
Peter Ondrejka Douglas Silas Mart in Prpič
Rüdiger Landmann

Red Hat Enterprise Linux 7
Resource Management Guide

Managing system resources on Red Hat Enterprise Linux 7

Red Hat Enterprise Linux 7 Resource Management Guide

Managing system resources on Red Hat Enterprise Linux 7

Peter Ondrejka
Red Hat Customer Content Services
pondrejk@redhat.com

Douglas Silas
Red Hat Customer Content Services
dhensley@redhat.com

Martin Prpič
Red Hat Product Security
mprpic@redhat.com

Rüdiger Landmann
Red Hat Customer Content Services
r.landmann@redhat.com

Legal Notice

Copyright © 2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
Managing system resources on Red Hat Enterprise Linux 7.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

Table of Contents

Chapt er 1 . Int roduct ion t o Cont rol Groups (Cgroups)
1.1. What are Co ntro l Gro up s
1.2. Default Cg ro up Hierarchies
1.3. Reso urce Co ntro llers in Linux Kernel
1.4. Ad d itio nal Reso urces

Chapt er 2 . Using Cont rol Groups
2.1. Creating Co ntro l Gro up s
2.2. Remo ving Co ntro l Gro up s
2.3. Mo d ifying Co ntro l Gro up s
2.4. Ob taining Info rmatio n Ab o ut Co ntro l Gro up s
2.5. Ad d itio nal Reso urces

Chapt er 3. Using libcgroup T ools
3.1. Mo unting a Hierarchy
3.2. Unmo unting a Hierarchy
3.3. Creating Co ntro l Gro up s
3.4. Remo ving Co ntro l Gro up s
3.5. Setting Cg ro up Parameters
3.6 . Mo ving a Pro cess to a Co ntro l Gro up
3.7. Starting a Pro cess in a Co ntro l Gro up
3.8 . Ob taining Info rmatio n Ab o ut Co ntro l Gro up s
3.9 . Ad d itio nal Reso urces

Chapt er 4 . Cont rol Group Applicat ion Examples
4.1. Prio ritiz ing Datab ase I/O
4.2. Prio ritiz ing Netwo rk Traffic

Appendix A. Revision Hist ory

2
2
2
4
5

7
7
8
9

13
16

1 8
18
20
20
21
22
23
25
25
26

2 8
28
29

32

T able of Cont ent s

1

Chapter 1. Introduction to Control Groups (Cgroups)

1.1. What are Cont rol Groups

The control groups, abbreviated as cgroups in this guide, are a Linux kernel feature that allows you to
allocate resources — such as CPU time, system memory, network bandwidth, or combinations of
these resources — among hierarchically ordered groups of processes running on a system. By using
cgroups, system administrators gain fine-grained control over allocating, prioritizing, denying,
managing, and monitoring system resources. Hardware resources can be smartly divided up among
applications and users, increasing overall efficiency.

Control Groups provide a way to hierarchically group and label processes, and to apply resource
limits to them. Traditionally, all processes received similar amount of system resources that
administrator could modulate with the process niceness value. With this approach, applications that
involved a large number of processes got more resources than applications with few processes,
regardless of the relative importance of these applications.

Red Hat Enterprise Linux 7 moves the resource management settings from the process level to the
application level by binding the system of cgroup hierarchies with the systemd unit tree. Therefore,
you can manage system resources with systemctl commands, or by modifying systemd unit files.
See Chapter 2, Using Control Groups for details.

In previous versions of Red Hat Enterprise Linux, system administrators built custom cgroup
hierarchies with use of the cgconfig command from the libcgroup package. This package is now
deprecated and it is not recommended to use it since it can easily create conflicts with the default
cgroup hierarchy. However, libcgroup is still available to cover for certain specific cases, where
systemd is not yet applicable, most notably for using the net-prio subsystem. See Chapter 3, Using
libcgroup Tools.

The aforementioned tools provide a high-level interface to interact with cgroup controllers (also
known as subsystems) in Linux kernel. The main cgroup controllers for resource management are
cpu, memory and blkio, see Available Controllers in Red Hat Enterprise Linux 7 for the list of controllers
enabled by default. For detailed description of resource controllers and their configurable
parameters, refer to Controller-Specific Kernel Documentation.

1.2. Default Cgroup Hierarchies

By default, systemd automatically creates a hierarchy of slice, scope and service units to provide a
unified structure for the cgroup tree. With the systemctl command, you can further modify this
structure by creating custom slices, as shown in Section 2.1, “Creating Control Groups” . Also,
systemd automatically mounts hierarchies for important kernel resource controllers (see Available
Controllers in Red Hat Enterprise Linux 7) in the /sys/fs/cgroup/ directory.

Warning

The deprecated cgconfig tool from the libcgroup package is available to mount and
handle hierarchies for controllers not yet supported by systemd (most notably the net-prio
controller). Never use libcgropup tools to modify the default hierarchies mounted by
systemd since it would lead to unexpected behavior. The libcgroup library will be removed
in the future versions of Red Hat Enterprise Linux. For more information on how to use
cgconfig , see Chapter 3, Using libcgroup Tools.

Resource Management Guide

2

Systemd Unit T ypes

All processes running on the system are child processes of the systemd init process. Systemd
provides three unit types that are used for the purpose of resource control (for a complete list of
systemd 's unit types, see the chapter called Managing Services with systemd in Red Hat Enterprise
Linux 7 System Administrators Guide):

Service — A process or a group of processes, which systemd started based on a unit
configuration file. Services encapsulate the specified processes so that they can be started and
stopped as a one set. Services are named in the following way:

name.service

Where name stands for the name of service.

Scope — A group of externally created processes. Scopes encapsulate processes that are
started and stopped by arbitrary processes via the fork() function and then registered by
systemd at runtime. For instance, user sessions, containers, and virtual machines are treated as
scopes. Scopes are named as follows:

name.scope

Here, name stands for the name of scope.

Slice — A group of hierarchically organized units. Slices do not contain processes, they
organize a hierarchy in which scopes and services are placed. The actual processes are
contained in scopes or in services. In this hierarchical tree, every name of a slice unit
corresponds to the path to a location in the hierarchy. The dash ("-") character acts as a
separator the path components. For example, if the name of a slice looks as follows:

parent-name.slice

it means that a slice called parent-name.slice is a subslice of the parent.slice. This slice can
have its own subslice named parent-name-name2.slice, and so on.

There is one root slice denoted as:

-.slice

Service, scope and slice units directly map to objects in the cgroup tree. When these units are
activated, they each map directly to cgroup paths built from the unit names. For example, the
ex.service residing in the test-waldo.slice is mapped to the cgroup test.slice/test-
waldo.slice/ex.service/.

Services, scopes and slices are created manually by the system administrator or dynamically by
programs. By default, the operating system defines a number of built-in services that are necessary to
run the system. Also, there are four slices created by default:

- .slice — the root slice;

system.slice — the default place for all system services;

user.slice — the default place for all user sessions;

machine.slice — the default place for all virtual machines and Linux containers.

Chapt er 1 . Int roduct ion t o Cont rol Groups (Cgroups)

3

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

Note that all user sessions are automatically placed in a separated scope unit, as well as virtual
machines and container processes. Furthermore, all users are assigned with an implicit subslice.
Besides the above default configuration, the system administrator may define new slices and assign
services and scopes to them.

The following is a simplified example of a cgroup tree. This output was generated with the systemd-
cgls command described in Section 2.4, “Obtaining Information About Control Groups” :

├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
├─user.slice
│ └─user-1000.slice
│ └─session-1.scope
│ ├─11459 gdm-session-worker [pam/gdm-password]
│ ├─11471 gnome-session --session gnome-classic
│ ├─11479 dbus-launch --sh-syntax --exit-with-session
│ ├─11480 /bin/dbus-daemon --fork --print-pid 4 --print-address 6 --
session
│ ...
│
└─system.slice
 ├─systemd-journald.service
 │ └─422 /usr/lib/systemd/systemd-journald
 ├─bluetooth.service
 │ └─11691 /usr/sbin/bluetoothd -n
 ├─systemd-localed.service
 │ └─5328 /usr/lib/systemd/systemd-localed
 ├─colord.service
 │ └─5001 /usr/libexec/colord
 ├─sshd.service
 │ └─1191 /usr/sbin/sshd -D
 │
 ...

As you can see, services and scopes contain process and are placed in slices that do not contain
processes of their own. The only exception is PID 1 that is located in the special systemd.slice. Also
note that - .slice is not shown as it is implicitly identified with the root of the entire tree.

Service and slice units may be configured with persistent unit files as described in Section 2.3.2,
“Modifying Unit Files”), or created dynamically at runtime via API calls to PID 1 (see Section 1.4,
“Online Documentation” for API reference). Scope units can only be created with the first method.
Units created dynamically with API calls are transient and exist only during runtime. Transient units
are released automatically as soon as they finish, get deactivated, or the system is rebooted.

1.3. Resource Cont rollers in Linux Kernel

A resource controller, also called a cgroup subsystem, represents a single resource, such as CPU
time or memory. The Linux kernel provides a range of resource controllers, that are mounted
automatically by systemd . Find the list of currently mounted resource controllers in
/proc/cgroups, or use the lssubsys monitoring tool. In Red Hat Enterprise Linux 7, systemd
mounts the following controllers by default:

Availab le Contro llers in Red Hat Enterprise Linux 7

blkio — sets limits on input/output access to and from block devices;

Resource Management Guide

4

cpu — uses the CPU scheduler to provide cgroup tasks an access to the CPU. It is mounted
together with the cpuacct controller on the same mount;

cpuacct — creates automatic reports on CPU resources used by tasks in a cgroup. It is mounted
together with the cpu controller on the same mount;

cpuset — assigns individual CPUs (on a multicore system) and memory nodes to tasks in a
cgroup;

devices — allows or denies access to devices for tasks in a cgroup;

freezer — suspends or resumes tasks in a cgroup;

memory — sets limits on memory use by tasks in a cgroup, and generates automatic reports on
memory resources used by those tasks;

net_cls — tags network packets with a class identifier (classid) that allows the Linux traffic
controller (the tc command) to identify packets originating from a particular cgroup task;

perf_event — enables monitoring cgroups with the perf tool;

hugetlb — allows to use virtual memory pages of large sizes, and to enforce resource limits on
these pages.

The Linux Kernel exposes a wide range of tunable parameters for resource controllers that can be
configured with systemd . See the kernel documentation (list of references in Controller-Specific
Kernel Documentation) for detailed description of these parameters.

1.4 . Addit ional Resources

To find more information about resource control under systemd , the unit hierarchy, as well as the
kernel resource controllers, refer to the materials listed below:

Installed Documentat ion

Cgroup-Related Systemd Documentat ion

The following manual pages contain general information on unified cgroup hierarchy under
systemd :

systemd.resource-control (5) — describes the configuration options for resource control
shared by system units.

systemd.unit(5) — describes common options of all unit configuration files.

systemd.slice(5) — provides general information about .slice units.

systemd.scope(5) — provides general information about .scope units.

systemd.service(5) — provides general information about .service units.

Contro ller-Specif ic Kernel Documentat ion

The kernel-doc package provides a detailed documentation of all resource controllers. This package

Chapt er 1 . Int roduct ion t o Cont rol Groups (Cgroups)

5

is included in the Optional subscription channel. Before subscribing to the Optional channel, please
see the Scope of Coverage Details for Optional software, then follow the steps documented in the
article called How to access Optional and Supplementary channels, and -devel packages using Red
Hat Subscription Manager (RHSM)? on Red Hat Customer Portal. To install kernel-doc from the
Optional channel, type as root:

yum install kernel-doc

After the installation, the following files will appear under the /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/cgroups/ directory:

blkio subsystem — blkio-controller.txt

cpuacct subsystem — cpuacct.txt

cpuset subsystem — cpusets.txt

devices subsystem — devices.txt

freezer subsystem — freezer-subsystem.txt

memory subsystem — memory.txt

net_cls subsystem — net_cls.txt

Additionally, refer to the following files on further information about the cpu subsystem:

Real-Time scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt

CFS scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt

Online Documentat ion

Red Hat Enterprise Linux 7 System Administrators Guide — The System Administrator's Guide
documents relevant information regarding the deployment, configuration and administration of
Red Hat Enterprise Linux 7. This guide contains a detailed explanation of the systemd concepts
as well as instructions for service management with systemd.

The D-Bus API of systemd — The reference material for D-Bus API commands used to interact with
systemd .

Resource Management Guide

6

https://access.redhat.com/support/offerings/production/scope_moredetail/
https://access.redhat.com/solutions/392003
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide
http://www.freedesktop.org/wiki/Software/systemd/dbus/

Chapter 2. Using Control Groups

The following sections provide an overview of tasks related to creation and management of control
groups. This guide focuses on utilities provided by systemd that are preferred as a way of cgroup
management and will be supported in the future. Previous versions of Red Hat Enterprise Linux used
the libcgroup package for the same purpose. This package is still available to assure backward
compatibility (see Warning), but it will not be supported in the future versions of Red Hat Enterprise
Linux.

2.1. Creat ing Cont rol Groups

From the systemd 's perspective, a cgroup is bound to a system unit configurable with a unit file and
manageable with systemd's command-line utilities. Depending on the type of application, your
resource management settings can be transient or persistent.

To create a t ransient cgroup for a service, start this service with the systemd-run command. This
way, it is possible to set limits on resources consumed by the service during its runtime. Applications
can create transient cgroups dynamically by using API calls to systemd . See Section 2.5, “Online
Documentation” for API reference. Transient unit is removed automatically as soon as the service is
stopped.

To assign a persistent cgroup to a service, edit its unit configuration file. This configuration is
preserved after the system reboot, so it can be used to manage services that are started
automatically. Note that scope units can not be created this way.

2.1.1. Creat ing T ransient Cgroups with systemd-run

The systemd-run command is used to create and start a transient service or scope unit and run a
custom command in this unit. Commands executed in service units are started asynchronously in the
background, where they are invoked from the systemd process. Commands run in scope units are
started directly from the systemd-run process and thus inherit the execution environment of the
caller. Execution in this case is synchronous.

To run a command in a specified cgroup, type as root:

systemd-run --unit=name --scope --slice=slice_name command

The name stands for the name you want this unit to be known under. If --unit is not specified, a
unit name will be generated automatically. It is recommended to choose a descriptive name, since
it will represent the unit in the systemctl output. This name must be unique during runtime of the
unit.

Use the optional --scope parameter to create a transient scope unit instead of service unit that is
created by default.

With the --slice option, you can make your newly created service or scope unit a member of a
specified slice. Replace slice_name with the name of an existing slice (as shown in the output of
systemctl -t slice), or create a new slice by passing a unique name. By default, services
and scopes are created as members of the system.slice .

Replace command with the command you wish to execute in the service unit. Place this command
at the very end of the systemd-run syntax, so that the parameters of this command are not
confused for parameters of systemd-run.

Chapt er 2 . Using Cont rol Groups

7

Besides the above options, there are several other parameters available for systemd-run. For
example, --description creates a description of the unit, --remain-after-exit allows to
collect runtime information after terminating the service's process. The --machine option executes
the command in a confined container. See the systemd-run(1) manual page to learn more.

Example 2.1. Start ing a New Service with systemd-run

Use the following command to run the top utility in a service unit in a new slice called test. Type
as root:

~]# systemd-run --unit=toptest --slice=test top -b

The following message is displayed to confirm that you started the service successfully:

Running as unit toptest.service

Now, the name toptest.service can be used to monitor or to modify the cgroup with systemctl
commands.

2.1.2. Creat ing Persistent Cgroups

To configure a unit to be started automatically on system boot, execute the systemctl enable
command (see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7
System Administrators Guide). Running this command automatically creates a unit file in the
/usr/lib/systemd/system/ directory. To make persistent changes to the cgroup, add or modify
configuration parameters in its unit file. For more information, see Section 2.3.2, “Modifying Unit
Files” .

2.2. Removing Cont rol Groups

Transient cgroups are released automatically as soon as the processes they contain finish. By
passing the --remain-after-exit option to systemd-run you can keep the unit running after its
processes finished to collect runtime information. To stop the unit gracefully, type:

systemctl stop name.service

Replace name with the name of the service you wish to stop. To terminate one or more of the unit's
processes, type as root:

systemctl kill name.service --kill-who=PID,... --signal=signal

Replace name with a name of the unit, for example httpd.service. Use --kill-who to select which
processes from the cgroup you wish to terminate. To kill multiple processes at the same time, pass a
comma-separated list of PIDs. Replace signal with the type of POSIX signal you wish to send to
specified processes. Default is SIGTERM. For more information, see the systemd.kill manual
page.

Persistent cgroups are released when the unit is disabled and its configuration file is deleted by
running:

systemctl disable name.service

Resource Management Guide

8

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

where name stands for the name of the service to be disabled.

2.3. Modifying Cont rol Groups

Each persistent unit supervised by systemd has a unit configuration file in the
/usr/lib/systemd/system/ directory. To change parameters of a service unit, modify this
configuration file. This can be done either manually or from the command-line interface by using the
systemctl set-property command.

2.3.1. Set t ing Parameters from the Command-Line Interface

The systemctl set-property command allows you to persistently change resource control
settings during the application runtime. To do so, use the following syntax as root:

systemctl set-property name parameter=value

Replace name with the name of the systemd unit you wish to modify, parameter with a name of the
parameter to be changed, and value with a new value you want to assign to this parameter.

Not all unit parameters may be changed at runtime, but most of those related to resource control may,
see Section 2.3.2, “Modifying Unit Files” for a complete list. Note that systemctl set-property
allows you to change multiple properties at once, which is preferable over setting them individually.

The changes are applied instantly, and written into unit file so that they are preserved after reboot.
You can change this behavior by passing the --runtime option that makes your settings transient:

systemctl set-property --runtime name property=value

Example 2.2. Using systemct l set -property

To limit the CPU and memory usage of httpd.service from the command line, type:

~]# systemctl set-property httpd.service CPUShares=600
MemoryLimit=500M

To make this a temporary change, add the --runtime option:

~]# systemctl set-property --runtime httpd.service CPUShares=600
MemoryLimit=500M

2.3.2. Modifying Unit Files

Systemd service unit files provide a number of high-level configuration parameters useful for
resource management. These parameters communicate with Linux cgroup controllers, that must be
enabled in the kernel. With these parameters, you can manage CPU, memory consumption, block IO,
as well as some more fine-grained unit properties.

Managing CPU

The cpu controller is enabled by default in kernel, and consequently every system service receives the
same amount of CPU, regardless of how many processes it contains. This default behavior can be

Chapt er 2 . Using Cont rol Groups

9

changed with the DefaultControllers parameter in the /etc/systemd/system.conf
configuration file. To manage the CPU allocation, use the following directive in the [Service] section
of the unit configuration file:

CPUShares=value

Replace value with a number of CPU shares. The default value is 1024, by increasing this
number you assign more CPU to the unit. This parameter implies that CPUAccounting is
turned on in the unit file.

The CPUShares parameter controls the cpu.shares control group parameter. See the description of
the cpu controller in Controller-Specific Kernel Documentation to see other CPU-related control
parameters.

Example 2.3. Limit ing CPU Consumpt ion of a Unit

To assign the Apache service 1500 CPU shares instead of the default 1024, modify the
CPUShares setting in the /usr/lib/systemd/system/httpd.service unit file:

[Service]
CPUShares=1500

To apply the changes, reload systemd's configuration and restart Apache so that the modified
service file is taken into account:

~]# systemctl daemon-reload
~]# systemctl restart httpd.service

Managing Memo ry

To enforce limits on memory the unit's memory consumption, use the following directives in the
[Service] section of the unit configuration file:

MemoryLimit=value

Replace value with a limit on maximum memory usage of the processes executed in the
cgroup. Use K, M, G, T suffixes to identify Kilobyte, Megabyte, Gigabyte, or Terabyte as a
unit of measurement. Also, the MemoryAccounting parameter must be enabled for the
same unit.

The MemoryLimit parameter controls the memory.limit_in_bytes control group parameter. For more
information, see the description of the memory controller in Controller-Specific Kernel
Documentation.

Example 2.4 . Limit ing Memory Consumpt ion of a Unit

To assign a 1GB memory limit to the Apache service, modify the MemoryLimit setting in the
/usr/lib/systemd/system/httpd.service unit file:

[Service]
MemoryLimit=1G

Resource Management Guide

10

To apply the changes, reload systemd's configuration and restart Apache so that the modified
service file is taken into account:

~]# systemctl daemon-reload
~]# systemctl restart httpd.service

Managing Blo ck IO

To manage the Block IO, use the following directives in the [Service] section of the unit
configuration file. Directives listed below assume that the BlockIOAccounting parameter is
enabled:

BlockIOWeight=value

Replace value with a new overall block IO weight for the executed processes. Choose a
single value between 10 and 1000, the default setting is 1000.

BlockIODeviceWeight=device_name value

Replace value with a block IO weight for a device specified with device_name. Replace
device_name either with a name or with a path to a device. As with BlockIOWeight, it is
possible to set a single weight value between 10 and 1000.

BlockIOReadBandwidth=device_name value

This directive allows to limit a specific bandwidth for a unit. Replace device_name with the
name of a device or with a path to a block device node, value stands for a bandwidth rate.
Use K, M, G, T suffixes to specify units of measurement, value with no suffix is interpreted as
bytes per second.

BlockIOWriteBandwidth=device_name value

Limits the write bandwidth for a specified device. Accepts the same arguments as
BlockIOReadBandwidth.

Each of the aforementioned directives control a corresponding cgroup parameter. See the
description of the blkio controller in Controller-Specific Kernel Documentation.

Note

Currently, the blkio resource controller does not support buffered write operations. It is
primarily targeted at direct I/O, so the services that use buffered write will ignore the limits set
with BlockIOWriteBandwidth. On the other hand, buffered read operations are supported,
and BlockIOReadBandwidth limits will be applied correctly both on direct and buffered
read.

Example 2.5. Limit ing Block IO of a Unit

To lower the block IO weight for the Apache service accessing the /home/jdoe/ directory add
the following text into the /usr/lib/systemd/system/httpd.service unit file:

[Service]
BlockIODeviceWeight=/home/jdoe 750

Chapt er 2 . Using Cont rol Groups

11

To set the maximum bandwidth for Apache reading from the /var/log/ directory to 5MB per
second, use the following syntax:

[Service]
BlockIOReadBandwith=/var/log 5M

To apply your changes, reload systemd's configuration and restart Apache so that the modified
service file is taken into account:

~]# systemctl daemon-reload
~]# systemctl restart httpd.service

Managing Ot her Syst em Reso urces

There are several other directives that can be used in the unit file to facilitate resource management:

DeviceAllow=device_name options

This option controls access to specific device nodes. Here, device_name stands for a path
to a device node or a device group name as specified in /proc/devices. Replace
options with a combination of r, w, and m to allow the unit to read, write, or create device
nodes.

DevicePolicy=value

Here, value is one of: strict (only allows the types of access explicitly specified with
DeviceAllow), closed (allows access to standard pseudo devices including /dev/null,
/dev/zero, /dev/full, /dev/random, and /dev/urandom) or auto (allows access to all devices if
no explicit DeviceAllow is present, which is default behavior)

Slice=slice_name

Replace slice_name with the name of the slice to place the unit in. The default is system.slice.
Scope units can not be arranged this way, since they are tied to their parent slices.

ControlGroupAttribute=attribute value

This option sets various control group parameters exposed by Linux cgroup controllers.
Replace attribute with a low-level cgroup parameter you wish to modify and value with a new
value for this parameter. Refer to Controller-Specific Kernel Documentation for more
information on cgroup controllers.

Example 2.6 . Changing Low- level Cgroup At t ributes

Imagine that you wish change the memory.swappiness setting that sets the tendency of the kernel to
swap out process memory used by tasks in the cgroup. For more information on this setting, see
the description of the memory controller in Controller-Specific Kernel Documentation. To set
memory.swappiness to 70 for the Apache service, add the following text to
/usr/lib/systemd/system/httpd.service:

[Service]
ControlGroupAttribute=memory.swappiness 70

To apply the changes, reload systemd's configuration and restart Apache so that the modified
service file is taken into account:

Resource Management Guide

12

~]# systemctl daemon-reload
~]# systemctl restart httpd.service

2.4 . Obtaining Informat ion About Cont rol Groups

Use the systemctl command to list system units and to view their status. Also, the systemd-cgls
command is provided to view the hierarchy of control groups and systemd-cgtop to monitor their
resource consumption in real time.

2.4 .1. List ing Units

Use the following command to list all active units on the system:

systemctl list-units

The list-units option is executed by default, which means that you will receive the same output
when you omit this option and execute just:

systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
abrt-ccpp.service loaded active exited Install ABRT coredump
hook
abrt-oops.service loaded active running ABRT kernel log watcher
abrt-vmcore.service loaded active exited Harvest vmcores for ABRT
abrt-xorg.service loaded active running ABRT Xorg log watcher
...

The output displayed above contains four rows:

UNIT — the name of unit that also reflects the unit's position in the cgroup tree. As mentioned in
Section 1.2, “Systemd Unit Types” , three unit types are relevant for resource control: slice, scope
and service. For a complete list of systemd 's unit types, see the chapter called Managing Services
with systemd in Red Hat Enterprise Linux 7 System Administrators Guide.

LOAD — indicates if the unit configuration file was properly loaded. If the unit file failed to load,
the field will contain error instead of loaded. Other unit load states are: stub, merged, and masked.

ACTIVE — the high-level unit activation state, which is a generalization of SUB.

SUB — the low-level unit activation state. The range of possible values depends on the unit type.

DESCRIPTION — the description of the unit's content and functionality.

By default, systemctl lists only active units (in terms of high-level activations state in the ACTIVE
field). Use the --all option to see inactive units too. To limit the amount of information in the output
list, use the --type (-t) parameter that requires a comma-separated list of unit types such as service
and slice, or unit load states such as loaded and masked.

Example 2.7. Using systemct l l ist -units

To view a list of all slices used on the system, type:

~]$ systemctl -t slice

Chapt er 2 . Using Cont rol Groups

13

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

To list all active masked services, type:

~]$ systemctl -t service,masked

To list all unit files installed on your system and their status, type:

systemctl list-unit-files

2.4 .2. Viewing the Cont rol Group Hierarchy

The aforementioned listing commands do not go beyond the unit level to show the actual processes
running in cgroups. Also, the output of systemctl does not show the hierarchy of units. You can
achieve both by using the systemd-cgls command that groups the running process according to
cgroups. To display the whole cgroup hierarchy on your system, type:

systemd-cgls

When systemd-cgls is issued without parameters, it returns the entire cgroup hierarchy. The
highest level of the cgroup tree is formed by slices and can look as follows:

├─system
│ ├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
│ ...
│
├─user
│ ├─user-1000
│ │ └─ ...
│ ├─user-2000
│ │ └─ ...
│ ...
│
└─machine
 ├─machine-1000
 │ └─ ...
 ...

Note that machine slice is present only if you are running a virtual machine or a container. For more
informationa on the cgroup tree see Section 1.2, “Systemd Unit Types” .

To reduce the output of systemd-cgls, and to view a specified part of the hierarchy, execute:

systemd-cgls name

Replace name with a name of the resource controller you want to inspect.

As an alternative, use the systemctl status to display detailed information about a system unit. A
cgroup subtree is a part of the output of this command.

systemctl status name

Resource Management Guide

14

To learn more about systemctl status, see the chapter called Managing Services with systemd in
Red Hat Enterprise Linux 7 System Administrators Guide.

Example 2.8. Viewing the Contro l Group Hierarchy

To see a cgroup tree of the memory resource controller, execute:

~]$ systemd-cgls memory
memory:
├─ 1 /usr/lib/systemd/systemd --switched-root --system --deserialize
23
├─ 475 /usr/lib/systemd/systemd-journald
...

The output of the above command lists the services that interact with the selected controller. A
different approach is to view a part of the cgroup tree for a certain service, slice, or scope unit:

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled)
 Active: active (running) since Sun 2014-03-23 08:01:14 MDT; 33min
ago
 Process: 3385 ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
(code=exited, status=0/SUCCESS)
 Main PID: 1205 (httpd)
 Status: "Total requests: 0; Current requests/sec: 0; Current
traffic: 0 B/sec"
 CGroup: /system.slice/httpd.service
 ├─1205 /usr/sbin/httpd -DFOREGROUND
 ├─3387 /usr/sbin/httpd -DFOREGROUND
 ├─3388 /usr/sbin/httpd -DFOREGROUND
 ├─3389 /usr/sbin/httpd -DFOREGROUND
 ├─3390 /usr/sbin/httpd -DFOREGROUND
 └─3391 /usr/sbin/httpd -DFOREGROUND

...

Beides the aforementioned tools, systemd also provides the machinectl command dedicated to
monitoring Linux containers.

2.4 .3. Viewing Resource Cont rollers

The aforementioned systemctl commands enable monitoring the higher-level unit hierarchy, but do
not show which resource controllers in Linux kernel are actually used by which processes. This
information is stored in dedicated process files, to view it, type as root:

cat proc/PID/cgroup

Where PID stands for the ID of the process you wish to examine. By default, the list is the same for all
units started by systemd , since it automatically mounts all default controllers. See the following
example:

~]# cat proc/27/cgroup

Chapt er 2 . Using Cont rol Groups

15

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

10:hugetlb:/
9:perf_event:/
8:blkio:/
7:net_cls:/
6:freezer:/
5:devices:/
4:memory:/
3:cpuacct,cpu:/
2:cpuset:/
1:name=systemd:/

By examining this file, you can determine if the process has been placed in the desired cgroups as
defined by the systemd unit file specifications.

2.4 .4 . Monitoring Resource Consumpt ion

The systemd-cgls command provides a static snapshot of the cgroup hierarchy. To see a
dynamic account of currently running cgroups ordered by their resource usage (CPU, Memory, and
IO), use:

systemd-cgtop

The behavior, provided statistics, and control options of systemd-cgtop are akin of those of the
top utility. See systemd-cgtop(1) manual page for more information.

2.5. Addit ional Resources

For more information on how to use systemd and related tools to manage system resources on Red
Hat Enterprise Linux, refer to the sources listed below:

Installed Documentat ion

Man Pages of Cgroup-Related Systemd Tools

systemd-run(1) — The manual page lists all command-line options of the systemd-run utiltiy.

systemctl (1) — The manual page of the systemct l utility that lists available options and
commands.

systemd-cgls(1) — This manual page lists all command-line options of the systemd-cgls
utiltiy.

systemd-cgtop(1) — The manual page contains the list of all command-line options of the
systemd-cgtop utiltiy.

machinectl (1) — This manual page lists all command-line options of the machinectl utility.

systemd.kill (5) — This manual page provides an overview of kill configuration options for
system units.

Contro ller-Specif ic Kernel Documentat ion

The kernel-doc package provides a detailed documentation of all resource controllers. This package

Resource Management Guide

16

is included in the Optional subscription channel. Before subscribing to the Optional channel, please
see the Scope of Coverage Details channel, then follow the steps documented in the article called
How to access Optional and Supplementary channels, and -devel packages using Red Hat
Subscription Manager (RHSM)? on Red Hat Customer Portal. To install kernel-doc from the Optional
channel, type as root:

yum install kernel-doc

After the installation, the following files will appear under the /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/cgroups/ directory:

blkio subsystem — blkio-controller.txt

cpuacct subsystem — cpuacct.txt

cpuset subsystem — cpusets.txt

devices subsystem — devices.txt

freezer subsystem — freezer-subsystem.txt

memory subsystem — memory.txt

net_cls subsystem — net_cls.txt

Additionally, refer to the following files on further information about the cpu subsystem:

Real-Time scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt

CFS scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt

Online Documentat ion

Red Hat Enterprise Linux 7 System Administrators Guide — The System Administrator's Guide
documents relevant information regarding the deployment, configuration and administration of
Red Hat Enterprise Linux 7. It is oriented towards system administrators with a basic
understanding of the system.

The D-Bus API of systemd — The reference for D-Bus API commands for accessing systemd.

Chapt er 2 . Using Cont rol Groups

17

https://access.redhat.com/support/offerings/production/scope_moredetail/
https://access.redhat.com/solutions/392003
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide
http://www.freedesktop.org/wiki/Software/systemd/dbus/

Chapter 3. Using libcgroup Tools

The libcgroup package, which was the main tool for cgroup management in previous versions of Red
Hat Enterprise Linux, is now deprecated. To avoid conflicts, do not use libcgroup tools for default
resource controllers (listed in Available Controllers in Red Hat Enterprise Linux 7) that are now an
exclusive domain of systemd . This leaves a limited space for applying libcgroup tools, use it only
when you need to manage controllers not currently supported by systemd , such as net_prio.

The following sections describe how to use libcgroup tools in relevant scenarios without conflicting
with the default system of hierarchy.

Note

In order to use libcgroup tools, first ensure the libcgroup and libcgroup-tools packages are
installed on your system. To install them, run as root:

~]# yum install libcgroup
~]# yum install libcgroup-tools

Note

The net_prio controller is not compiled in the kernel like the rest of the controllers, rather it is
a module that has to be loaded before attempting to mount it. To load this module, type as
root:

modprobe netprio_cgroup

3.1. Mount ing a Hierarchy

To use a kernel resource controller that is not mounted automatically, you have to create a hierarchy
that will contain this controller. Add or detach a hierarchy by editing the mount section of the
/etc/cgconfig.conf. This method makes the controller attachment persistent, which means your
settings will be preserved after system reboot. As an alternative, use the mount command to create a
transient mount only for the current session.

Using the cgconfig Service

The cgconfig service installed with the libcgroup-tools package provides a way to mount hierarchies
for additional resource controllers. By default, this service is not started automatically. When you
start cgconfig , it applies the settings from the /etc/cgconfig.conf configuration file. The
configuration is therefore recreated from session to session and becomes persistent. Note that if you
stop cgconfig , it unmounts all the hierarchies that it mounted.

The default /etc/cgconfig.conf file installed with the libcgroup package does not contain any
configuration settings, just an information that systemd mounts the main resource controllers
automatically.

Resource Management Guide

18

Entries of three types can be created in /etc/cgconfig.conf — mount, group, and template. Mount
entries are used to create and mount hierarchies as virtual file systems, and attach controllers to
those hierarchies. In Red Hat Enterprise Linux 7, default hierarchies are mounted automatically to the
/sys/fs/cgroup/ directory, cgconfig is therefore used solely to attach non-default controllers.
Mount entries are defined using the following syntax:

mount {
 controller_name = /sys/fs/cgroup/controller_name;
 …
}

Replace controller_name with a name of the kernel resource controller you wish to mount to the
hierarchy. See Example 3.1, “Creating a mount entry” for an example.

Example 3.1. Creat ing a mount ent ry

To attach the net_prio controller to the default cgroup tree, add the following text to the
/etc/cgconfig.conf configuration file:

mount {
 net_prio = /sys/fs/cgroup/net_prio;
}

Then restart the cgconfig service to apply the setting:

systemctl restart cgconfig.service

Group entries in /etc/cgconfig.conf can be used to set the parameters of resource controllers.
See Section 3.5, “Setting Cgroup Parameters” for more information about group entries.

Template entries in /etc/cgconfig.conf can be used to create a group definition applied to all
processes.

Using the mount Command

Use the mount command to temporarily mount a hierarchy. To do so, first create a mount point in the
/sys/fs/cgroup/ directory where systemd mounts the main resource controllers. Type as root:

mkdir /sys/fs/cgroup/name

Replace name with a name of the new mount destination, usually the name of the controller is used.
Next, execute the mount command to mount the hierarchy and simultaneously attach one or more
subsystems. Type as root:

mount -t cgroup -o controller_name none /sys/fs/cgroup/controller_name

Replace controller_name with a name of the controller to specify both the device to be mounted as well
as the destination folder. The -t cgroup parameter specifies the type of mount.

Example 3.2. Using the mount command to at tach contro llers

Chapt er 3. Using libcgroup T ools

19

To mount a hierarchy for the net_prio controller with use of the mount command, first create the
mount point:

~]# mkdir /sys/fs/cgroup/net_prio

Then mount net_prio to the destination you created in the previous step:

~]# mount -t cgroup -o net_prio none /sys/fs/cgroup/net_prio

You can verify if you attached the hierarchy correctly by listing all available hierarchies along with
their current mount points with the lssubsys command (see Section 3.8, “Listing Controllers”):

~]# lssubsys -am
cpuset /sys/fs/cgroup/cpuset
cpu,cpuacct /sys/fs/cgroup/cpu,cpuacct
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer
net_cls /sys/fs/cgroup/net_cls
blkio /sys/fs/cgroup/blkio
perf_event /sys/fs/cgroup/perf_event
hugetlb /sys/fs/cgroup/hugetlb
net_prio /sys/fs/cgroup/net_prio

3.2. Unmount ing a Hierarchy

If you mounted a hierarchy by editing the /etc/cgconfig.conf configuration file, you can
unmount it simply by removing the configuration directive from the mount section of this configuration
file. Then restart the service to apply the new configuration.

Similarly, you can unmount a hierarchy by executing the following command as root:

~]# umount /sys/fs/cgroup/controller_name

Replace controller_name with the name of the hierarchy that contains the resource controller you wish
to detach.

Warning

Make sure that you use umount to remove only hierarchies that you mounted yourself
manually. Detaching a hierarchy that contains a default controller (listed in Available
Controllers in Red Hat Enterprise Linux 7) will most probably lead to complications requiring a
system reboot.

3.3. Creat ing Cont rol Groups

Use the cgcreate command to create transient cgroups in hierarchies you created yourself. The
syntax for cgcreate is:

Resource Management Guide

20

cgcreate -t uid:gid -a uid:gid -g controllers:path

where:

-t (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own the
tasks pseudo-file for this cgroup. This user can add tasks to the cgroup.

Note

Note that the only way to remove a process from a cgroup is to move it to a different cgroup.
To be able to move a process, the user must have a write access to the destination cgroup;
write access to the source cgroup is not important.

-a (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own all
pseudo-files other than tasks for this cgroup. This user can modify the access to system
resources for tasks in this cgroup.

-g — specifies the hierarchy in which the cgroup should be created, as a comma-separated list of
the controllers associated with those hierarchies. The list of controllers is followed by a colon and
the path to the child group relative to the hierarchy. Do not include the hierarchy mount point in
the path.

Because all cgroups in the same hierarchy have the same controllers, the child group has the same
controllers as its parent.

As an alternative, you can create a child of the cgroup directly, use the mkdir command:

~]# mkdir /sys/fs/cgroup/controller/name/child_name

For example:

~]# mkdir /sys/fs/cgroup/net_prio/lab1/group1

3.4 . Removing Cont rol Groups

Remove cgroups with the cgdelete command that has a syntax similar to that of cgcreate. Run
the following command as root:

cgdelete controllers:path

where:

controllers is a comma-separated list of controllers.

path is the path to the cgroup relative to the root of the hierarchy.

For example:

~]# cgdelete net_prio:/test-subgroup

cgdelete can also recursively remove all subgroups when the -r option is specified.

Chapt er 3. Using libcgroup T ools

21

Note that when you delete a cgroup, all its processes move to its parent group.

3.5. Set t ing Cgroup Parameters

Modify the parameters of the control groups by editing the /etc/cgconfig.conf, or by using the
cgset command. Changes made to /etc/cgconfig.conf are preserved after reboot, while
cgset changes the cgroup parameters only for the current session.

Modifying /etc/cgconfig.conf

You can set the controller parameters in the Groups section of /etc/cgconfig.conf. Group
entries are defined using the following syntax:

group name {
[permissions]
 controller {
 param_name = param_value;
 …
 }
 …
}

Replace name with the name of your cgroup, controller stands for the name of the controller you wish
to modify. This should be a controller you mounted yourself, not any of the default controllers
mounted automatically by systemd . Replace param_name and param_value with the controller
parameter you wish to change and its new value. Note that the permissions section is optional. To
define permissions for a group entry, use the following syntax:

perm {
 task {
 uid = task_user;
 gid = task_group;
 }
 admin {
 uid = admin_name;
 gid = admin_group;
 }
}

Resource Management Guide

22

Note

Restart the cgconfig service for the changes in the /etc/cgconfig.conf to take effect.
Restarting this service rebuilds hierarchies specified in the configuration file but does not
affect all mounted hierarchies. You can restart a service by executing the systemctl
restart command, however, it is recommended to first stop the cgconfig service:

~]# systemctl stop cgconfig

Then open and edit the configuration file. After saving your changes, you can start cgconfig
again with the following command:

~]# systemctl start cgconfig

Using the cgset Command

Set controller parameters by running the cgset command from a user account with permission to
modify the relevant cgroup. Use this only for controllers you mounted manually.

The syntax for cgset is:

cgset -r parameter=value path_to_cgroup

where:

parameter is the parameter to be set, which corresponds to the file in the directory of the given
cgroup;

value is the value for the parameter;

path_to_cgroup is the path to the cgroup relative to the root of the hierarchy.

The values that can be set with cgset might depend on values set higher in a particular hierarchy.
For example, if group1 is limited to use only CPU 0 on a system, you cannot set
group1/subgroup1 to use CPUs 0 and 1, or to use only CPU 1.

It is also possible use cgset to copy the parameters of one cgroup into another, existing cgroup.
The syntax to copy parameters with cgset is:

cgset --copy-from path_to_source_cgroup path_to_target_cgroup

where:

path_to_source_cgroup is the path to the cgroup whose parameters are to be copied, relative to the
root group of the hierarchy;

path_to_target_cgroup is the path to the destination cgroup, relative to the root group of the
hierarchy.

3.6. Moving a Process to a Cont rol Group

Move a process into a cgroup by running the cgclassify command:

Chapt er 3. Using libcgroup T ools

23

cgclassify -g controllers:path_to_cgroup pidlist

where:

controllers is a comma-separated list of resource controllers, or * to launch the process in the
hierarchies associated with all available subsystems. Note that if there are multiple cgroups of the
same name, the -g option moves the processes in each of those groups.

path_to_cgroup is the path to the cgroup within the hierarchy;

pidlist is a space-separated list of process identifier (PIDs).

If the -g option is not specified, cgclassify automatically searches the /etc/cgrules.conf,
and uses the first applicable configuration line. According to this line, cgclassify determines the
hierarchies and cgroups to move the process under. Note that for the move to be successful, the
destination hierarchies must exist. The subsystems specified in /etc/cgrules.conf must be also
properly configured for the corresponding hierarchy in /etc/cgconfig.conf.

You can also add the --sticky option before the pid to keep any child processes in the same
cgroup. If you do not set this option and the cgred service is running, child processes will be
allocated to cgroups based on the settings found in /etc/cgrules.conf. The process itself,
however, will remain in the cgroup in which you started it.

It is also possible to use the cgred service (which starts the cgrulesengd daemon) that moves
tasks into cgroups according to parameters set in the /etc/cgrules.conf file. Use cgred only to
manage manually attached controllers. Entries in the /etc/cgrules.conf file can take one of the
two forms:

user subsystems control_group;

user:command subsystems control_group.

For example:

maria net_prio /usergroup/staff

This entry specifies that any processes that belong to the user named maria access the devices
subsystem according to the parameters specified in the /usergroup/staff cgroup. To associate
particular commands with particular cgroups, add the command parameter, as follows:

maria:ftp devices /usergroup/staff/ftp

The entry now specifies that when the user named maria uses the ftp command, the process is
automatically moved to the /usergroup/staff/ftp cgroup in the hierarchy that contains the
devices subsystem. Note, however, that the daemon moves the process to the cgroup only after the
appropriate condition is fulfilled. Therefore, the ftp process might run for a short time in the wrong
group. Furthermore, if the process quickly spawns children while in the wrong group, these children
might not be moved.

Entries in the /etc/cgrules.conf file can include the following extra notation:

@ — when prefixed to user, indicates a group instead of an individual user. For example,
@admins are all users in the admins group.

* — represents "all" . For example, * in the subsystem field represents all subsystems.

% — represents an item the same as the item in the line above. For example:

Resource Management Guide

24

@adminstaff net_prio /admingroup
@labstaff % %

3.7. Start ing a Process in a Cont rol Group

Launch processes in a manually created cgroup by running the cgexec command. The syntax for
cgexec is:

cgexec -g controllers:path_to_cgroup command arguments

where:

controllers is a comma-separated list of controllers, or * to launch the process in the hierarchies
associated with all available subsystems. Note that, as with the cgset command described in
Section 3.5, “Setting Cgroup Parameters” , if cgroups of the same name exist, the -g option
creates processes in each of those groups.

path_to_cgroup is the path to the cgroup relative to the hierarchy;

command is the command to be executed in the cgroup;

arguments are any arguments for the command.

It is also possible to add the --sticky option before the command to keep any child processes in
the same cgroup. If you do not set this option and the cgred daemon is running, child processes will
be allocated to cgroups based on the settings found in /etc/cgrules.conf. The process itself,
however, will remain in the cgroup in which you started it.

3.8. Obtaining Informat ion About Cont rol Groups

The libcgroup-tools package contains several utilities for obtaining information about controllers,
control groups, and their parameters.

List ing Cont rollers

To find the controllers that are available in your kernel and how are they mounted together to
hierarchies, execute:

cat /proc/cgroups

Alternatively, to find the mount points of particular subsystems, execute the following command:

lssubsys -m controllers

Here controllers stands for a list of the subsystems in which you are interested. Note that the
lssubsys -m command returns only the top-level mount point per each hierarchy.

Finding Cont rol Groups

To list the cgroups on a system, execute as root:

lscgroup

Chapt er 3. Using libcgroup T ools

25

To restrict the output to a specific hierarchy, specify a controller and a path in the format
controller:path. For example:

~]$ lscgroup cpuset:adminusers

The above command lists only subgroups of the adminusers cgroup in the hierarchy to which the
cpuset controller is attached.

Displaying Parameters of Cont rol Groups

To display the parameters of specific cgroups, run:

~]$ cgget -r parameter list_of_cgroups

where parameter is a pseudo-file that contains values for a controller, and list_of_cgroups is a list of
cgroups separated with spaces.

If you do not know the names of the actual parameters, use a command similar to:

~]$ cgget -g cpuset /

3.9. Addit ional Resources

The definitive documentation for cgroup commands can be found in the manual pages provided with
the libcgroup package.

Installed Documentat ion

The libcgroup-related Man Pages

cgclassify(1) — the cgclassify command is used to move running tasks to one or more
cgroups.

cgclear(1) — the cgclear command is used to delete all cgroups in a hierarchy.

cgconfig.conf(5) — cgroups are defined in the cgconfig.conf file.

cgconfigparser(8) — the cgconfigparser command parses the cgconfig.conf file and
mounts hierarchies.

cgcreate(1) — the cgcreate command creates new cgroups in hierarchies.

cgdelete(1) — the cgdelete command removes specified cgroups.

cgexec(1) — the cgexec command runs tasks in specified cgroups.

cgget(1) — the cgget command displays cgroup parameters.

cgsnapshot(1) — the cgsnapshot command generates a configuration file from existing
subsystems.

cgred.conf(5) — cgred.conf is the configuration file for the cgred service.

Resource Management Guide

26

cgrules.conf(5) — cgrules.conf contains the rules used for determining when tasks
belong to certain cgroups.

cgrulesengd (8) — the cgrulesengd service distributes tasks to cgroups.

cgset(1) — the cgset command sets parameters for a cgroup.

lscgroup(1) — the lscgroup command lists the cgroups in a hierarchy.

lssubsys(1) — the lssubsys command lists the hierarchies containing the specified
subsystems.

Chapt er 3. Using libcgroup T ools

27

Chapter 4. Control Group Application Examples

This chapter provides application examples that take advantage of the cgroup functionality.

4.1. Priorit iz ing Database I/O

Running each instance of a database server inside its own dedicated virtual guest allows you to
allocate resources per database based on their priority. Consider the following example: a system is
running two database servers inside two KVM guests. One of the databases is a high priority
database and the other one a low priority database. When both database servers are run
simultaneously, the I/O throughput is decreased to accommodate requests from both databases
equally; Figure 4.1, “ I/O throughput without resource allocation” indicates this scenario — once the
low priority database is started (around time 45), I/O throughput is the same for both database
servers.

Figure 4 .1. I /O throughput without resource allocat ion

To prioritize the high priority database server, it can be assigned to a cgroup with a high number of
reserved I/O operations, whereas the low priority database server can be assigned to a cgroup with a
low number of reserved I/O operations. To achieve this, follow the steps in Procedure 4.1, “ I/O
Throughput Prioritization” , all of which are performed on the host system.

Procedure 4 .1. I /O Throughput Priorit iz at ion

1. Make sure resource accounting is on for both services:

~]# systemctl set-property db1.service BlockIOAccounting=true
~]# systemctl set-property db2.service BlockIOAccounting=true

2. Set a ratio of 10:1 for the high and low priority services. Processes running in those service
units will use only the resources made available to them

~]# systemctl set-property db1.service BlockIOWeight=1000
~]# systemctl set-property db2.service BlockIOWeight=100

Resource Management Guide

28

Figure 4.2, “ I/O throughput with resource allocation” illustrates the outcome of limiting the low priority
database and prioritizing the high priority database. As soon as the database servers are moved to
their appropriate cgroups (around time 75), I/O throughput is divided among both servers with the
ratio of 10:1.

Figure 4 .2. I /O throughput with resource allocat ion

Alternatively, block device I/O throttling can be used for the low priority database to limit its number of
read and write operation. For more information refer to the description of the blkio controller in
Controller-Specific Kernel Documentation.

4.2. Priorit iz ing Network Traffic

When running multiple network-related services on a single server system, it is important to define
network priorities between these services. Defining these priorities ensures that packets originating
from certain services have a higher priority than packets originating from other services. For
example, such priorities are useful when a server system simultaneously functions as an NFS and
Samba server. The NFS traffic must be of high priority as users expect high throughput. The Samba
traffic can be deprioritized to allow better performance of the NFS server.

The net_prio controller can be used to set network priorities for processes in cgroups. These
priorities are then translated into Type Of Service (TOS) bits and embedded into every packet. Follow
the steps in Procedure 4.2, “Setting Network Priorities for File Sharing Services” to configure
prioritization of two file sharing services (NFS and Samba).

Procedure 4 .2. Set t ing Network Priorit ies for File Sharing Services

1. The net_prio controller is not compiled in the kernel, it is a module that must be loaded
manually. To do so, type:

~]# modprobe netprio_cgroup

2. Attach the net_prio subsystem to the /cgroup/net_prio cgroup:

~]# mkdir sys/fs/cgroup/net_prio
~]# mount -t cgroup -o net_prio none sys/fs/cgroup/net_prio

3. Create two cgroups, one for each service:

Chapt er 4 . Cont rol Group Applicat ion Examples

29

~]# mkdir sys/fs/cgroup/net_prio/nfs_high
~]# mkdir sys/fs/cgroup/net_prio/samba_low

4. To automatically move the nfs services to the nfs_high cgroup, add the following line to
the /etc/sysconfig/nfs file:

CGROUP_DAEMON="net_prio:nfs_high"

This configuration ensures that nfs service processes are moved to the nfs_high cgroup
when the nfs service is started or restarted.

5. The smbd daemon does not have a configuration file in the /etc/sysconfig directory. To
automatically move the smbd daemon to the samba_low cgroup, add the following line to the
/etc/cgrules.conf file:

*:smbd net_prio samba_low

Note that this rule moves every smbd daemon, not only /usr/sbin/smbd , into the
samba_low cgroup.

You can define rules for the nmbd and winbindd daemons to be moved to the samba_low
cgroup in a similar way.

6. Start the cgred service to load the configuration from the previous step:

~]# systemctl start cgred
Starting CGroup Rules Engine Daemon: [OK]

7. For the purposes of this example, let us assume both services use the eth1 network interface.
Define network priorities for each cgroup, where 1 denotes low priority and 10 denotes high
priority:

~]# echo "eth1 1" >
/sys/fs/cgroup/net_prio/samba_low/net_prio.ifpriomap
~]# echo "eth1 10" >
/sys/fs/cgroup/net_prio/nfs_high/net_prio.ifpriomap

8. Start the nfs and smb services and check whether their processes have been moved into the
correct cgroups:

~]# systemctl start smb
Starting SMB services: [OK]
~]# cat /sys/fs/cgroup/net_prio/samba_low/tasks
16122
16124
~]# systemctl start nfs
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Stopping RPC idmapd: [OK]
Starting RPC idmapd: [OK]
Starting NFS daemon: [OK]

Resource Management Guide

30

~]# cat sys/fs/cgroup/net_prio/nfs_high/tasks
16321
16325
16376

Network traffic originating from NFS now has higher priority than traffic originating from
Samba.

Similar to Procedure 4.2, “Setting Network Priorities for File Sharing Services” , the net_prio
subsystem can be used to set network priorities for client applications, for example, Firefox.

Chapt er 4 . Cont rol Group Applicat ion Examples

31

Appendix A. Revision History

Revision 0.0-1.6 Wed Nov 11 2015 Jana Heves
Version for 7.2 GA release.

Revision 0.0-1.4 Thu Feb 19 2015 Radek Bíba
Version for 7.1 GA release. Linux Containers moved to a separate book.

Revision 0.0-1.0 Mon Jul 21 2014 Peter Ondrejka

Revision 0.0-0.14 Mon May 13 2013 Peter Ondrejka
Version for 7.0 GA release

Resource Management Guide

32

	Table of Contents
	Chapter 1. Introduction to Control Groups (Cgroups)
	1.1. What are Control Groups
	1.2. Default Cgroup Hierarchies
	Systemd Unit Types

	1.3. Resource Controllers in Linux Kernel
	1.4. Additional Resources
	Installed Documentation
	Online Documentation

	Chapter 2. Using Control Groups
	2.1. Creating Control Groups
	2.1.1. Creating Transient Cgroups with systemd-run
	2.1.2. Creating Persistent Cgroups

	2.2. Removing Control Groups
	2.3. Modifying Control Groups
	2.3.1. Setting Parameters from the Command-Line Interface
	2.3.2. Modifying Unit Files
	Managing CPU
	Managing Memory
	Managing Block IO
	Managing Other System Resources

	2.4. Obtaining Information About Control Groups
	2.4.1. Listing Units
	2.4.2. Viewing the Control Group Hierarchy
	2.4.3. Viewing Resource Controllers
	2.4.4. Monitoring Resource Consumption

	2.5. Additional Resources
	Installed Documentation
	Online Documentation

	Chapter 3. Using libcgroup Tools
	3.1. Mounting a Hierarchy
	Using the cgconfig Service
	Using the mount Command

	3.2. Unmounting a Hierarchy
	3.3. Creating Control Groups
	3.4. Removing Control Groups
	3.5. Setting Cgroup Parameters
	Modifying /etc/cgconfig.conf
	Using the cgset Command

	3.6. Moving a Process to a Control Group
	3.7. Starting a Process in a Control Group
	3.8. Obtaining Information About Control Groups
	Listing Controllers
	Finding Control Groups
	Displaying Parameters of Control Groups

	3.9. Additional Resources
	Installed Documentation

	Chapter 4. Control Group Application Examples
	4.1. Prioritizing Database I/O
	4.2. Prioritizing Network Traffic

	Appendix A. Revision History

