by the pykickstart module and imported into memory as a tree-like structure. If no Kickstart file
is provided, an empty tree-like structure is created instead. If the installation is interactive (not all required
Kickstart commands have been used), the structure is then updated with choices made by the user in the
interactive interface.

Once all required choices are made, the installation process begins and values stored in the structure are
used to determine parameters of the installation. The values are also written as a Kickstart file which is saved
in the /root/ directory on the installed system; therefore the installation can be replicated automatically by
reusing this automatically generated Kickstart file.

Elements of the tree-like structure are defined by the pykickstart package, but some of them can be overriden
by modified versions from the pyanaconda.kickstart module. An important rule which governs this
behavior is that there is no place to store configuration data, and the installation process is data-driven and
relies on transactions as much as possible. This enforces the following features:

every feature of the installer must be supported in Kickstart

there is a single, obvious point in the installation process where changes are written to the target system;
before this point, no lasting changes (e.g. formatting storage) are made

every change made manually in the user interface is reflected in the resulting Kickstart file and can be
replicated

The fact that the installation is data-driven means that installation and configuration logic lies within the
methods of the items in the tree-like structure. Every item is set up (the setup method) to modify the runtime
environment of the installation if necessary, and then executed (the execute method) to perform the
changes on the target system. These methods are further described in Section 5.6, “Writing an Anaconda
add-on”.

5.3. The Hub & Spoke model

One of the notable differences between Anaconda and most other operating system installers is its non-
linear nature, also known as the hub and spoke model.

The hub and spoke model of Anaconda has several advantages, including:

users are not forced to go through the screens in some strictly defined order

users are not forced to visit every screen no matter if they understand what the options configured in it
mean or not

Anaconda Customization Guide

16

https://fedorahosted.org/abrt/

it is good for the transactional mode where all desired values can be set while nothing is actually
happening to the underlying machine until a special button is clicked

it provides way to show an overview of the configured values

it has a great support for extensibility, because additional spokes can be put on hubs without need to
reorder anything and resolve some complex ordering dependencies

it can be used for both graphical and text mode of the installer

The diagram below shows the installer layout as well as possible interactions between hubs and spokes
(screens):

SCREEN
1

HUB
1

HUB
2

SCREEN
14

Figure 2. Diagram of the hub and spoke model

In the diagram, screens 2-13 are called normal spokes, and screens 1 and 14 are standalone spokes.
Standalone spokes are a type of screen which is a type of screen that should be used only in case it has to
be visited before (or after) the following (or previous) standalone spoke or hub. This may be, for example, the
Welcome screen at the beginning of the installation which prompts you to choose your language for the rest
of the installation.

Note

Screens mentioned in the rest of this section are screens from the installer's graphical interface (GUI).

Central points of the hub and spoke model are hubs. There are two hubs by default:

The Installation Summary hub which shows a summary of configured options before the installation
begins

The Configuration and Progress hub which appears after you click Begin Installation in
Installation Summary, and which displays the progress of the installation process and allows you to
configure additional options (set the root password and create a user account).

Each spoke has several predefined properties which are reflected on the hub. These are:

⁠5. Developing Installer Add-ons

17

ready - states whether the spoke can be visited or not; for example, when the installer is configuring a
package source, that spoke is not ready, is colored gray, and cannot be accessed until configuration is
complete

completed - marks the spoke as completed (all required values are set) or not

mandatory - determines whether the spoke must be visited and confirmed by the user before continuing
the installation; for example, the Installation Destination spoke must always be visited, even if
you want to use automatic disk partitioning

status - provides a short summary of values configured within the spoke (displayed under the spoke name
in the hub)

To make the user interface clearer, spokes are grouped together into categories. For example, the
Localization category groups together spokes for keyboard layout selection, language support and time
zone settings.

Each spoke contains UI controls which display and allow you to modify values from one or more sub-trees of
the in-memory tree-like structure which was discussed in Section 5.2, “Architecture of Anaconda”. As
Section 5.6, “Writing an Anaconda add-on” explains, the same applies to spokes provided by add-ons.

5.4. Threads and Communication

Some of the actions which need to be performed during the installation process, such as scanning disks for
existing partitions or downloading package metadata, can take a long time. To prevent you from waiting and
remain responsive if possible, Anaconda runs these actions in separate threads.

The Gtk toolkit does not support element changes from multiple threads. The main event loop of Gtk runs in
the main thread of the Anaconda process itself, and all code performing actions which involve the GUI must
make sure that these actions are run in the main thread as well. The only supported way to do so is by using
the GLib.idle_add, which is not always easy or desired. To alleviate this problem, several helper functions
and decorators are defined in the pyanaconda.ui.gui.utils module.

The most useful of those are the @gtk_action_wait and @gtk_action_nowait decorators. They
change the decorated function or method in such a way that when this function or method is called, it is
automatically queued into Gtk's main loop, run in the main thread, and the return value is either returned to
the caller or dropped, respectively.

As mentioned previously, one of the main reasons for using multiple threads is to allow the user to configure
some screens while other screens which are currently busy (such as Installation Source when it
downloads package metadata) configure themselves. Once the configuration is finished, the spoke which
was previously busy needs to announce that it is now ready and not blocked; this is handled by a message
queue called hubQ, which is being periodically checked in the main event loop. When a spoke becomes
accessible, it sends a message to this queue announcing this change and that it should no longer be blocked.

The same applies in a situation where a spoke needs to refresh its status or completion flag. The
Configuration and Progress hub has a different queue called progressQ which serves as a medium
to transfer installation progress updates.

These mechanisms are also needed for the text-based interface, where the situation is more complicated;
there is no main loop in text mode, instead the majority of time in this mode is spent waiting for keyboard
input.

5.5. Anaconda Add-on Structure

An Anaconda add-on is a Python package containing a directory with an __init__.py and other source
directories (subpackages) inside. Because Python allows importing each package name only once, the

Anaconda Customization Guide

18

package top-level directory name must be unique. At the same time, the name can be arbitrary, because
add-ons are loaded regardless of their name - the only requirement is that they must be placed in a specific
directory.

The suggested naming convention for add-ons is therefore similar to Java packages or D-Bus service
names: prefix the add-on name with the reversed domain name of your organization, using underscores (_)
instead of dots so that the directory name is a valid identifier for a Python package. An example add-on name
following these suggestions would therefore be e.g. com_example_hello_world. This convention follows
the recommended naming scheme for Python package and module names.

Important

Make sure to create an __init__.py file in each directory. Directories missing this file are not
considered valid Python packages.

When writing an add-on, keep in mind that every function supported in the installer must be supported in
Kickstart; GUI and TUI support is optional. Support for each interface (Kickstart, graphical interface and text
interface) must be in a separate subpackage and these subpackages must be named ks for Kickstart, gui
for the graphical interface and tui for the text-based interface. The gui and tui packages must also contain

a spokes subpackage. ⁠

Names of modules inside these packages are arbitrary; the ks/, gui/ and tui/ directories can contain
Python modules with any name.

A sample directory structure for an add-on which supports every interface (Kickstart, GUI and TUI) will look
similar to the following:

Example 2. Sample Add-on Structure

com_example_hello_world
├─ ks
│ └─ __init__.py
├─ gui
│ ├─ __init__.py
│ └─ spokes
│ └─ __init__.py
└─ tui
 ├─ __init__.py
 └─ spokes
 └─ __init__.py

Each package must contain at least one module with an arbitrary name defining classes inherited from one or
more classes defined in the API. This is further discussed in Section 5.6, “Writing an Anaconda add-on”.

All add-ons should follow Python's PEP 8 and PEP 257 guidelines for docstring conventions. There is no
consensus on the format of the actual content of docstrings in Anaconda; the only requirement is that they
are human-readable. If you plan to use automatically generated documentation for your add-on, docstrings
should follow the guidelines for the toolkit you use to accomplish this.

5.6. Writing an Anaconda add-on

[3]

⁠5. Developing Installer Add-ons

19

https://www.python.org/dev/peps/pep-0008/#package-and-module-names
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/

The sections below will demonstrate the process writing and testing a sample add-on called Hello World. This
sample add-on will support all interfaces (Kickstart, GUI and TUI). Sources for this sample add-on are
available on GitHub in the rhinstaller/hello-world-anaconda-addon repository; it is recommended to clone this
repository or at least open the sources in the web interface.

Another repository to review is rhinstaller/anaconda, which contains the installer source code; it will be
referred to in several parts of this section as well.

Before you begin developing the add-on itself, start by creating its directory structure as described in
Section 5.5, “Anaconda Add-on Structure”. Then, continue with Section 5.6.1, “Kickstart Support”, as
Kickstart support is mandatory for all add-ons. After that, you can optionally continue with Section 5.6.2,
“Graphical user interface” and Section 5.6.3, “Text User Interface” if needed.

5.6.1. Kickstart Support

Kickstart support is always the first part of any add-on that should be developed. Other packages - support
for the graphical and text-based interface - will depend on it. To begin, navigate to the
com_example_hello_world/ks/ directory you have created previously, make sure it contains an
__init__.py file, and add another Python script named hello_world.py.

Unlike built-in Kickstart commands, add-ons are used in their own sections. Each use of an add-on in a
Kickstart file begins with an %addon statement and is closed by %end. The %addon line also contains the
name of the add-on (such as %addon com_example_hello_world) and optionally a list of arguments, if
the add-on supports them.

An example use of an add-on in a Kickstart file looks like the example below:

Example 3. Using an Add-on in a Kickstart File

%addon ADDON_NAME [arguments]
first line
second line
...
%end

The key class for Kickstart support in add-ons is called AddonData. This class is defined in
pyanaconda.addons and represents an object for parsing and storing data from a Kickstart file.

Arguments are passed as a list to an instance of the add-on class inherited from the AddonData class.
Anything between the first and last line is passed to the add-on's class one line at a time. To keep the
example Hello World add-on simple, it will merge all lines in this block into a single line and separate the
original lines with a space.

The example add-on requires a class inherited from AddonData with a method for handling the list of
arguments from the %addon line, and a method for handling lines inside the section. The
pyanaconda/addons.py module contains two methods which can be used for this:

handle_header - takes a list of arguments from the %addon line (and line numbers for error reporting)

handle_line - takes a single line of content from between the %addon and %end statements

The example below demonstrates a Hello World add-on which uses the methods described above:

Example 4. Using handle_header and handle_line

Anaconda Customization Guide

20

https://github.com/rhinstaller/hello-world-anaconda-addon
https://github.com/rhinstaller/anaconda
https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/addons.py

from pyanaconda.addons import AddonData
from pykickstart.options import KSOptionParser

export HelloWorldData class to prevent Anaconda's collect method from
taking
AddonData class instead of the HelloWorldData class
:see: pyanaconda.kickstart.AnacondaKSHandler.__init__
__all__ = ["HelloWorldData"]

HELLO_FILE_PATH = "/root/hello_world_addon_output.txt"

class HelloWorldData(AddonData):
 """
 Class parsing and storing data for the Hello world addon.

 :see: pyanaconda.addons.AddonData

 """

def __init__(self, name):
 """
 :param name: name of the addon
 :type name: str

 """

 AddonData.__init__(self, name)
 self.text = ""
 self.reverse = False

def handle_header(self, lineno, args):
 """
 The handle_header method is called to parse additional arguments in
the
 %addon section line.

 :param lineno: the current linenumber in the kickstart file
 :type lineno: int
 :param args: any additional arguments after %addon <name>
 :type args: list

 """

 op = KSOptionParser()
 op.add_option("--reverse", action="store_true", default=False,
 dest="reverse", help="Reverse the display of the addon text")
 (opts, extra) = op.parse_args(args=args, lineno=lineno)

 # Reject any additoinal arguments. Since AddonData.handle_header
 # rejects any arguments, we can use it to create an error message
 # and raise an exception.
 if extra:
 AddonData.handle_header(self, lineno, extra)

 # Store the result of the option parsing
 self.reverse = opts.reverse

⁠5. Developing Installer Add-ons

21

def handle_line(self, line):
 """
 The handle_line method that is called with every line from this
addon's
 %addon section of the kickstart file.

 :param line: a single line from the %addon section
 :type line: str

 """

 # simple example, we just append lines to the text attribute
 if self.text is "":
 self.text = line.strip()
 else:
 self.text += " " + line.strip()

The example begins by importing necessary methods and defining an __all__ variable which is necessary
to prevent Anaconda's collect method from taking the AddonData class instead of add-on specific
HelloWorldData.

Then, the example shows a definition of the HelloWorldData class inherited from AddonData with its
__init__ method calling the parent's __init__ and initializing the attributes self.text and
self.reverse to False.

The self.reverse attribute is populated in the handle_header method, and the self.text is populated
in handle_line. The handle_header method uses an instance of the KSOptionParser provided by
pykickstart to parse additional options used on the %addon line, and handle_line strips the content
lines of white space at the beginning and end of each line, and appends them to self.text.

The code above covers the first phase of the data life cycle in the installation process: it reads data from the
Kickstart file. The next step is to use this data to drive the installation process. Two predefined methods are
available for this purpose:

setup - called before the installation transaction starts and used to make changes to the installation
runtime environment

execute - called at the end of the transaction and used to make changes to the target system

To use these two methods, you must add some new imports and a constant to your module, as shown in the
following example:

Example 5. Importing the setup and execute Methods

import os.path

from pyanaconda.addons import AddonData
from pyanaconda.constants import ROOT_PATH

HELLO_FILE_PATH = "/root/hello_world_addon_output.txt"

An updated example of the Hello World add-ons with the setup and execute methods included is below:

Anaconda Customization Guide

22

Example 6. Using the setup and execute Methods

def setup(self, storage, ksdata, instclass):
 """
 The setup method that should make changes to the runtime environment
 according to the data stored in this object.

 :param storage: object storing storage-related information
 (disks, partitioning, bootloader, etc.)
 :type storage: blivet.Blivet instance
 :param ksdata: data parsed from the kickstart file and set in the
 installation process
 :type ksdata: pykickstart.base.BaseHandler instance
 :param instclass: distribution-specific information
 :type instclass: pyanaconda.installclass.BaseInstallClass

 """

 # no actions needed in this addon
 pass

def execute(self, storage, ksdata, instclass, users):
 """
 The execute method that should make changes to the installed system.
It
 is called only once in the post-install setup phase.

 :see: setup
 :param users: information about created users
 :type users: pyanaconda.users.Users instance

 """

 hello_file_path = os.path.normpath(ROOT_PATH + HELLO_FILE_PATH)
 with open(hello_file_path, "w") as fobj:
 fobj.write("%s\n" % self.text)

In the above example, the setup method does nothing; the Hello World add-on does not make any changes
to the installation runtime environment. The execute method writes stored text into a file created in the
target system's root (/) directory.

The most important information in the above example is the amount and meaning of the arguments passed to
the two new methods; these are described in docstrings within the example.

The final phase of the data life cycle, as well as the last part of the code needed in a module providing
Kickstart support, is generating a new Kickstart file, which includes values set at installation time, at the end
of the installation process as described in Section 5.2, “Architecture of Anaconda”. This is performed by
calling the __str__ method recursively on the tree-like structure storing installation data, which means that
the class inherited from AddonData must define its own __str__ method which returns its stored data in
valid Kickstart syntax. This returned data must be possible to parse again using pykickstart.

In the Hello World example, the __str__ method will be similar to the following example:

⁠5. Developing Installer Add-ons

23

Example 7. Defining a __str__ Method

def __str__(self):
 """
 What should end up in the resulting kickstart file, i.e. the %addon
 section containing string representation of the stored data.

 """

 addon_str = "%%addon %s" % self.name

 if self.reverse:
 addon_str += "--reverse"

 addon_str += "\n%s\n%%end" % self.text
 return addon_str

Once your Kickstart support module contains all necessary methods (handle_header, handle_line,
setup, execute and __str__), it becomes a valid Anaconda add-on. You can continue with the following
sections to add support for the graphical and text-based user interfaces, or you can continue with
Section 5.7, “Deploying and testing an Anaconda add-on” and test the add-on.

5.6.2. Graphical user interface

This section will describe adding support for the graphical user interface (GUI) to your add-on. Before you
begin, make sure that your add-on already includes support for Kickstart as described in the previous section.

Note

Before you start developing add-ons with support for the graphical interface, make sure to install the
anaconda-widgets and anaconda-widgets-devel packages, which contain Gtk widgets specific for
Anaconda such as SpokeWindow.

5.6.2.1. Basic features

Similarly to Kickstart support in add-ons, GUI support requires every part of the add-on to contain at least one
module with a definition of a class inherited from a particular class defined by the API. In case of graphical
support, the only recommended class is NormalSpoke, which is defined in pyanaconda.ui.gui.spokes.
As the class name suggests, it is a class for the normal spoke type of screen as described in Section 5.3,
“The Hub & Spoke model”.

To implement a new class inherited from NormalSpoke, you must define the following class attributes which
are required by the API:

builderObjects - lists all top-level objects from the spoke's .glade file that should be, with their
children objects (recursively), exposed to the spoke - or should be an empty list if everything should be
exposed to the spoke (not recommended)

mainWidgetName - contains the id of the main window widget ⁠ as defined in the .glade file

uiFile - contains the name of the .glade file

[4]

Anaconda Customization Guide

24

https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/ui/gui/spokes/__init__.py

category - contains the class of the category the spoke belongs to

icon - contains the identifier of the icon that will be used for the spoke on the hub

title defines the title that will be used for the spoke on the hub

Example module with all required definitions is shown in the following example:

Example 8. Defining Attributes Required for the Normalspoke Class

will never be translated
_ = lambda x: x
N_ = lambda x: x

the path to addons is in sys.path so we can import things from
org_fedora_hello_world
from org_fedora_hello_world.gui.categories.hello_world import
HelloWorldCategory
from pyanaconda.ui.gui.spokes import NormalSpoke

export only the spoke, no helper functions, classes or constants
__all__ = ["HelloWorldSpoke"]

class HelloWorldSpoke(NormalSpoke):
 """
 Class for the Hello world spoke. This spoke will be in the Hello world
 category and thus on the Summary hub. It is a very simple example of
 a unit for the Anaconda's graphical user interface.

 :see: pyanaconda.ui.common.UIObject
 :see: pyanaconda.ui.common.Spoke
 :see: pyanaconda.ui.gui.GUIObject

 """

 ### class attributes defined by API ###

 # list all top-level objects from the .glade file that should be
exposed
 # to the spoke or leave empty to extract everything
 builderObjects = ["helloWorldSpokeWindow", "buttonImage"]

 # the name of the main window widget
 mainWidgetName = "helloWorldSpokeWindow"

 # name of the .glade file in the same directory as this source
 uiFile = "hello_world.glade"

 # category this spoke belongs to
 category = HelloWorldCategory

 # spoke icon (will be displayed on the hub)
 # preferred are the -symbolic icons as these are used in Anaconda's
spokes
 icon = "face-cool-symbolic"

⁠5. Developing Installer Add-ons

25

 # title of the spoke (will be displayed on the hub)
 title = N_("_HELLO WORLD")

The __all__ attribute is used to export the spoke class, followed by the first lines of its definition including
definitions of attributes mentioned above. The values of these attributes are referencing widgets defined in
com_example_hello_world/gui/spokes/hello.glade file.

Two other notable attributes are present. The first is category, which has its value imported from the
HelloWorldCategory class from the com_example_hello_world.gui.categories module. The
HelloWorldCategory class will be discussed later, but for now, note that the path to add-ons is in sys.path
so that things can be imported from the com_example_hello_world package.

The second notable attribute in the example is title, which contains two underscores in its definition. The
first one is part of the N_ function name which marks the string for translation, but returns the non-translated
version of the string (translation is done later). The second underscore marks the beginning of the title itself
and makes the spoke reachable using the Alt+H keyboard shortcut.

What usually follows the header of the class definition and the class attributes definitions is the constructor
that initializes an instance of the class. In case of the Anaconda graphical interface objects there are two
methods initializing a new instance: the __init__ method and the initialize method.

The reason for two such functions is that the GUI objects may be created in memory at one time and fully
initialized (which can take a longer time) at a different time. Therefore, the __init__ method should only
call the parent's __init__ method and (for example) initialize non-GUI attributes. On the other hand, the
initialize method that is called when the installer's graphical user interface initializes should finish the full
initialization of the spoke.

In the sample Hello World add-on, these two methods are defined as follows (note the number and
description of the arguments passed to the __init__ method):

Example 9. Defining the __init__ and initialize Methods

def __init__(self, data, storage, payload, instclass):
 """
 :see: pyanaconda.ui.common.Spoke.__init__
 :param data: data object passed to every spoke to load/store data
 from/to it
 :type data: pykickstart.base.BaseHandler
 :param storage: object storing storage-related information
 (disks, partitioning, bootloader, etc.)
 :type storage: blivet.Blivet
 :param payload: object storing packaging-related information
 :type payload: pyanaconda.packaging.Payload
 :param instclass: distribution-specific information
 :type instclass: pyanaconda.installclass.BaseInstallClass

 """

 NormalSpoke.__init__(self, data, storage, payload, instclass)

def initialize(self):
 """
 The initialize method that is called after the instance is created.
 The difference between __init__ and this method is that this may take

Anaconda Customization Guide

26

https://github.com/rhinstaller/hello-world-anaconda-addon/blob/master/org_fedora_hello_world/gui/spokes/hello_world.glade
https://github.com/rhinstaller/hello-world-anaconda-addon/blob/master/org_fedora_hello_world/categories/hello_world.py

 a long time and thus could be called in a separated thread.

 :see: pyanaconda.ui.common.UIObject.initialize

 """

 NormalSpoke.initialize(self)
 self._entry = self.builder.get_object("textEntry")

Note the data parameter passed to the __init__ method. This is the in-memory tree-like representation of
the Kickstart file where all data is stored. In one of the ancestors' __init__ methods it is stored in the
self.data attribute, which allows all other methods in the class to read and modify the structure.

Because the HelloWorldData class has already been defined in Section 5.6.1, “Kickstart Support”, there
already is a subtree in self.data for this add-on, and its root (an instance of the class) is available as
self.data.addons.com_example_hello_world.

One of the other things an ancestor's __init__ does is initializing an instance of the GtkBuilder with the
spoke's .glade file and storing it as self.builder. This is used in the initialize method to get the
GtkTextEntry used to show and modify the text from the kickstart file's %addon section.

The __init__ and initialize methods are both important when the spoke is created. However, the main
role of the spoke is to be visited by an user who wants to change or review the values this spoke shows and
sets. To enable this, three other methods are available:

refresh - called when the spoke is about to be visited; This method refreshes the state of the spoke
(mainly its UI elements) to make sure that current values stored in the self.data structure are displayed

apply - called when the spoke is left and used to store values from UI elements back into the
self.data structure

execute - called when the spoke is left and used to perform any runtime changes based on the new
state of the spoke

These functions are implemented in the sample Hello World add-on in the following way:

Example 10. Defining the refresh, apply and execute Methods

def refresh(self):
 """
 The refresh method that is called every time the spoke is displayed.
 It should update the UI elements according to the contents of
 self.data.

 :see: pyanaconda.ui.common.UIObject.refresh

 """

 self._entry.set_text(self.data.addons.org_fedora_hello_world.text)

def apply(self):
 """
 The apply method that is called when the spoke is left. It should
 update the contents of self.data with values set in the GUI elements.

⁠5. Developing Installer Add-ons

27

 """

 self.data.addons.org_fedora_hello_world.text = self._entry.get_text()

def execute(self):
 """
 The excecute method that is called when the spoke is left. It is
 supposed to do all changes to the runtime environment according to
 the values set in the GUI elements.

 """

 # nothing to do here
 pass

You can use several additional methods to control the spoke's state:

ready - determines whether the spoke is ready to be visited; if the value is false, the spoke is not
accessible (e.g. the Package Selection spoke before a package source is configured)

completed - determines if the spoke has been completed

mandatory - determines if the spoke is mandatory or not (e.g. the Installation Destination
spoke, which must be always visited, even if you want to use automatic partitioning)

All of these attributes need to be dynamically determined based on the current state of the installation
process. Below is a sample implementation of these methods in the Hello World add-on, which requires
some value to be set in the text attribute of the HelloWorldData class:

Example 11. Defining the ready, completed and mandatory Methods

@property
def ready(self):
 """
 The ready property that tells whether the spoke is ready (can be
visited)
 or not. The spoke is made (in)sensitive based on the returned value.

 :rtype: bool

 """

 # this spoke is always ready
 return True

@property
def completed(self):
 """
 The completed property that tells whether all mandatory items on the
 spoke are set, or not. The spoke will be marked on the hub as
completed
 or uncompleted acording to the returned value.

 :rtype: bool

Anaconda Customization Guide

28

 """

 return bool(self.data.addons.org_fedora_hello_world.text)

@property
def mandatory(self):
 """
 The mandatory property that tells whether the spoke is mandatory to be
 completed to continue in the installation process.

 :rtype: bool

 """

 # this is an optional spoke that is not mandatory to be completed
 return False

After defining these properties, the spoke can control its accessibility and completeness, but it cannot provide
a summary of the values configured within - you must visit the spoke to see how it is configured, which may
not be desired. For this reason, an additional property called status exists; this property contains a single
line of text with a short summary of configured values, which can then be displayed in the hub under the
spoke title.

The status property is defined in the Hello World example add-on as follows:

Example 12. Defining the status Property

@property
def status(self):
 """
 The status property that is a brief string describing the state of the
 spoke. It should describe whether all values are set and if possible
 also the values themselves. The returned value will appear on the hub
 below the spoke's title.

 :rtype: str

 """

 text = self.data.addons.org_fedora_hello_world.text

 # If --reverse was specified in the kickstart, reverse the text
 if self.data.addons.org_fedora_hello_world.reverse:
 text = text[::-1]

 if text:
 return _("Text set: %s") % text
 else:
 return _("Text not set")

⁠5. Developing Installer Add-ons

29

After defining all properties described in this chapter, the add-on has full support for the graphical user
interface as well as Kickstart. Note that the example demonstrated here is very simple and does not contain
any controls; knowledge of Python Gtk programming is required to develop a functional, interactive spoke in
the GUI.

One notable restriction is that each spoke must have its own main window - an instance of the
SpokeWindow widget. This widget, along with some other widgets specific to Anaconda, is found in the
anaconda-widgets package. Other files required for development of add-ons with GUI support (such as
Glade definitions) can be found in the anaconda-widgets-devel package.

Once your graphical interface support module contains all necessary methods you can continue with the
following section to add support for the text-based user interface, or you can continue with Section 5.7,
“Deploying and testing an Anaconda add-on” and test the add-on.

5.6.2.2. Advanced features

The pyanaconda package contains several helper and utility functions and constructs which may be used by
hubs and spokes and which have not been covered in the previous section. Most of them are located in
pyanaconda.ui.gui.utils.

The sample Hello World add-on demonstrates usage of the englightbox content manager which is also
used in Anaconda. This manager can put a window into a lightbox to increase its visibility and focus it and to
prevent users interacting with the underlying window. To demonstrate this function, the sample add-on
contains a button which opens a new dialog window; the dialog itself is a special HelloWorldDialog
inheriting from the GUIObject class, which is defined in pyanaconda.ui.gui.__init__.

The dialog class defines the run method which runs and destroys an internal Gtk dialog accessible through
the self.window attribute, which is populated using a mainWidgetName class attribute with the same
meaning. Therefore, the code defining the dialog is very simple, as demonstrated in the following example:

Example 13. Defining a englightbox Dialog

every GUIObject gets ksdata in __init__
dialog = HelloWorldDialog(self.data)

show dialog above the lightbox
with enlightbox(self.window, dialog.window):
 dialog.run()

The code above creates an instance of the dialog and then uses the enlightbox context manager to run the
dialog within a lightbox. The context manager needs a reference to the window of the spoke and to the
dialog's window to instantiate the lightbox for them.

Another useful feature provided by Anaconda is the ability to define a spoke which will appear both during the
installation and after the first reboot (in the Initial Setup utility described in Section 5.1.2, “Firstboot and Initial
Setup”). To make a spoke available in both Anaconda and Initial Setup, you must inherit the special
FirstbootSpokeMixIn (or, more precisely, mixin) as the first inherited class defined in the
pyanaconda.ui.common module.

If you want to make a certain spoke available only in Initial Setup, you should instead inherit the
FirstbootOnlySpokeMixIn class.

There are many more advanced features provided by the pyanaconda package (like the
@gtk_action_wait and @gtk_action_nowait decorators), but they are out of scope of this guide.
Readers are recommended to go through the installer's sources for examples.

Anaconda Customization Guide

30

https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/ui/gui/utils.py
https://github.com/rhinstaller/hello-world-anaconda-addon
https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/ui/gui/__init__.py
https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/ui/common.py
https://github.com/rhinstaller/anaconda

5.6.3. Text User Interface

The third supported interface, after Kickstart and GUI which have been discussed in previous sections,
Anaconda also supports a text-based interface. This interface is more limited in its capabilities, but on some
systems it may be the only choice for an interactive installation. For more information about differences
between the text-based and graphical interface and about limitations of the TUI, see Section 5.1.1,
“Introduction to Anaconda”.

To add support for the text interface into your add-on, create a new set of subpackages under the tui
directory as described in Section 5.5, “Anaconda Add-on Structure”.

Text mode support in the installer is based on the simpleline utility, which only allows very simple user
interaction. It does not support cursor movement (instead acting like a line printer) nor any visual
enhancements like using different colors or fonts.

Internally, there are three main classes in the simpleline toolkit: App, UIScreen and Widget. Widgets,
which are units containing information to be shown (printed) on the screen, are placed on UIScreens which
are switched by a single instance of the App class. On top of the basic elements, there are hubs, spokes and
dialogs, all containing various widgets in a way similar to the graphical interface.

For an add-on, the most important classes are NormalTUISpoke and various other classes defined in the
pyanaconda.ui.tui.spokes package. All of those classes are based on the TUIObject class, which
itself is an equivalent of the GUIObject class discussed in the previous chapter. Each TUI spoke is a Python
class inheriting from the NormalTUISpoke class, overriding special arguments and methods defined by the
API. Because the text interface is simpler than the GUI, there are only two such arguments:

title - determines the title of the spoke, same as the title argument in the GUI

category - determines the category of the spoke as a string; the category name is not displayed
anywhere, it is only used for grouping

Note

Categories are handled differently than in the GUI. ⁠ It is recommended to assign a pre-existing
category to your new spoke. Creating a new category would require patching Anaconda, and
brings little benefit.

Each spoke is also expected to override several methods, namely __init__, initialize, refresh,
refresh, apply, execute, input, and prompt, and properties (ready, completed, mandatory, and
status). All of these have already been described in Section 5.6.2, “Graphical user interface”.

The example below shows the implementation of a simple TUI spoke in the Hello World sample add-on:

Example 14. Defining a Simple TUI Spoke

def __init__(self, app, data, storage, payload, instclass):
 """
 :see: pyanaconda.ui.tui.base.UIScreen
 :see: pyanaconda.ui.tui.base.App
 :param app: reference to application which is a main class for TUI
 screen handling, it is responsible for mainloop control
 and keeping track of the stack where all TUI screens are
 scheduled

[5]

⁠5. Developing Installer Add-ons

31

https://github.com/rhinstaller/anaconda/tree/master/pyanaconda/ui/tui/spokes

 :type app: instance of pyanaconda.ui.tui.base.App
 :param data: data object passed to every spoke to load/store data
 from/to it
 :type data: pykickstart.base.BaseHandler
 :param storage: object storing storage-related information
 (disks, partitioning, bootloader, etc.)
 :type storage: blivet.Blivet
 :param payload: object storing packaging-related information
 :type payload: pyanaconda.packaging.Payload
 :param instclass: distribution-specific information
 :type instclass: pyanaconda.installclass.BaseInstallClass

 """

 NormalTUISpoke.__init__(self, app, data, storage, payload, instclass)
 self._entered_text = ""

def initialize(self):
 """
 The initialize method that is called after the instance is created.
 The difference between __init__ and this method is that this may take
 a long time and thus could be called in a separated thread.

 :see: pyanaconda.ui.common.UIObject.initialize

 """

 NormalTUISpoke.initialize(self)

def refresh(self, args=None):
 """
 The refresh method that is called every time the spoke is displayed.
 It should update the UI elements according to the contents of
 self.data.

 :see: pyanaconda.ui.common.UIObject.refresh
 :see: pyanaconda.ui.tui.base.UIScreen.refresh
 :param args: optional argument that may be used when the screen is
 scheduled (passed to App.switch_screen* methods)
 :type args: anything
 :return: whether this screen requests input or not
 :rtype: bool

 """

 self._entered_text = self.data.addons.org_fedora_hello_world.text
 return True

def apply(self):
 """
 The apply method that is called when the spoke is left. It should
 update the contents of self.data with values set in the spoke.

 """

 self.data.addons.org_fedora_hello_world.text = self._entered_text

Anaconda Customization Guide

32

def execute(self):
 """
 The excecute method that is called when the spoke is left. It is
 supposed to do all changes to the runtime environment according to
 the values set in the spoke.

 """

 # nothing to do here
 pass

def input(self, args, key):
 """
 The input method that is called by the main loop on user's input.

 :param args: optional argument that may be used when the screen is
 scheduled (passed to App.switch_screen* methods)
 :type args: anything
 :param key: user's input
 :type key: unicode
 :return: if the input should not be handled here, return it, otherwise
 return True or False if the input was processed succesfully
or
 not respectively
 :rtype: bool|unicode

 """

 if key:
 self._entered_text = key

 # no other actions scheduled, apply changes
 self.apply()

 # close the current screen (remove it from the stack)
 self.close()
 return True

def prompt(self, args=None):
 """
 The prompt method that is called by the main loop to get the prompt
 for this screen.

 :param args: optional argument that can be passed to
App.switch_screen*
 methods
 :type args: anything
 :return: text that should be used in the prompt for the input
 :rtype: unicode|None

 """

 return _("Enter a new text or leave empty to use the old one: ")

⁠5. Developing Installer Add-ons

33

It is not necessary to override the __init__ method if it only calls the ancestor's __init__, but the
comments in the example describe the arguments passed to constructors of spoke classes in an
understandable way.

The initialize method sets up a default value for the internal attribute of the spoke, which is then updated
by the refresh method and used by the apply method to update Kickstart data. The only differences in
these two methods from their equivalents in the GUI is the return type of the refresh method (bool instead
of None) and an additional args argument they take. The meaning of the returned value is explained in the
comments - it tells the application (the App class instance) whether this spoke requires user input or not. The
additional args argument is used for passing extra information to the spoke when scheduled.

The execute method has the same purpose as the equivalent method in the GUI; in this case, the method
does nothing.

Methods input and prompt are specific to the text interface; there are no equivalents in Kickstart or GUI.
These two methods are responsible for user interaction.

The prompt method should return a prompt which will be displayed after the content of the spoke is printed.
After a string is entered in reaction to the prompt, this string is passed to the input method for processing.
The input method then processes the entered string and takes action depending on its type and value. The
above example asks for any value and then stores it as an internal attribute (key). In more complicated add-
ons, you typically need to perform some non-trivial actions, such as parse c as "continue" or r as "refresh",
convert numbers into integers, show additional screens or toggle boolean values.

Return value of the input class must be either the INPUT_PROCESSED or INPUT_DISCARDED constant
(both of these are defined in the pyanaconda.constants_text module), or the input string itself (in case
this input should be processed by a different screen).

In contrast to the graphical mode, the apply method is not called automatically when leaving the spoke; it
must be called explicitly from the input method. The same applies to closing (hiding) the spoke's screen,
which is done by calling the close method.

To show another screen (for example, if you need additional information which was entered in a different
spoke), you can instantiate another TUIObject and call one of the self.app.switch_screen* methods
of the App.

Due to restrictions of the text-based interface, TUI spokes tend to have a very similar structure: a list of
checkboxes or entries which should be checked or unchecked and populated by the user. The previous
paragraphs show a way to implement a TUI spoke where the its methods handle printing and processing of
the available and provided data. However, there is a different way to accomplish this using the
EditTUISpoke class from the pyanaconda.ui.tui.spokes package. By inheriting this class, you can
implement a typical TUI spoke by only specifying fields and attributes which should be set in it. The example
below demonstrates this:

Example 15. Using EditTUISpoke to Define a Text Interface Spoke

class _EditData(object):
 """Auxiliary class for storing data from the example EditSpoke"""

 def __init__(self):
 """Trivial constructor just defining the fields that will store
data"""

 self.checked = False
 self.shown_input = ""

Anaconda Customization Guide

34

https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/constants_text.py
https://github.com/rhinstaller/anaconda/blob/master/pyanaconda/ui/tui/spokes/__init__.py

 self.hidden_input = ""

class HelloWorldEditSpoke(EditTUISpoke):
 """Example class demonstrating usage of EditTUISpoke inheritance"""

 title = _("Hello World Edit")
 category = "localization"

 # simple RE used to specify we only accept a single word as a valid
input
 _valid_input = re.compile(r'\w+')

 # special class attribute defining spoke's entries as:
 # Entry(TITLE, ATTRIBUTE, CHECKING_RE or TYPE, SHOW_FUNC or SHOW)
 # where:
 # TITLE specifies descriptive title of the entry
 # ATTRIBUTE specifies attribute of self.args that should be set to
the
 # value entered by the user (may contain dots, i.e. may
specify
 # a deep attribute)
 # CHECKING_RE specifies compiled RE used for deciding about
 # accepting/rejecting user's input
 # TYPE may be one of EditTUISpoke.CHECK or EditTUISpoke.PASSWORD
used
 # instead of CHECKING_RE for simple checkboxes or password
entries,
 # respectively
 # SHOW_FUNC is a function taking self and self.args and returning
True or
 # False indicating whether the entry should be shown or
not
 # SHOW is a boolean value that may be used instead of the SHOW_FUNC
 #
 # :see: pyanaconda.ui.tui.spokes.EditTUISpoke
 edit_fields = [
 Entry("Simple checkbox", "checked", EditTUISpoke.CHECK, True),
 Entry("Always shown input", "shown_input", _valid_input, True),
 Entry("Conditioned input", "hidden_input", _valid_input,
 lambda self, args: bool(args.shown_input)),
]

 def __init__(self, app, data, storage, payload, instclass):
 EditTUISpoke.__init__(self, app, data, storage, payload,
instclass)

 # just populate the self.args attribute to have a store for data
 # typically self.data or a subtree of self.data is used as
self.args
 self.args = _EditData()

 @property
 def completed(self):
 # completed if user entered something non-empty to the Conditioned
input
 return bool(self.args.hidden_input)

⁠5. Developing Installer Add-ons

35

 @property
 def status(self):
 return "Hidden input %s" % ("entered" if self.args.hidden_input
 else "not entered")

 def apply(self):
 # nothing needed here, values are set in the self.args tree
 pass

The auxiliary class _EditData serves as a data container which is used to store values entered by the user.
The HelloWorldEditSpoke class defines a simple spoke with one checkbox and two entries, all of which
are instances of the EditTUISpokeEntry class imported as the Entry class). The first one is shown every
time the spoke is displayed, the second instance is only shown if the first one contains a non-empty value.

For more information about the EditTUISpoke class, see the comments in the above example.

5.7. Deploying and testing an Anaconda add-on

To test a new add-on, you must load it into the installation environment. Add-ons are collected from the
/usr/share/anaconda/addons/ directory in the installation runtime environment; to add your own add-
on into that directory, you must create a product.img file with the same directory structure and place it on
your boot media.

For specific instructions on unpacking an existing boot image, creating a product.img file and repackaging
the image, see Section 2, “Working with ISO Images”.

Anaconda Customization Guide

36

A. Revision History

Revision 2-2 Mon Nov 16 2015 Petr Bokoč
Version for Red Hat Enterprise Linux 7.2 GA release

Revision 2-1 Mon Jun 22 2015 Petr Bokoč
Finished editing the Anaconda Add-on Development section
Added a section on customizing Anaconda visuals

Revision 2-0 Fri Jun 19 2015 Petr Bokoč
Changed book title to Anaconda Customization Guide
Added section about unpacking and repacking ISO images
Added section about customizing boot menu
Edited most of the Anaconda Add-on Development section for better readability

Revision 1-0 Wed Jan 15 2014 Vratislav Podzimek
First version to be a part of the official documentation

Revision 0-0 Fri Dec 28 2012 Vratislav Podzimek
Initial creation of book by publican

Index

B
boot menu

- customization for BIOS systems, Systems with BIOS Firmware
- customization for UEFI systems, Systems with UEFI Firmware

G
grub2

- custom configuration, Systems with UEFI Firmware

I
ISO image creation, Creating Custom Boot Images

ISO images
- extracting, Extracting Red Hat Enterprise Linux Boot Images

isolinux
- custom configuration, Systems with BIOS Firmware

M
MD5sum

- implanting into ISO images, Creating Custom Boot Images

P
product.img

- creating, Creating a product.img File

⁠A. Revision History

37

[1] While Firstboot is a legacy tool, it is still supported because of third-party modules written for it.

[2] In Fedora, the add-on is disabled by default. You can enable it using the inst.kdump_addon=on option in the
boot menu.

[3] The gui package may also contain a categories subpackage if the add-on needs to define a new category, but this
is not recommended.

[4] an instance of the SpokeWindow widget which is a custom widget created for the Anaconda installer

[5] which is likely to change in the future to sticking to the better (GUI) way

Anaconda Customization Guide

38

	Table of Contents
	⁠1. Introduction to Anaconda Customization
	⁠2. Working with ISO Images
	⁠2.1. Extracting Red Hat Enterprise Linux Boot Images
	⁠2.2. Creating a product.img File
	⁠2.3. Creating Custom Boot Images

	⁠3. Customizing the Boot Menu
	⁠3.1. Systems with BIOS Firmware
	⁠3.2. Systems with UEFI Firmware

	⁠4. Branding and Chroming the Graphical User Interface
	⁠4.1. Customizing Graphical Elements
	⁠4.2. Customizing the Product Name

	⁠5. Developing Installer Add-ons
	⁠5.1. Introduction to Anaconda and Add-ons
	⁠5.1.1. Introduction to Anaconda
	⁠5.1.2. Firstboot and Initial Setup
	⁠5.1.3. Anaconda and Initial Setup Add-ons
	⁠5.1.4. Additional Information

	⁠5.2. Architecture of Anaconda
	⁠5.3. The Hub & Spoke model
	⁠5.4. Threads and Communication
	⁠5.5. Anaconda Add-on Structure
	⁠5.6. Writing an Anaconda add-on
	⁠5.6.1. Kickstart Support
	⁠5.6.2. Graphical user interface
	⁠5.6.2.1. Basic features
	⁠5.6.2.2. Advanced features

	⁠5.6.3. Text User Interface

	⁠5.7. Deploying and testing an Anaconda add-on

	⁠A. Revision History
	⁠Index

