
Tomáš Čapek Aneta Petrová Ella Deon Ballard

Red Hat Enterprise Linux 7
System-Level Authentication Guide

About System-Level Services for Authent icat ion and Ident ity Management

Red Hat Enterprise Linux 7 System-Level Authent icat ion Guide

About System-Level Services for Authent icat ion and Ident ity Management

Tomáš Čapek
Red Hat Customer Content Services
tcapek@redhat.com

Aneta Petrová
Red Hat Customer Content Services
apetrova@redhat.com

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
This guide covers different applications and services available to configure authentication on
local systems.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapt er 1 . Int roduct ion t o Syst em Aut hent icat ion
1.1. Co nfirming User Id entities
1.2. As Part o f Planning Sing le Sig n-On
1.3. Availab le Services

Part I. Syst em Logins

Chapt er 2 . Configuring Syst em Aut hent icat ion
2.1. Using the authco nfig Uti l i ties
2.2. Selecting the Id entity Sto re fo r Authenticatio n
2.3. Co nfig uring Authenticatio n Mechanisms
2.4. Manag ing Kickstart and Co nfig uratio n Files
2.5. Enab ling Custo m Ho me Directo ries
2.6 . Saving and Resto ring Co nfig uratio n

Part II. Ident it y and Aut hent icat ion St ores

Chapt er 3. Using and Caching Credent ials wit h SSSD
3.1. The Basics o f SSSD Co nfig uratio n
3.2. SSSD and System Services
3.3. SSSD and Id entity Pro vid ers (Do mains)
3.4. Manag ing Lo cal System Users in SSSD
3.5. Do wng rad ing SSSD
3.6 . Using NSCD with SSSD
3.7. Tro ub lesho o ting SSSD

Chapt er 4 . Using realmd t o Connect t o an Ident it y Domain

Part III. Secure Applicat ions

Chapt er 5. Using Pluggable Aut hent icat ion Modules (PAM)
5.1. Ab o ut PAM
5.2. Ab o ut PAM Co nfig uratio n Files
5.3. PAM and Ad ministrative Cred ential Caching

Chapt er 6 . Using Kerberos
6 .1. Ab o ut Kerb ero s
6 .2. Co nfig uring the Kerb ero s KDC
6 .3. Co nfig uring a Kerb ero s Client
6 .4. Setting up a Kerb ero s Client fo r Smart Card s
6 .5. Setting up Cro ss-Realm Kerb ero s Trusts

Chapt er 7 . Working wit h cert monger
7.1. certmo ng er and Certificate Autho rities
7.2. Req uesting a Certificate with certmo ng er
7.3. Sto ring Certificates in NSS Datab ases
7.4. Tracking Certificates with certmo ng er

Chapt er 8 . Configuring Applicat ions for Single Sign- On
8 .1. Co nfig uring Firefo x to Use Kerb ero s fo r Sing le Sig n-On
8 .2. Certificate Manag ement in Firefo x
8 .3. Certificate Manag ement in Email Clients

Appendix A. Revision Hist ory

2
2
3
3

5

6
6

11
21
45
45
48

4 9

50
50
53
71

116
120
121
121

1 2 8

1 2 9

1 30
130
130
134

1 37
137
141
146
148
149

1 54
154
154
155
156

1 58
158
16 0
16 3

1 6 7

T able of Cont ent s

1

Chapter 1. Introduction to System Authentication

One of the cornerstones of establishing a secure network environment is making sure that access is
restricted to people who have the right to access the network. If access is allowed, users can
authenticate to the system, meaning they can verify their identities.

On any Red Hat Enterprise Linux system, there are a number of different services available to create
and identify user identities. These can be local system files, services which connect to larger identity
domains like Kerberos or Samba, or tools to create those domains.

This guide reviews some common system services and applications which are available to
administrators to manage authentication and identities for a local system. Other guides are available
which provide more detailed information on creating Linux domains and integrating a Linux system
into a Windows domain.

1.1. Confirming User Ident it ies

Authentication is the process of confirming an identity. For network interactions, authentication
involves the identification of one party by another party. There are many ways to use authentication
over networks: simple passwords, certificates, one-time password (OTP) tokens, biometric scans.

Authorization, on the other hand, defines what the authenticated party is allowed to do or access.

Authentication requires that a user presents some kind of credential to verify his identity. The kind of
credential that is required is defined by the authentication mechanism being used. There are several
kinds of authentication for local users on a system:

Password-based authentication. Almost all software permits the user to authenticate by providing a
recognized name and password. This is also called simple authentication.

Certificate-based authentication. Client authentication based on certificates is part of the SSL
protocol. The client digitally signs a randomly generated piece of data and sends both the
certificate and the signed data across the network. The server validates the signature and
confirms the validity of the certificate.

Kerberos authentication. Kerberos establishes a system of short-lived credentials, called ticket-
granting tickets (TGTs). The user presents credentials, that is, username and password, that
identify the user and indicate to the system that the user can be issued a ticket. TGT can then be
repeatedly used to request access tickets to other services, like websites and email. Authentication
via TGT allows the user to undergo only a single authentication process in this way.

Smart card-based authentication. This is a variant of certificate-based authentication. The smart
card (or token) stores user certificates; when a user inserts the token into a system, the system can
read the certificates and grant access. Single sign-on using smart cards goes through three
steps:

A user inserts a smart card into the card reader. Pluggable authentication modules
(PAMs) on Red Hat Enterprise Linux detect the inserted smart card.

The system maps the certificate to the user entry and then compares the presented
certificates on the smart card, which are encrypted with a private key as explained under
the certificate-based authentication, to the certificates stored in the user entry.

If the certificate is successfully validated against the key distribution center (KDC), then the
user is allowed to log in.

Syst em- Level Aut hent icat ion Guide

2

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Windows_Integration_Guide/index.html

Smart card-based authentication builds on the simple authentication layer established by
Kerberos by adding certificates as additional identification mechanisms as well as by adding
physical access requirements.

1.2. As Part of Planning Single Sign-On

The thing about authentication as described in Section 1.1, “Confirming User Identities” is that every
secure application requires at least a password to access it. Without a central identity store and
every application maintaining its own set of users and credentials, a user has to enter a password for
every single service or application he opens. This can require entering a password several times a
day, maybe even every few minutes.

Maintaining multiple passwords, and constantly being prompted to enter them, is a hassle for users
and administrators. Single sign-on is a configuration which allows administrators to create a single
password store so that users can log in once, using a single password, and be authenticated to all
network resources.

Red Hat Enterprise Linux supports single sign-on for several resources, including logging into
workstations, unlocking screensavers, and accessing secured web pages using Mozilla Firefox. With
other available system services such as PAM, NSS, and Kerberos, other system applications can be
configured to use those identity sources.

Single sign-on is both a convenience to users and another layer of security for the server and the
network. Single sign-on hinges on secure and effective authentication. Red Hat Enterprise Linux
provides two authentication mechanisms which can be used to enable single sign-on:

Kerberos-based authentication, through both Kerberos realms and Active Directory domains

Smart card-based authentication

Both of these methods create a centralized identity store (either through a Kerberos realm or a
certificate authority in a public-key infrastructure), and the local system services then use those
identity domains rather than maintaining multiple local stores.

1.3. Available Services

All Red Hat Enterprise Linux systems have some services already available to configure
authentication for local users on local systems. These include:

Authent icat ion Setup

The Authentication Configuration tool (authconfig) sets up different identity backends
and means of authentication (such as passwords, fingerprints, or smart cards) for the
system.

Ident ity Back End Setup

The Security System Services Daemon (SSSD) sets up multiple identity providers
(primarily LDAP-based directories such as Microsoft Active Directory or Red Hat
Enterprise Linux IdM) which can then be used by both the local system and applications
for users. Passwords and tickets are cached, allowing both offline authentication and
single sign-on by reusing credentials.

The realmd service is a command-line utility that allows you to configure an
authentication back end, which is SSSD for IdM. The realmd service detects available
IdM domains based on the DNS records, configures SSSD, and then joins the system
as an account to a domain.

Chapt er 1 . Int roduct ion t o Syst em Aut hent icat ion

3

Name Service Switch (NSS) is a mechanism for low-level system calls that return
information about users, groups, or hosts. NSS determines what source, that is, which
modules, should be used to obtain the required information. For example, user
information can be located in traditional UNIX files, such as the /etc/passwd file, or in
LDAP-based directories, while host addresses can be read from files, such as the
/etc/hosts file, or the DNS records; NSS locates where the information is stored.

Authent icat ion Mechanisms

Pluggable Authentication Modules (PAM) provide a system to set up authentication
policies. An application using PAM for authentication loads different modules that
control different aspects of authentication; which PAM module an application uses is
based on how the application is configured. The available PAM modules include
Kerberos, Winbind, or local UNIX files-based authentication.

Other services and applications are also available, but these are common ones and form the core of
this guide.

Syst em- Level Aut hent icat ion Guide

4

Part I. System Logins

Part I. Syst em Logins

5

Chapter 2. Configuring System Authentication

Authentication is the way that a user is identified and verified to a system. The authentication process
requires presenting some sort of identity and credentials, like a username and password. The
credentials are then compared to information stored in some data store on the system. In Red Hat
Enterprise Linux, the authconfig tool helps configure what kind of data store to use for user
credentials, such as LDAP.

For convenience and potentially part of single sign-on, Red Hat Enterprise Linux can use the System
Security Services Daemon (SSSD) as a central daemon to authenticate the user to different identity
back ends or even to ask for a ticket-granting ticket (TGT) for the user. SSSD can interact with LDAP,
Kerberos, and external applications to verify user credentials. The authconfig tool can configure
the system to use specific services — SSSD, LDAP, NIS, or Winbind — for its user database, along
with using different forms of authentication mechanisms.

When a user logs into a Red Hat Enterprise Linux system, that user presents some sort of credentials
to establish the user identity. The system then checks those credentials against the configured
authentication service. If the credentials match and the user account is active, then the user is
authenticated. (Once a user is authenticated, then the information is passed to the access control
service to determine what the user is permitted to do. Those are the resources the user is authorized to
access.)

The information to verify the user can be located on the local system or the local system can
reference a user database on a remote system, such as LDAP or Kerberos.

The system must have a configured list of valid account databases for it to check for user
authentication. On Red Hat Enterprise Linux, the authconfig tool has both GUI and command-line
options to configure any user data stores.

A local system can use a variety of different data stores for user information, including Lightweight
Directory Access Protocol (LDAP), Network Information Service (NIS), and Winbind. Additionally,
both LDAP and NIS data stores can use Kerberos to authenticate users.

Important

If a medium or high security level is set during installation or with the Security Level
Configuration Tool, then the firewall prevents NIS authentication. For more information about
firewalls, see the "Firewalls" section of the Security Guide.

2.1. Using the authconfig Ut ilit ies

There are three utilities available for configuring authentication settings:

authconfig-gtk provide a full graphical interface.

authconfig provides a command-line interface for manual configuration.

authconfig-tui provides a simple text-based UI. Note that this utility is deprecated.

Syst em- Level Aut hent icat ion Guide

6

Note

All of the authentication configuration utilities must be run as root.

Important

It is recommended that you configure IdM using ipa-client-install or realmd instead
of authconfig , which is limited and substantially less flexible.

2.1.1. T ips for Using the authconfig CLI

The authconfig command-line tool updates all of the configuration files and services required for
system authentication, according to the settings passed to the script. Along with providing even more
identity and authentication configuration options than can be set through the UI, the authconfig
tool can also be used to create backup and kickstart files.

For a complete list of authconfig options, check the help output and the man page.

There are some things to remember when running authconfig :

With every command, use either the --update or --test option. One of those options is required
for the command to run successfully. Using --update writes the configuration changes. --test
prints the changes to stdout but does not apply the changes to the configuration.

If the --update option is not used, then the changes are not written to the system configuration
files.

The command line can be used to update existing configuration as well as to set new
configuration. Because of this, the command line does not enforce that required attributes are
used with a given invocation (because the command may be updating otherwise complete
settings).

When edit ing the authent icat ion conf igurat ion, be very carefu l that the
conf igurat ion is complete and accurate. Changing the authent icat ion set t ings to
incomplete or wrong values can lock users out of the system. Use the - - test opt ion
to conf irm that the set t ings are proper before using the - -update opt ion to write
them.

Each enable option has a corresponding disable option.

2.1.2. Installing the authconfig UI

The authconfig UI is not installed by default, but it can be useful for administrators to make quick
changes to the authentication configuration.

To install the UI, install the authconfig-gtk package. This has dependencies on some common
system packages, such as the authconfig command-line tool, Bash, and Python. Most of those
are installed by default.

[root@server ~]# yum install authconfig-gtk
Loaded plugins: langpacks, product-id, subscription-manager
Resolving Dependencies

Chapt er 2 . Configuring Syst em Aut hent icat ion

7

--> Running transaction check
---> Package authconfig-gtk.x86_64 0:6.2.8-8.el7 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

==
========
 Package Arch Version Repository
Size
==
========
Installing:
 authconfig-gtk x86_64 6.2.8-8.el7 RHEL-Server
105 k

Transaction Summary
==
========
Install 1 Package

... 8< ...

2.1.3. Launching the authconfig UI

1. Open the terminal and log in as root.

2. Run the system-config-authentication command.

Important

Any changes take effect immediately when the authconfig UI is closed.

There are three configuration tabs in the Authentication dialog box:

Identity & Authentication, which configures the resource used as the identity store (the
data repository where the user IDs and corresponding credentials are stored).

Advanced Options, which allows authentication methods other than passwords or certificates,
like smart cards and fingerprint.

Password Options, which allows authentication methods other than passwords or certificates,
like smart cards and fingerprint.

Syst em- Level Aut hent icat ion Guide

8

Figure 2.1. authconf ig Window

Chapt er 2 . Configuring Syst em Aut hent icat ion

9

2.1.4 . T est ing Authent icat ion Set t ings

It is critical that authentication is fully and properly configured. Otherwise, the worst-case scenarios
is that all users (even root) could be locked out of the system; in less severe situations, it is still
possible for some users to be blocked or for the wrong identities to be used.

The --test option prints all of the authentication configuration for the system, for every possible
identity and authentication mechanism. This shows both the settings for what is enabled and what
areas are disabled.

The test option can be run by itself to show the full, current configuration or it can be used with an
authconfig command to show how the configuration will be changed (without actually changing it).
This can be very useful in verifying that the proposed authentication settings are complete and
correct.

[root@server ~]# authconfig --test
caching is disabled
nss_files is always enabled
nss_compat is disabled
nss_db is disabled
nss_hesiod is disabled
 hesiod LHS = ""
 hesiod RHS = ""
nss_ldap is disabled
 LDAP+TLS is disabled
 LDAP server = ""
 LDAP base DN = ""
nss_nis is disabled
 NIS server = ""
 NIS domain = ""
nss_nisplus is disabled
nss_winbind is disabled
 SMB workgroup = "MYGROUP"
 SMB servers = ""
 SMB security = "user"
 SMB realm = ""
 Winbind template shell = "/bin/false"
 SMB idmap range = "16777216-33554431"
nss_sss is enabled by default
nss_wins is disabled
nss_mdns4_minimal is disabled
DNS preference over NSS or WINS is disabled
pam_unix is always enabled
 shadow passwords are enabled
 password hashing algorithm is sha512
pam_krb5 is disabled
 krb5 realm = "#"
 krb5 realm via dns is disabled
 krb5 kdc = ""
 krb5 kdc via dns is disabled
 krb5 admin server = ""
pam_ldap is disabled
 LDAP+TLS is disabled
 LDAP server = ""
 LDAP base DN = ""
 LDAP schema = "rfc2307"

Syst em- Level Aut hent icat ion Guide

10

pam_pkcs11 is disabled
 use only smartcard for login is disabled
 smartcard module = ""
 smartcard removal action = ""
pam_fprintd is disabled
pam_ecryptfs is disabled
pam_winbind is disabled
 SMB workgroup = "MYGROUP"
 SMB servers = ""
 SMB security = "user"
 SMB realm = ""
pam_sss is disabled by default
 credential caching in SSSD is enabled
 SSSD use instead of legacy services if possible is enabled
IPAv2 is disabled
IPAv2 domain was not joined
 IPAv2 server = ""
 IPAv2 realm = ""
 IPAv2 domain = ""
pam_pwquality is enabled (try_first_pass local_users_only retry=3
authtok_type=)
pam_passwdqc is disabled ()
pam_access is disabled ()
pam_mkhomedir or pam_oddjob_mkhomedir is disabled (umask=0077)
Always authorize local users is enabled ()
Authenticate system accounts against network services is disabled

2.2. Select ing the Ident it y Store for Authent icat ion

The Identity & Authentication tab sets how users should be authenticated. The default is to
use local system authentication, meaning the users and their passwords are checked against local
system accounts. A Red Hat Enterprise Linux machine can also use external resources which contain
the users and credentials, including LDAP, NIS, and Winbind.

2.2.1. IPAv2

There are two different ways to configure an Identity Management server as an identity backend. For
IdM version 2 (Red Hat Enterprise Linux version 6.3 and earlier), version 3 (in Red Hat
Enterprise Linux 6.4 and later), and version 4 (in Red Hat Enterprise Linux 7.1), these are configured
as IPAv2 providers in authconfig . For older IPA versions and for community FreeIPA servers, these
are configured as LDAP providers.

2.2 .1 .1 . Co nfiguring IdM fro m t he UI

1. Open the authconfig UI.

2. Select IPAv2 in the User Account Database drop-down menu.

Chapt er 2 . Configuring Syst em Aut hent icat ion

11

Figure 2.2. Authent icat ion Conf igurat ion

3. Set the information that is required to connect to the IdM server.

IPA Domain gives the DNS domain of the IdM domain.

IPA Realm gives the Kerberos domain of the IdM domain.

IPA Server gives the hostname of any IdM server within the IdM domain topology.

Do not configure NTP optionally disables NTP services when the client is
configured. This is usually not recommended, because the IdM server and all clients need
to have synchronized clocks for Kerberos authentication and certificates to work properly.

Syst em- Level Aut hent icat ion Guide

12

This could be disabled if the IdM servers are using a different NTP server rather than
hosting it within the domain.

4. Click the Join the domain button.

This runs the ipa-client-install command and, if necessary, installs the ipa-client
packages. The installation script automatically configures all system files that are required for
the local system and contacts the domain servers to update the domain information.

2.2 .1 .2 . Co nfiguring IdM fro m t he Co mmand Line

An IdM domain centralizes several common and critical services in a single hierarchy, most notably
DNS and Kerberos. The IdM servers work in unison to centralize configuration and to enroll clients
within the domain.

authconfig (much like realmd in Chapter 4, Using realmd to Connect to an Identity Domain) can be
used to enroll a system in that domain. That runs the ipa-client-install command and, if
necessary, installs the ipa-client packages. The installation script automatically configures all
system files that are required for the local system and contacts the domain servers to update the
domain information.

Joining a domain requires three pieces of information to identify the domain: the DNS domain name
(--ipav2domain), the Kerberos realm name (--ipav2realm), and the IdM server to contact (--
ipav2server). The --ipav2join option gives the administrator username to use to connect to the
IdM server; this is typically admin.

[root@server ~]# authconfig --enableipav2 --ipav2domain=IPAEXAMPLE --
ipav2realm=IPAEXAMPLE --ipav2server=ipaexample.com --ipav2join=admin

If the IdM domain is not running its own NTP services, then it is possible to use the --
disableipav2nontp option to prevent the setup script to use the IdM server as the NTP server.
This is generally not recommended, because the IdM server and all clients need to have
synchronized clocks for Kerberos authentication and certificates to work properly.

2.2.2. LDAP and FreeIPA

Both standard LDAP directories (such as OpenLDAP and Red Hat Directory Server) can be used as
LDAP identity providers. Additionally, older IPA versions and FreeIPA can be configured as identity
providers by configuring them as LDAP providers with a related Kerberos server.

Either the openldap-clients package or the sssd package is used to configure an LDAP server for the
user database. Both packages are installed by default.

2.2 .2 .1 . Co nfiguring LDAP Aut hent icat io n fro m t he UI

1. Open the authconfig UI, as in Section 2.1.3, “Launching the authconfig UI” .

2. Select LDAP in the User Account Database drop-down menu.

Chapt er 2 . Configuring Syst em Aut hent icat ion

13

3. Set the information that is required to connect to the LDAP server.

Syst em- Level Aut hent icat ion Guide

14

LDAP Search Base DN gives the root suffix or distinguished name (DN) for the user
directory. All of the user entries used for identity or authentication exist below this parent
entry. For example, ou=people,dc=example,dc=com.

This field is optional. If it is not specified, the System Security Services Daemon (SSSD)
attempts to detect the search base using the namingContexts and
defaultNamingContext attributes in the LDAP server's configuration entry.

LDAP Server gives the URL of the LDAP server. This usually requires both the host name
and port number of the LDAP server, such as ldap://ldap.example.com:389 .

Entering the secure protocol by using a URL starting with ldaps:// enables the
Download CA Certificate button, which retrieves the issuing CA certificate for the
LDAP server from whatever certificate authority issued it. The CA certificate must be in the
privacy enhanced mail (PEM) format.

If you use a non-secure standard port connection (URL starting with ldap://), you can
use the Use TLS to encrypt connections checkbox to encrypt communication with
the LDAP server using StartTLS. Selecting this checkbox also enables the Download CA
Certificate button.

Note

You do not need to select the Use TLS to encrypt connections checkbox if
the server URL uses the LDAPS (LDAP over SSL) secure protocol as the
communication is already encrypted.

4. Select the authentication method. LDAP allows simple password authentication or Kerberos
authentication.

Using Kerberos is described in Section 2.3.3.1, “Configuring Kerberos Authentication from the
UI” .

The LDAP password option uses PAM applications to use LDAP authentication. This option
requires a secure connection to be set either by using LDAPS or TLS to connect to the LDAP
server.

2.2 .2 .2 . Co nfiguring LDAP User St o res fro m t he Co mmand Line

To use an LDAP identity store, use the --enableldap. To use LDAP as the authentication source,
use --enableldapauth and then the requisite connection information, like the LDAP server name,
base DN for the user suffix, and (optionally) whether to use TLS. The authconfig command also
has options to enable or disable RFC 2307bis schema for user entries, which is not possible through
the authconfig UI.

Be sure to use the full LDAP URL, including the protocol (ldap or ldaps) and the port number. Do
not use a secure LDAP URL (ldaps) with the --enableldaptls option.

authconfig --enableldap --enableldapauth --
ldapserver=ldap://ldap.example.com:389,ldap://ldap2.example.com:389 --
ldapbasedn="ou=people,dc=example,dc=com" --enableldaptls --
ldaploadcacert=https://ca.server.example.com/caCert.crt --update

Chapt er 2 . Configuring Syst em Aut hent icat ion

15

Instead of using --ldapauth for LDAP password authentication, it is possible to use Kerberos with
the LDAP user store. These options are described in Section 2.3.3.2, “Configuring Kerberos
Authentication from the Command Line” .

2.2.3. NIS

Important

Before NIS can be configured as an identity store, NIS itself must be configured for the
environment:

A NIS server must be fully configured with user accounts set up.
The ypbind package must be installed on the local system. This is required for NIS
services, but is not installed by default.
The portmap and ypbind services are started and enabled to start at boot time. This
should be configured as part of the ypbind package installation.

2.2 .3.1 . Co nfiguring NIS Aut hent icat io n fro m t he UI

1. Open the authconfig UI, as in Section 2.1.3, “Launching the authconfig UI” .

2. Select NIS in the User Account Database drop-down menu.

Syst em- Level Aut hent icat ion Guide

16

3. Set the information to connect to the NIS server, meaning the NIS domain name and the
server hostname. If the NIS server is not specified, the authconfig daemon scans for the
NIS server.

4. Select the authentication method. NIS allows simple password authentication or Kerberos
authentication.

Using Kerberos is described in Section 2.3.3.1, “Configuring Kerberos Authentication from the
UI” .

Chapt er 2 . Configuring Syst em Aut hent icat ion

17

2.2 .3.2 . Co nfiguring NIS fro m t he Co mmand Line

To use a NIS identity store, use the --enablenis. This automatically uses NIS authentication,
unless the Kerberos parameters are explicitly set (Section 2.3.3.2, “Configuring Kerberos
Authentication from the Command Line”). The only parameters are to identify the NIS server and NIS
domain; if these are not used, then the authconfig service scans the network for NIS servers.

[root@server ~]# authconfig --enablenis --nisdomain=EXAMPLE --
nisserver=nis.example.com --update

2.2.4 . Winbind

Samba must be configured before Winbind can be configured as an identity store for a system. A
Samba server must be set up and used for user accounts, or Samba must be configured to use Active
Directory as a backend identity store.

Configuring Samba is covered in the Samba project documentation. Specifically configuring Samba
as an integration point with Active Directory is also covered in the Red Hat Enterprise Linux Windows
Integration Guide.

2.2 .4 .1 . Enabling Winbind in t he aut hco nfig GUI

1. Install the samba-winbind package. This is required for Windows integration features in
Samba services, but is not installed by default.

[root@server ~]# yum install samba-winbind

2. Open the authconfig UI.

[root2server ~]# authconfig-gtk

3. In the Identity & Authentication tab, select Winbind in the User Account
Database drop-down menu.

Syst em- Level Aut hent icat ion Guide

18

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Windows_Integration_Guide/windbind.html

4. Set the information that is required to connect to the Microsoft Active Directory domain
controller.

Winbind Domain gives the Windows domain to connect to.

This should be in the Windows 2000 format, such as DOMAIN.

Security Model sets the security model to use for Samba clients. authconfig
supports four types of security models:

Chapt er 2 . Configuring Syst em Aut hent icat ion

19

ads configures Samba to act as a domain member in an Active Directory Server realm.
To operate in this mode, the krb5-server package must be installed and Kerberos
must be configured properly.

domain has Samba validate the username/password by authenticating it through a
Windows primary or backup domain controller, much like a Windows server.

server has a local Samba server validate the username/password by authenticating it
through another server, such as a Windows server. If the server authentication attempt
fails, the system then attempts to authenticate using user mode.

user requires a client to log in with a valid username and password. This mode does
support encrypted passwords.

The username format must be domain\user, such as EXAMPLE\jsmith.

Note

When verifying that a given user exists in the Windows domain, always use
Windows 2000-style formats and escape the backslash (\) character. For
example:

[root@server ~]# getent passwd domain\\user
DOMAIN\user:*:16777216:16777216:Name
Surname:/home/DOMAIN/user:/bin/bash

This is the default option.

Winbind ADS Realm gives the Active Directory realm that the Samba server will join.
This is only used with the ads security model.

Winbind Domain Controllers gives the hostname or IP address of the domain
controller to use to enroll the system.

Template Shell sets which login shell to use for Windows user account settings.

Allow offline login allows authentication information to be stored in a local
cache. The cache is referenced when a user attempts to authenticate to system resources
while the system is offline.

2.2 .4 .2 . Enabling Winbind in t he Co mmand Line

Windows domains have several different security models, and the security model used in the domain
determines the authentication configuration for the local system. For user and server security models,
the Winbind configuration requires only the domain (or workgroup) name and the domain controller
hostnames.

The --winbindjoin parameter sets the user to use to connect to the Active Directory domain, and
--enablelocalauthorize sets local authorization operations to check the /etc/passwd file.

After running the authconfig command, join the Active Directory domain.

[root@server ~]# authconfig --enablewinbind --enablewinbindauth --
smbsecurity=user|server --enablewinbindoffline --

Syst em- Level Aut hent icat ion Guide

20

smbservers=ad.example.com --smbworkgroup=EXAMPLE --update --
enablelocauthorize --winbindjoin=admin
[root@server ~]# net join ads

Note

The username format must be domain\user, such as EXAMPLE\jsmith.

When verifying that a given user exists in the Windows domain, always use Windows 2000-
style formats and escape the backslash (\) character. For example:

[root@server ~]# getent passwd domain\\user
DOMAIN\user:*:16777216:16777216:Name
Surname:/home/DOMAIN/user:/bin/bash

For ads and domain security models, the Winbind configuration allows additional configuration for
the template shell and realm (ads only). For example:

[root@server ~]# authconfig --enablewinbind --enablewinbindauth --
smbsecurity ads --enablewinbindoffline --smbservers=ad.example.com --
smbworkgroup=EXAMPLE --smbrealm EXAMPLE.COM --
winbindtemplateshell=/bin/sh --update

There are a lot of other options for configuring Windows-based authentication and the information
for Windows user accounts, such as name formats, whether to require the domain name with the
username, and UID ranges. These options are listed in the authconfig help.

2.3. Configuring Authent icat ion Mechanisms

The authconfig utility also configures settings related to authentication behavior, apart from the
identity store. This includes entirely different authentication methods (fingerprint scans and smart
cards) and local authentication rules.

2.3.1. Local Accounts

The Local Authentication Options area defines settings for local system accounts, not the
users stored on the backend. These settings define user-based authorization to system services (as
defined in /etc/security/access.conf). Otherwise, authorization policies can be defined within
the identity provider or the services themselves.

2.3.1 .1 . Enabling Lo cal Access Co nt ro l in t he UI

Enable local access control sets the system to check the /etc/security/access.conf
file for local user authorization rules. This is PAM authorization.

Chapt er 2 . Configuring Syst em Aut hent icat ion

21

Figure 2.3. Local Accounts Fields

2.3.1 .2 . Co nfiguring Lo cal Access Co nt ro l in t he Co mmand Line

Syst em- Level Aut hent icat ion Guide

22

There are two options for authconfig to enable local authorization controls. --
enablelocauthorize skips network authentication and only checks local files for system users. -
-enablepamaccess configures the system to look for system authorization policies in
/etc/security/access.conf.

[root@server ~]# authconfig --enablelocauthorize --enablepamaccess --
update

2.3.2. System Passwords

2.3.2 .1 . Passwo rd Securit y

If passwords are stored in plain text format, they are vulnerable to cracking, unauthorized access, or
tampering. To prevent this, cryptographic hashing algorithms can be used to securely store
password hash digests. The recommended (and also default) hashing algorithm supported in IdM is
SHA-512, which uses 64-bit words and also salt and stretching for extra security. To ensure
backward compatibility, the SHA-256, DES, BigCrypt, and MD5 hashing algorithms are also
supported.

Important

If you do not need backward compatibility, only use SHA-512 as it is more secure.

2.3.2.1.1. Conf iguring Password Hashing in the UI

The Local Authentication Options tab sets how local passwords are stored on the system.
The Password Hashing Algorithm drop-down menu sets the algorithm to securely store
passwords hashes.

1. Open the authconfig UI, as in Section 2.1.3, “Launching the authconfig UI” .

2. Open the Advanced Options tab.

3. Select the algorithm to use in the Password Hashing Algorithm drop-down menu.

Chapt er 2 . Configuring Syst em Aut hent icat ion

23

4. Click the Apply button.

2.3.2.1.2. Conf iguring Password Hashing on the Command Line

To set or change the hashing algorithm used to securely store user passwords digests, use the --
passalgo option and the short name for the algorithm. The following example uses the SHA-512
algorithm:

Syst em- Level Aut hent icat ion Guide

24

[root@server ~]# authconfig --passalgo=sha512 --update

2.3.2 .2 . Passwo rd Co mplexit y

Password complexity sets how strong a password must be for it to be allowed to be set for a local user
account. Complexity is a combination of length and a variation of character classes. One way to look
at it is that there are two parts to setting policy for complex passwords: identifying what types of
characters can be used in a password (such as upper and lower case letters and special characters)
and how those characters can be used within the password (how long must it be and how often can
those characters be repeated).

2.3.2.2.1. Conf iguring Password Complexity in the UI

1. Open the authconfig UI, as in Section 2.1.3, “Launching the authconfig UI” .

2. Open the Password Options tab.

Chapt er 2 . Configuring Syst em Aut hent icat ion

25

3. Set the minimum requirements for the password:

The minimum length of the password

The minimum number of character classes which must be used in the password.

4. Enable characters classes which must be used for passwords. For example, an uppercase
letter can be used with any password, but if the Uppercase checkbox is selected, then an
uppercase letter must be used in every password.

Syst em- Level Aut hent icat ion Guide

26

5. Set the number of times that a character or character class can be repeated consecutively. (If
this is set to zero, then there is no repeat limit.)

For the Same Character field, this sets how often a single letter or character can be
repeated. If this is set to 2, for example, then ssecret is allowed but sssecret is rejected.

Likewise, Same Class sets a limit on how many times any character from a character class
(uppercase, number, special character) can be repeated. If this is set to 3, for example,
secret!! is allowed but secret!!@ or secret1234 would be rejected.

6. Click the Apply button.

2.3.2.2.2. Conf iguring Password Complexity in the Command Line

When defining password complexity in the comment line, there are two halves to setting the
requirements. The first is setting the requirements on how a password is constructed — its length, can
characters be repeated, and how many different types of characters must be used:

The minimum length (--passminlen).

The minimum number of different types of characters which must be used (--passminclass).

The number of times a character can be repeated consecutively (--passmaxrepeat). Setting this
to zero means there is no repeate limit.

The number of time the same type of character (such as a number) can be used in a row (--
passmaxclassrepeat). Setting this to zero means there is no repeat limit.

The second half is defining what types or classes of characters are allowed to be used for
passwords. All character types are implicitly allowed; using the --enablereqType option means
that a given class is absolutely required or the password is rejected. (Conversely, types can be
explicitly denied, as well.)

Uppercase letters (--enablerequpper)

Lowercase letters (--enablereqlower)

Numbers (--enablereqdigit)

Special characters (--enablereqother)

For example, this sets a minimum length of nine characters, does not allow characters or classes to
be repeated more than twice, and requires both uppercase and special characters.

[root@server ~]# authconfig --passminlen=9 --passminclass=3 --
passmaxrepeat=2 -passmaxclassrepeat=2 --enablerequpper --enablereqother -
-update

2.3.3. Kerberos (with LDAP or NIS)

Both LDAP and NIS authentication stores support Kerberos authentication methods. Using Kerberos
has a couple of benefits:

It uses a security layer for communication while still allowing connections over standard ports.

It automatically uses credentials caching with SSSD, which allows offline logins.

Chapt er 2 . Configuring Syst em Aut hent icat ion

27

Note

Using Kerberos authentication requires the krb5-libs and krb5-workstation packages.

2.3.3.1 . Co nfiguring Kerbero s Aut hent icat io n fro m t he UI

The Kerberos password option from the Authentication Method drop-down menu
automatically opens the fields required to connect to the Kerberos realm.

Syst em- Level Aut hent icat ion Guide

28

Figure 2.4 . Kerberos Fields

Chapt er 2 . Configuring Syst em Aut hent icat ion

29

Realm gives the name for the realm for the Kerberos server. The realm is the network that uses
Kerberos, composed of one or more key distribution centers (KDC) and a potentially large number
of clients.

KDCs gives a comma-separated list of servers that issue Kerberos tickets.

Admin Servers gives a list of administration servers running the kadmind process in the realm.

Optionally, use DNS to resolve server hostname and to find additional KDCs within the realm.

2.3.3.2 . Co nfiguring Kerbero s Aut hent icat io n fro m t he Co mmand Line

Both LDAP and NIS allow Kerberos authentication to be used in place of their native authentication
mechanisms. At a minimum, using Kerberos authentication requires specifying the realm, the KDC,
and the administrative server. There are also options to use DNS to resolve client names and to find
additional admin servers.

[root@server ~]# authconfig NIS or LDAP options --enablekrb5 --krb5realm
EXAMPLE --krb5kdc kdc.example.com:88,server.example.com:88 --
krb5adminserver server.example.com:749 --enablekrb5kdcdns --
enablekrb5realmdns --update

2.3.4 . Smart Cards

When an appropriate smart card reader is available, a system can accept smart cards (also called
tokens) to authenticate instead of other user credentials.

Once the Enable smart card support option is selected, additional controls for configuring
behavior of smart cards appear.

Syst em- Level Aut hent icat ion Guide

30

Figure 2.5. Smart Card Opt ions

Note that smart card login for Red Hat Enterprise Linux servers and workstations is not enabled by
default and must be enabled in the system settings.

Chapt er 2 . Configuring Syst em Aut hent icat ion

31

Note

Using single sign-on when logging into Red Hat Enterprise Linux requires these packages:

nss-tools
nss-pam-ldapd
esc
pam_pkcs11
pam_krb5
coolkey
ccid
gdm
authconfig
authconfig-gtk
krb5-libs
krb5-workstation
krb5-pkinit-openssl
pcsc-lite
pcsc-lite-libs

2.3.4 .1 . Enabling Smart Card Aut hent icat io n fro m t he UI

1. Log into the system as root.

2. Download the root CA certificates for the network in base 64 format, and install them on the
server. The certificates are installed in the appropriate system database using the certutil
command. For example:

[root@server ~]# certutil -A -d /etc/pki/nssdb -n "root CA cert" -t
"CT,C,C" -i /tmp/ca_cert.crt

Note

Do not be concerned that the imported certificate is not displayed in the authconfig
UI later during the process. You cannot see the certificate in the UI; it is obtained from
the /etc/pki/nssdb/ directory during authentication.

3. In the top menu, select the Applicat ion menu, select Sundry, and then click
Authent icat ion .

4. Open the Advanced Options tab.

5. Click the Enable Smart Card Support checkbox.

6. There are two behaviors that can be configured for smart cards:

The Card removal action menu sets the response that the system takes if the smart
card is removed during an active session. The Ignore option means that the system
continues functioning as normal if the smart card is removed, while Lock immediately
locks the screen.

Syst em- Level Aut hent icat ion Guide

32

The Require smart card for login checkbox sets whether a smart card is required
for logins. When this option is selected, all other methods of authentication are blocked.

Warning

Do not select this until after you have successfully logged in using a smart card.

7. By default, the mechanisms to check whether a certificate has been revoked (Online
Certificate Status Protocol, or OCSP, responses) are disabled. To validate whether a
certificate has been revoked before its expiration period, enable OCSP checking by adding
the ocsp_on option to the cert_policy directive.

a. Open the pam_pkcs11.conf file.

vim /etc/pam_pkcs11/pam_pkcs11.conf

b. Change every cert_policy line so that it contains the ocsp_on option.

cert_policy = ca, ocsp_on, signature;

Note

Because of the way the file is parsed, there must be a space between
cert_policy and the equals sign. Otherwise, parsing the parameter fails.

8. If the smart card has not yet been enrolled (set up with personal certificates and keys), enroll
the smart card.

9. If the smart card is a CAC card, create the .k5login file in the CAC user's home directory.
The .k5login file is required to have the Microsoft Principal Name on the CAC card.

10. Add the following line to the /etc/pam.d/smartcard-auth and /etc/pam.d/system-
auth files:

auth optional pam_krb5.so use_first_pass no_subsequent_prompt
preauth_options=X509_user_identity=PKCS11:/usr/lib64/pkcs11/libcoolk
eypk11.so

11. Configure the /etc/krb5.conf file. The settings vary depending on whether you are using
a CAC card or a Gemalto 64K card.

With CAC cards, specify all the root certificates related to the CAC card usage in
pkinit_anchors. In the following example /etc/krb5.conf file for configuring a CAC
card, EXAMPLE.COM is the realm name for the CAC cards, and kdc.server.hostname.com is
the KDC server host name.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

Chapt er 2 . Configuring Syst em Aut hent icat ion

33

[libdefaults]
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 1h
 renew_lifetime = 6h
 forwardable = true

 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = kdc.server.hostname.com
 admin_server = kdc.server.hostname.com
 pkinit_anchors = FILE:/etc/pki/nssdb/ca_cert.pem
 pkinit_anchors = FILE:/etc/pki/nssdb/CAC_CA_cert.pem
 pkinit_anchors = FILE:/etc/pki/nssdb/CAC_CA_email_cert.pem
 pkinit_anchors = FILE:/etc/pki/nssdb/CAC_root_ca_cert.pem
 pkinit_cert_match = CAC card specific information
 }

[domain_realm]
 EXAMPLE.COM = EXAMPLE.COM
 .EXAMPLE.COM = EXAMPLE.COM

 .kdc.server.hostname.com = EXAMPLE.COM
 kdc.server.hostname.com = EXAMPLE.COM

[appdefaults]
 pam = {
 debug = true
 ticket_lifetime = 1h
 renew_lifetime = 3h
 forwardable = true
 krb4_convert = false
 mappings = username on the CAC card Principal name on
the card
 }

In the following example /etc/krb5.conf file for configuring a Gemalto 64K card,
EXAMPLE.COM is the realm created on the KDC server, kdc-ca.pem is the CA certificate,
and kdc.server.hostname.com is the KDC server host name.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 15m
 renew_lifetime = 6h
 forwardable = true

 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {

Syst em- Level Aut hent icat ion Guide

34

 kdc = kdc.server.hostname.com
 admin_server = kdc.server.hostname.com
 pkinit_anchors = FILE:/etc/pki/nssdb/kdc-ca.pem
 pkinit_cert_match = <KU>digitalSignature
 pkinit_kdc_hostname = kdc.server.hostname.com
 }

[domain_realm]
 EXAMPLE.COM = EXAMPLE.COM
 .EXAMPLE.COM = EXAMPLE.COM

 .kdc.server.hostname.com = EXAMPLE.COM
 kdc.server.hostname.com = EXAMPLE.COM

[appdefaults]
 pam = {
 debug = true
 ticket_lifetime = 1h
 renew_lifetime = 3h
 forwardable = true
 krb4_convert = false
 }

Note

When a smart card is inserted, the pklogin_finder utility, when run in debug mode, first
maps the login ID to the certificates on the card and then attempts to output information about
the validity of certificates:

pklogin_finder debug

The command is useful for diagnosing problems with using a smart card to log into the
system.

2.3.4 .2 . Co nfiguring Smart Card Aut hent icat io n fro m t he Co mmand Line

All that is required to use smart cards with a system is to set the --enablesmartcard option:

[root@server ~]# authconfig --enablesmartcard --update

There are other configuration options for smart cards, such as changing the default smart card
module, setting the behavior of the system when the smart card is removed, and requiring smart
cards for login.

A value of 0 instructs the system to lock out a user immediately if the smart card is removed; a setting
of 1 ignores it if the smart card is removed:

[root@server ~]# authconfig --enablesmartcard --smartcardaction=0 --
update

Chapt er 2 . Configuring Syst em Aut hent icat ion

35

Once smart card authentication has been successfully configured and tested, then the system can be
configured to require smart card authentication for users rather than simple password-based
authentication.

[root@server ~]# authconfig --enablerequiresmartcard --update

Warning

Do not use the --enablerequiresmartcard option until you have successfully
authenticated to the system using a smart card. Otherwise, users may be unable to log into the
system.

2.3.5. One-T ime Passwords

Important

The IdM solution for OTP authentication is only supported for clients running Red Hat
Enterprise Linux 7.1 and later.

One-time password (OTP) is a password that is valid for only one authentication session; it becomes
invalid after use. Unlike traditional static passwords that stay the same for a longer period of time,
OTPs keep changing. OTPs are used as part of two-factor authentication: the first step requires the
user to authenticate with a traditional static password, and the second step prompts for an OTP
issued by a recognized authentication token.

Authentication using an OTP combined with a static password is considered safer than
authentication using a static password alone because even if a potential intruder intercepts the OTP
during login, they cannot use it for successful authentication anymore.

Warning

The following security and other limitations currently relate to the IdM native OTP support:

The most important security limitation is the potential vulnerability to replay attacks across
the system. Replication is asynchronous, and an OTP code can therefore be reused during
the replication period. A user might be able to log on to two servers at the same time.
However, this vulnerability is usually difficult to exploit due to comprehensive encryption.
It is not possible to obtain a ticket-granting ticket (TGT) via a client that does not support
OTP authentication. This might affect certain use cases, such as authentication using the
mod_auth_kerb module or the Generic Security Services API (GSSAPI).

Suppo rt ed OT P Algo rit hms

Identity Management supports two standard OTP mechanisms. All tokens used within IdM native OTP
support are required to implement one of them:

The HMAC-Based One-Time Password (HOTP) algorithm is based on a counter. HMAC stands for
Hashed Message Authentication Code.

Syst em- Level Aut hent icat ion Guide

36

The Time-Based One-Time Password (TOTP) algorithm is an extension of HOTP to support time-
based moving factor.

Offline Aut hent icat io n and GNOME Keyring Service

IdM supports offline OTP authentication and also integrates OTP authentication with the GNOME
Keyring service. Note that both offline authentication and GNOME Keyring integration require the user
to enter the first and second factors separately:

First factor: static password
Second factor: one-time password

For more information about offline OTP authentication in IdM, see Section 2.3.5.4, “Offline
Authentication with OTP” .

2.3.5 .1 . Enabling OT P Aut hent icat io n in IdM

Only the administrator can enable or disable OTP support; users are not allowed to do this. The
administrator can enable OTP support only for specified users or globally for all users.

As an administrator, you can control which authentication methods are available to which users. You
can set the allowed authentication methods globally for all users or individually on a per-user basis.
Identity Management provides you with the following authentication methods:

password authentication

RADIUS proxy server authentication

two-factor authentication (password + OTP)

You can set multiple options at once. If you do, either one of them will be sufficient for successful
authentication.

Users can be authenticated against IdM over two protocols: Kerberos and LDAP. With password-
based single-factor authentication, users authenticate with the same password over either of the two
protocols. With the OTP-based two-factor authentication, minor differences exist depending on which
of the two protocols is used.

If you choose the password and two-factor authentication types at once, Kerberos still enforces
authentication with both password and OTP. LDAP allows authentication with either one of the
authentication types in this situation.

Note

If you want to enforce two-factor authentication for a user, use Kerberos from the application
that integrates with IdM. Otherwise, use LDAP that allows the user to authenticate with a
password only.

If you choose the RADIUS authentication type together with another authentication type, Kerberos
always uses RADIUS, but LDAP never does. LDAP only recognizes the password and two-factor
authentication options.

Chapt er 2 . Configuring Syst em Aut hent icat ion

37

Note

If you use an external two-factor authentication provider, use Kerberos from your applications.
If you want to let users authenticate with a password only, use LDAP. It is recommended that
the applications leverage Apache modules and SSSD, which allows to configure either
Kerberos or LDAP.

2.3.5.1.1. Def in ing Authent icat ion Methods

To set the global authentication methods from the IdM web UI, use the Default user
authentication types options accessible through the Configuration subtab under the IdM
server main tab.

To set the per-user authentication methods from the IdM web UI, use the User authentication
types options on the details page of the corresponding user, which is accessible through the Users
subtab under the Identity main tab.

To set the global authentication methods from the command line, run the ipa config-mod
command and define the authentication method by supplying the --user-auth-type option with
the command. The arguments recognized by this option are password , radius, and otp. For
example, to set the authentication method to two-factor authentication:

[root@server ~]# ipa config-mod --user-auth-type=otp

To set the per-user authentication methods from the command line, run the ipa user-mod
command and define the authentication method by supplying the --user-auth-type option. For
example, to define that the employee user will be required to authenticate by providing their
password:

[root@server ~]# ipa user-mod employee --user-auth-type=password

To set multiple authentication methods, pass multiple --user-auth-type options with ipa
config-mod or ipa user-mod .

Note

Only administrators are allowed to change the user authentication methods.

2.3.5 .2 . Hardware and So ft ware T o kens

Both hardware and software tokens are used for issuing OTPs. A hardware token is stored on a
dedicated physical device. A software token, on the other hand, is typically stored on the user's
mobile device, such as a smartphone or a tablet.

Hardware tokens are often, but not always, managed by the administrator. For example, some
hardware tokens – such as the Yubikey token – are typically user-managed. Administrators can
purchase hardware tokens in bulk and then distribute them to the users.

Similarly, software tokens are often, but not always, managed by the user. For example, companies
that issue mobile devices to their employees can use administrator-managed software tokens.

2.3.5 .3. User-Managed T o kens and Administ rat o r-Managed T o kens

Syst em- Level Aut hent icat ion Guide

38

2.3.5 .3. User-Managed T o kens and Administ rat o r-Managed T o kens

Users have full control over user-managed token details and are allowed to create, edit, or delete
their tokens. To allow the user to manage their tokens themselves, make sure that token support is
enabled for the user or globally for all users. The user is then required to set up their token.

Users have read-only access for administrator-managed tokens; they do not have the permission to
manage or modify the tokens and they are not required to configure them in any way. To assign a
token to a user as an administrator, make sure that token support is enabled for the user or globally
for all users, and then add the token to the user's account.

Note

Users are always required to have at least one active token; they are not allowed to delete or
deactivate a token if it is their only active token at the moment. Similarly, the administrator is
not allowed to delete or deactive the last remaining active token of a user.

2.3.5.3.1. Adding a User-Managed Sof tware Token

To add a user-managed software token, log in as the user with your standard password, and then
follow these steps:

1. Make sure you have the FreeOTP Authenticator application for Android installed on

your mobile device.

2. Create the software token in the IdM web UI or from the command line:

To create the token from the web UI, click the OTP Tokens tab, and the click Add above
the list of OTP tokens. If you are logged-in as the administrator, the OTP Tokens tab is
accessible through the Authentication main tab.

Figure 2.6 . Adding an OTP Token for a User

Fill the form that shows up, and then click Add under the form.

To create the token from the command line, run ipa otptoken-add .

3. A QR code shows up in the web UI or on the command line. Scan the QR code with FreeOTP
Authenticator. This provisions the token to your smartphone or tablet.

[1]

Chapt er 2 . Configuring Syst em Aut hent icat ion

39

Figure 2.7. QR Code in the Web UI

2.3.5.3.2. Adding a User-Managed YubiKey Hardware Token

Due to browser limitations, a programmable hardware token, such as a YubiKey, can only be added
on the command line. To add a YubiKey hardware token as the user owning the token, log in as the
user with your standard password, and then follow these steps:

1. Insert your YubiKey token.

Syst em- Level Aut hent icat ion Guide

4 0

2. Run the ipa otptoken-add-yubikey command. If the YubiKey has an empty slot, the
command will pick it automatically. If no empty slot is available, you will be required to
choose a slot to overwrite by supplying the --slot option with the command. For example:

[user@server ~]$ ipa otptoken-add-yubikey --slot=2

2.3.5.3.3. Adding a Token for a User as an Administ rator

The administrator can create tokens on behalf of any user. To add a software token as an
administrator:

1. Make sure that you are logged-in as the administrator.

2. Follow the steps outlined in Section 2.3.5.3.1, “Adding a User-Managed Software Token” and
specify the user owning the token:

To specify the owner while adding the token from the web UI, choose the user directly in
the form for adding a token using the Owner field.

To specify the owner while adding the token from the command line, supply the --owner
option with the ipa otptoken-add command. For example:

[root@server ~]# ipa otptoken-add --owner=employee

To add a programmable hardware token, such as a Yubikey, as an administrator:

1. Make sure that you are logged-in as the administrator.

2. Follow the steps outlined in Section 2.3.5.3.2, “Adding a User-Managed YubiKey Hardware
Token” and specify the user owning the token by adding the --owner option to the ipa
otptoken-add-yubikey command. For example:

[root@server ~]# ipa otptoken-add-yubikey --owner=employee

2.3.5 .4 . Offline Aut hent icat io n wit h OT P

IdM supports offline OTP authentication. However, to be able to log in offline, the user must first
authenticate when the system is online by entering the static password and OTP separately:

First factor: static password
Second factor: one-time password

If both passwords are entered separately when logging in online, the user will be able to successfully
authenticate even without a connection to the central authentication server. Note that IdM only
prompts for the first-factor traditional static password when the user authenticates offline.

Chapt er 2 . Configuring Syst em Aut hent icat ion

4 1

Note

IdM also supports entering both the static password and OTP together in one string in the
First factor prompt. However, to allow offline authentication, SSSD must be able to save a
hash code of the first-factor static password, and when offline, use the hash code to determine
whether to grant access to the local machine. This is not possible if the user enters both
passwords in a single string, because SSSD cannot extract the first factor from the string.

Therefore, if the user authenticates by entering both factors in a single prompt, IdM will have to
contact the central authentication server, which requires the system to be online.

If you want to benefit from OTP offline authentication, apart from entering the static and OTP
passwords separately, also make sure to meet the following conditions:

The cache_credentials option in the /etc/sssd/sssd.conf file is set to True, which
enables caching the first factor password.

The first-factor static password meets the password length requirement defined in the
cache_credentials_minimal_first_factor_length option set in
/etc/sssd/sssd.conf. The default minimal length is 8 characters. For more information about
the option, see the sssd.conf(5) man page.

Note that even if the krb5_store_password_if_offline option is set to true in
/etc/sssd/sssd.conf, SSSD does not attempt to refresh the Kerberos ticket-granting ticket (TGT)
when the system goes online again because the OTP might already be invalid at that point. To
obtain a TGT in this situation, the user must authenticate again using both factors.

Important

If you use OTP authentication on devices that also operate offline, such as laptops, it is
recommended to enter the static password and OTP separately to make sure offline
authentication will be available. Otherwise, IdM will not allow you to log in after the system
goes offline.

2.3.5 .5 . Migrat ing fro m a Pro priet ary OT P So lut io n

In order to migrate a large deployment from a proprietary OTP solution to Identity Management with
integrated OTP support, IdM offers a way to offload OTP validation to a third-party RADIUS server for
a subset of users. The administrator creates a set of RADIUS proxies; each proxy can contain
multiple individual RADIUS servers. The administrator assigns one of these proxy sets to a user. As
long as the user has a RADIUS proxy set assigned, IdM bypasses all other authentication
mechanisms.

Note

Identity Management does not provide any token management or synchronization support for
tokens in the third-party system.

To configure a RADIUS server for OTP validation and to add a user to the proxy server:

Syst em- Level Aut hent icat ion Guide

4 2

1. Make sure that the radius user authentication method is enabled. See Section 2.3.5.1.1,
“Defining Authentication Methods” .

2. Run ipa radiusproxy-add testproxy and follow subsequent instructions to add a
RADIUS proxy.

3. Run ipa user-mod radiususer --radius=testproxy to assign a user to this proxy.

4. If it is required, configure the user name to be sent to RADIUS by running ipa user-mod
radiususer --radius-username=myradiususer.

5. The user OTP authentication will now be processed through the RADIUS proxy server.

When the user is ready to be migrated to the IdM native OTP system, you can simply remove the
RADIUS proxy assignment for the user.

2.3.5 .6 . T o ken Synchro nizat io n

If a token falls out of synchronization, it cannot be used for a successful authentication anymore. To
synchronize a token again, click on the Sync OTP Token button on the IdM web UI login page or
run ipa otptoken-sync from the command line. You will be asked to enter your password and two
token codes in a row.

Note

A user can re-synchonize a token regardless of what token type it is and whether or not the
user has permission to modify the token settings.

2.3.6. Fingerprints

2.3.6 .1 . Using Fingerprint Aut hent icat io n in t he UI

When there is appropriate hardware available, the Enable fingerprint reader support
option allows fingerprint scans to be used to authenticate local users in addition to other credentials.

Chapt er 2 . Configuring Syst em Aut hent icat ion

4 3

Figure 2.8. Fingerprint Opt ions

2.3.6 .2 . Co nfiguring Fingerprint Aut hent icat io n in t he Co mmand Line

There is one option to enable support for fingerprint readers. This option can be used alone or in
conjunction with other authconfig settings, like LDAP user stores.

Syst em- Level Aut hent icat ion Guide

4 4

[root@server ~]# authconfig --enablefingerprint --update

2.4 . Managing Kickstart and Configurat ion Files

The --update option updates all of the configuration files with the configuration changes. There are
a couple of alternative options with slightly different behavior:

--kickstart writes the updated configuration to a kickstart file.

--test prints the full configuration, with changes, to stdout but does not edit any configuration
files.

Additionally, authconfig can be used to back up and restore previous configurations. All archives
are saved to a unique subdirectory in the /var/lib/authconfig/ directory. For example, the --
savebackup option gives the backup directory as 2011-07-01:

[root@server ~]# authconfig --savebackup=2011-07-01

This backs up all of the authentication configuration files beneath the
/var/lib/authconfig/backup-2011-07-01 directory.

Any of the saved backups can be used to restore the configuration using the --restorebackup
option, giving the name of the manually-saved configuration:

[root@server ~]# authconfig --restorebackup=2011-07-01

Additionally, authconfig automatically makes a backup of the configuration before it applies any
changes (with the --update option). The configuration can be restored from the most recent
automatic backup, without having to specify the exact backup, using the --restorelastbackup
option.

2.5. Enabling Custom Home Directories

If LDAP users have home directories that are not in /home and the system is configured to create
home directories the first time users log in, then these directories are created with the wrong
permissions.

1. Apply the correct SELinux context and permissions from the /home directory to the home
directory that is created on the local system. For example:

[root@server ~]# semanage fcontext -a -e /home /home/locale

2. Install the oddjob-mkhomedir package on the system.

This package provides the pam_oddjob_mkhomedir.so library, which the authconfig
command uses to create home directories. The pam_oddjob_mkhomedir.so library, unlike
the default pam_mkhomedir.so library, can create SELinux labels.

The authconfig command automatically uses the pam_oddjob_mkhomedir.so library if
it is available. Otherwise, it will default to using pam_mkhomedir.so .

3. Make sure the oddjobd service is running.

Chapt er 2 . Configuring Syst em Aut hent icat ion

4 5

4. Re-run the authconfig command and enable home directories. In the command line, this is
done through the --enablemkhomedir option.

[root@server ~]# authconfig --enablemkhomedir --update

In the UI, there is an option in the Advanced Options tab (Create home directories
on the first login) to create a home directory automatically the first time that a user
logs in.

Syst em- Level Aut hent icat ion Guide

4 6

Figure 2.9 . Home Directory Opt ion

This option is beneficial with accounts that are managed centrally, such as with LDAP.
However, this option should not be selected if a system like automount is used to manage
user home directories.

Chapt er 2 . Configuring Syst em Aut hent icat ion

4 7

If home directories were created before the home directory configuration was changed, then correct
the permissions and SELinux contexts. For example:

[root@server ~]# semanage fcontext -a -e /home /home/locale
restorecon -R -v /home/locale

2.6. Saving and Restoring Configurat ion

Changing authentication settings can be problematic. Improperly changing the configuration can
wrongly exclude users who should have access, can cause connections to the identity store to fail,
or can even lock all access to a system.

Before editing the authentication configuration, it is strongly recommended that administrators take a
backup of all configuration files. This is done with the --savebackup option.

[root@server ~]# authconfig --savebackup=/backups/authconfigbackup20150701

The authentication configuration can be restored to any previous saved version using the --
restorebackup option, with the name of the backup to use.

[root@server ~]# authconfig --
restorebackup=/backups/authconfigbackup20150701

The authconfig command saves an automatic backup every time the configuration is altered. It is
possible to restore the most recently-created automatic backup automatically by using the --
restorelastbackup option.

[root@server ~]# authconfig --restorelastbackup

[1] To d o wnlo ad FreeOTP Authenticator, see the FreeOTP so urce p ag e.

Syst em- Level Aut hent icat ion Guide

4 8

https://fedorahosted.org/freeotp/

Part II. Identity and Authentication Stores

Part II. Ident it y and Aut hent icat ion St ores

4 9

Chapter 3. Using and Caching Credentials with SSSD

The System Security Services Daemon (SSSD) provides access to different identity and
authentication providers. This service ties a local system to a larger backend system. That can be a
simple LDAP directory, domains for Active Directory or IdM in Red Hat Enterprise Linux, or Kerberos
realms.

SSSD configures a way to connect to an identity store to retrieve authentication information and then
uses that to create a local cache of users and credentials. With some types of identity providers —
including Active Directory — SSSD also pulls in authorization information.

SSSD is an intermediary between local clients and any configured data store. This relationship
brings a number of benefits for administrators:

Reducing the load on identification/authentication servers. Rather than having every client service
attempt to contact the identification server directly, all of the local clients can contact SSSD which
can connect to the identification server or check its cache.

Permitting offline authentication. By default, SSSD keeps a cache of user identities (user name, UID,
GID). You should also explicitly enable SSSD to keep a cache of credentials, that is, hashed
passwords, that SSSD retrieves from remote services. Keeping these caches allows users to
authenticate to resources successfully, even if the remote identification server is offline or the local
machine is offline.

Using a single user account. Remote users frequently have two (or even more) user accounts, such
as one for their local system and one for the organizational system. This is necessary to connect
to a virtual private network (VPN). Because SSSD supports caching and offline authentication,
remote users can connect to network resources simply by authenticating to their local machine
and then SSSD maintains their network credentials.

SSSD caches those users and credentials, so if the local system or the identity provider go offline,
the user credentials are still available to services to verify.

3.1. The Basics of SSSD Configurat ion

SSSD is a local service which connects a system to a larger, external identity service. This is done by
configuring domains in the SSSD configuration file. Each domain represents a different, external data
source. Domains always represent an identity provider which supplies user information and,
optionally, define other providers for different kinds of operations, such as authentication or
password changes. (The identity provider can also be used for all operations, if all operations are
performed within a single domain or server.)

Note

SSSD allows all user identities to be created and maintained in a separate, external identity
source. For Windows integration, then the Active Directory domain can be used to manage
user accounts (as it is with most environments). Local system users do not need to be created
or synced with user accounts in Active Directory — SSSD uses those Windows identities and
lets those Windows users access the local system and local services.

SSSD also defines which services on the system use SSSD for credentials caching and user
accounts. These relate to foundational security services such as the Name Service Switch (NSS) and
pluggable authentication modules (PAM), which are then used by higher-level applications.

Syst em- Level Aut hent icat ion Guide

50

3.1.1. Set t ing up the sssd.conf File

SSSD services and domains are configured in a .conf file. By default, this is
/etc/sssd/sssd.conf — although that file must be created and configured manually, since
SSSD is not configured after installation.

3.1 .1 .1 . Creat ing t he sssd.co nf File

There are three parts of the SSSD configuration file:

[sssd], for general SSSD process and operational configuration; this basically lists the
configured services, domains, and configuration parameters for each

[service_name], for configuration options for each supported system service, as described in
Section 3.2, “SSSD and System Services”

[domain_type/DOMAIN_NAME], for configuration options for each configured identity provider

Important

While services are optional, at least one identity provider domain must be configured
before the SSSD service can be started.

Example 3.1. Simple sssd.conf File

[sssd]
domains = LOCAL
services = nss
config_file_version = 2

[nss]
filter_groups = root
filter_users = root

[domain/LOCAL]
id_provider = local
auth_provider = local
access_provider = permit

The [sssd] section has three important parameters:

domains lists all of the domains, configured in the sssd.conf, which SSSD uses as identity
providers. If a domain is not listed in the domains key, it is not used by SSSD, even if it has a
configuration section.

services lists all of the system services, configured in the sssd.conf, which use SSSD; when
SSSD starts, the corresponding SSSD service is started for each configured system service. If a
service is not listed in the services key, it is not used by SSSD, even if it has a configuration
section.

config_file_version sets the version of the configuration file to set file format expectations.
This is version 2, for all recent SSSD versions.

Chapt er 3. Using and Caching Credent ials wit h SSSD

51

Note

Even if a service or domain is configured in the sssd.conf file, SSSD does not interact with
that service or domain unless it is listed in the services or domains parameters,
respectively, in the [sssd] section.

Other configuration parameters are listed in the sssd.conf man page.

Each service and domain parameter is described in its respective configuration section in this
chapter and in their man pages.

3.1 .1 .2 . Using a Cust o m Co nfigurat io n File

By default, the sssd process assumes that the configuration file is /etc/sssd/sssd.conf.

An alternative file can be passed to SSSD by using the -c option with the sssd command:

[root@server ~]# sssd -c /etc/sssd/customfile.conf --daemon

3.1 .1 .3. Addit io nal Reso urces

While this chapter covers the basics of configuring services and domains in SSSD, this is not a
comprehensive resource. Many other configuration options are available for each functional area in
SSSD; check out the man page for the specific functional area to get a complete list of options.

Some of the common man pages are listed in Table 3.1, “A Sampling of SSSD Man Pages” . There is
also a complete list of SSSD man pages in the "See Also" section of the sssd(8) man page.

Table 3.1. A Sampling of SSSD Man Pages

Funct ional Area Man Page
General Configuration sssd.conf(8)
sudo Services sssd-sudo
LDAP Domains sssd-ldap
Active Directory Domains sssd-ad

sssd-ldap

Identity Management (IdM or IPA) Domains sssd-ipa

sssd-ldap

Kerberos Authentication for Domains sssd-krb5
OpenSSH Keys sss_ssh_authorizedkeys

sss_ssh_knownhostsproxy

Cache Maintenance sss_cache (cleanup)

sss_useradd, sss_usermod, sss_userdel,
sss_seed (user cache entry management)

3.1.2. Start ing and Stopping SSSD

Syst em- Level Aut hent icat ion Guide

52

3.1.2. Start ing and Stopping SSSD

Important

Configure at least one domain before starting SSSD for the first time. See Section 3.3, “SSSD
and Identity Providers (Domains)” .

To start or stop SSSD, use the systemctl utility:

[root@server ~]# systemctl start sssd.service

[root@server ~]# systemctl stop sssd.service

By default, SSSD is not configured to start automatically. To configure SSSD to start automatically
during system boot, run the systemctl enable command:

[root@server ~]# systemctl enable sssd.service

For more information on managing services using systemctl , see the "Managing System Services"
section in the Red Hat Enterprise Linux 7 System Administrator's Guide.

3.2. SSSD and System Services

SSSD and its associated services are configured in the /etc/sssd/sssd.conf file. The [sssd]
section also lists the services that are active and should be started when sssd starts within the
services directive.

SSSD can provide credentials caches for several system services:

A Name Service Switch (NSS) provider service that answers name service requests from the
sssd_nss module. This is configured in the [nss] section of the SSSD configuration.

This is described in Section 3.2.1, “Configuring Services: NSS” .

A PAM provider service that manages a PAM conversation through the sssd_pam module. This is
configured in the [pam] section of the configuration.

This is described in Section 3.2.2, “Configuring Services: PAM” .

An SSH provider service that defines how SSSD manages the known_hosts file and other key-
related configuration. Using SSSD with OpenSSH is described in Section 3.2.5, “Configuring
Services: OpenSSH and Cached Keys” .

An autofs provider service that connects to an LDAP server to retrieve configured mount
locations. You can set basic configuration in an [autofs] section in the configuration file; the
options for [autofs] are described in the sssd-ldap(5) man page in the "Autofs Options"
section. Other configuration options can be set as part of an LDAP identity provider in a
[domain/NAME] section in the configuration file.

This is described in Section 3.2.3, “Configuring Services: autofs” .

A sudo provider service that connects to an LDAP server to retrieve configured sudo policies.
You can set basic configuration in a [sudo] section in the configuration file; the options for
[sudo] are described in the sssd-ldap(5) man page in the "Sudo Options" section. Other

Chapt er 3. Using and Caching Credent ials wit h SSSD

53

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#sect-Managing_Services_with_systemd-Services

configuration options can be set as part of an LDAP identity provider in a [domain/NAME]
section in the configuration file. The sssd-sudo(5) man page also contains useful information
on how to configure sudo to work with sssd .

This is described in Section 3.2.4, “Configuring Services: sudo” .

A PAC responder service that defines how SSSD works with Kerberos to manage Active Directory
users and groups. This is specifically part of managing Active Directory identity providers with
domains.

3.2.1. Configuring Services: NSS

SSSD provides an NSS module, sssd_nss, which instructs the system to use SSSD to retrieve user
information. The NSS configuration must include a reference to the SSSD module, and then the
SSSD configuration sets how SSSD interacts with NSS.

3.2 .1 .1 . Abo ut NSS Service Maps and SSSD

The Name Service Switch (NSS) provides a central configuration for services to look up a number of
configuration and name resolution services. NSS provides one method of mapping system identities
and services with configuration sources.

SSSD works with NSS as a provider services for several types of NSS maps:

Passwords (passwd)

User groups (shadow)

Groups (groups)

Netgroups (netgroups)

Services (services)

3.2 .1 .2 . Co nfiguring NSS Services t o Use SSSD

NSS can use multiple identity and configuration providers for any and all of its service maps. The
default is to use system files for services; for SSSD to be included, the nss_sss module has to be
included for the desired service type.

1. Use the Authentication Configuration tool to enable SSSD. This automatically configured the
nsswitch.conf file to use SSSD as a provider.

[root@server ~]# authconfig --enablesssd --update

This automatically configures the password, shadow, group, and netgroups services maps to
use the SSSD module:

passwd: files sss
shadow: files sss
group: files sss

netgroup: files sss

2. The services map is not enabled by default when SSSD is enabled with authconfig . To
include that map, open the nsswitch.conf file and add the sss module to the services
map:

Syst em- Level Aut hent icat ion Guide

54

[root@server ~]# vim /etc/nsswitch.conf

...
services: file sss
...

3.2 .1 .3. Co nfiguring SSSD t o Wo rk wit h NSS

The options and configuration that SSSD uses to service NSS requests are configured in the SSSD
configuration file, in the [nss] services section.

1. Open the sssd.conf file.

[root@server ~]# vim /etc/sssd/sssd.conf

2. Make sure that NSS is listed as one of the services that works with SSSD.

[sssd]
config_file_version = 2
sbus_timeout = 30
services = nss, pam

3. In the [nss] section, change any of the NSS parameters. These are listed in Table 3.2,
“SSSD [nss] Configuration Parameters” .

[nss]
filter_groups = root
filter_users = root
entry_cache_timeout = 300
entry_cache_nowait_percentage = 75

4. Restart SSSD.

[root@server ~]# systemctl restart sssd.service

Table 3.2. SSSD [nss] Conf igurat ion Parameters

Parameter Value Format Descript ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

55

entry_cache_nowait_percentag
e

integer Specifies how long sssd_nss
should return cached entries
before refreshing the cache.
Setting this to zero (0) disables
the entry cache refresh.

This configures the entry cache
to update entries in the
background automatically if
they are requested if the time
before the next update is a
certain percentage of the next
interval. For example, if the
interval is 300 seconds and the
cache percentage is 75, then
the entry cache will begin
refreshing when a request
comes in at 225 seconds —
75% of the interval.

The allowed values for this
option are 0 to 99, which sets
the percentage based on the
entry_cache_timeout value.
The default value is 50%.

entry_negative_timeout integer Specifies how long, in seconds,
sssd_nss should cache
negative cache hits. A negative
cache hit is a query for an
invalid database entries,
including non-existent entries.

filter_users, filter_groups string Tells SSSD to exclude certain
users from being fetched from
the NSS database. This is
particularly useful for system
accounts such as root.

filter_users_in_groups Boolean Sets whether users listed in the
filter_users list appear in
group memberships when
performing group lookups. If
set to FALSE, group lookups
return all users that are
members of that group. If not
specified, this value defaults to
true, which filters the group
member lists.

Parameter Value Format Descript ion

Syst em- Level Aut hent icat ion Guide

56

override_homedir string Overrides the user's home
directory. This can be an
absolute value or a template.
The template takes the
following variables:

%u
login name

%U
UID number

%d
domain name

%f
fully qualified user
name (user@domain)

%o
The original home
directory retrieved
from the identity
provider.

%%
a literal '% '

This option can also be set
globally or per domain.

For example:

override_homedir =
/home/%u

This is not set by default; in that
case, the value is retrieved from
the LDAP directory (the identity
provider).

fallback_homedir string Sets a default template for a
user's home directory if one is
not specified explicitly by the
domain's data provider.

The available values for this
option are the same as for
override_homedir.

For example:

override_homedir =
/home/%u

By default, this is not set and
there is no substitute value if a
user home directory is not set.

Parameter Value Format Descript ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

57

override_shell string Overrides the login shell for all
users. This option can be
specified globally in the NSS
service section or per domain.

By default, this is not set, and
SSSD uses the value retrieved
from the LDAP identity provider.

allowed_shells string Restricts user shell to one of the
listed values. The list is
evaluate in strict order:

1. Any shell present
/etc/shells.

2. Next, a shell in the
allowed_shells list
which is specified in the
shell_fallback
parameter for SSSD.

3. If a shell is not in the
/etc/shells or
allowed_shells
lists, then a nologin
shell.

4. An empty string for shell
is passed as-is to libc.

The “ /etc/shells” is only read on
SSSD startup, which means
that a restart of the SSSD is
required in case a new shell is
installed.

By default, this is not set, and
the user shell is used.

vetoed_shells string Replaces any instance of the
listed shells with the shell
specified in the
shell_fallback parameter.

shell_fallback string The default shell to use if an
allowed shell is not installed on
the machine.

The default value is /bin/sh.

Parameter Value Format Descript ion

Syst em- Level Aut hent icat ion Guide

58

default_shell String Sets the default shell to use if
the provider does not return
one during lookup. This option
supersedes any other shell
options if it takes effect and can
be set either in the NSS section
or per domain.

By default, this is not set and
returns NULL is no shell is
specified. This relies on libc
to supply a value, sich as
/bin/sh.

get_domains_timeout Integer Specifies the time in seconds
for which the list of subdomains
will be considered valid.

The default is 60 seconds.

memcache_timeout Integer Specifies the time in seconds
for which records in the in-
memory cache will be valid.

The default is 300 seconds.

debug_level integer, 0 - 9 Sets a debug logging level.
reconnection_retries integer Sets the number of times

services attempt to reconnect in
case a data provider crashes
or restarts.

The default is 3.

Parameter Value Format Descript ion

3.2.2. Configuring Services: PAM

Warning

A mistake in the PAM configuration file can lock users out of the system completely. Always
back up the configuration files before performing any changes, and keep a session open so
that any changes can be reverted.

SSSD provides a PAM module, sssd_pam, which instructs the system to use SSSD to retrieve user
information. The PAM configuration must include a reference to the SSSD module, and then the
SSSD configuration sets how SSSD interacts with PAM.

To configure the PAM service:

1. Use authconfig to enable SSSD for system authentication.

authconfig --enablesssd --enablesssdauth --update

Chapt er 3. Using and Caching Credent ials wit h SSSD

59

This automatically updates the PAM configuration to reference all of the SSSD modules:

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required pam_env.so
auth sufficient pam_unix.so nullok try_first_pass
auth requisite pam_succeed_if.so uid >= 500 quiet
auth sufficient pam_sss.so use_first_pass
auth required pam_deny.so

account required pam_unix.so
account sufficient pam_localuser.so
account sufficient pam_succeed_if.so uid < 500 quiet
account [default=bad success=ok user_unknown=ignore] pam_sss.so
account required pam_permit.so

password requisite pam_pwquality.so try_first_pass retry=3
password sufficient pam_unix.so sha512 shadow nullok
try_first_pass use_authtok
password sufficient pam_sss.so use_authtok
password required pam_deny.so

session optional pam_keyinit.so revoke
session required pam_limits.so
session [success=1 default=ignore] pam_succeed_if.so service in
crond quiet use_uid
session sufficient pam_sss.so
session required pam_unix.so

These modules can be set to include statements, as necessary.

2. Open the sssd.conf file.

vim /etc/sssd/sssd.conf

3. Make sure that PAM is listed as one of the services that works with SSSD.

[sssd]
config_file_version = 2
sbus_timeout = 30
services = nss, pam

4. In the [pam] section, change any of the PAM parameters. These are listed in Table 3.3,
“SSSD [pam] Configuration Parameters” .

[pam]
offline_credentials_expiration = 2
offline_failed_login_attempts = 3
offline_failed_login_delay = 5

5. Restart SSSD.

[root@server ~]# systemctl restart sssd.service

Syst em- Level Aut hent icat ion Guide

60

Table 3.3. SSSD [pam] Conf igurat ion Parameters

Parameter Value Format Descript ion
offline_credentials_expiration integer Sets how long, in days, to allow

cached logins if the
authentication provider is
offline. This value is measured
from the last successful online
login. If not specified, this
defaults to zero (0), which is
unlimited.

offline_failed_login_attempts integer Sets how many failed login
attempts are allowed if the
authentication provider is
offline. If not specified, this
defaults to zero (0), which is
unlimited.

offline_failed_login_delay integer Sets how long to prevent login
attempts if a user hits the failed
login attempt limit. If set to zero
(0), the user cannot
authenticate while the provider
is offline once he hits the failed
attempt limit. Only a successful
online authentication can re-
enable offline authentication. If
not specified, this defaults to
five (5).

reconnection_retries integer Sets the number of times
services attempt to reconnect in
case a data provider crashes
or restarts.

The default is 3.

pam_verbosity integer, 0 - 3 Controls how detailed is the
information displayed to the
user during authentication. The
higher the value, the more
information SSSD displays.
The default is 1.

pam_id_timeout integer On a per-client-application
basis, this option controls for
how long – in seconds – SSSD
caches the user identity
information, to avoid excessive
round-trips to the identity
provider. The default is 5.

Chapt er 3. Using and Caching Credent ials wit h SSSD

61

pam_pwd_expiration_warning integer Sets the number of days before
a password expires that the
users should be warned about
the impending expiration. The
default is 0 , meaning that
SSSD automatically displays
the warning if it receives the
information about the
expiration time from the back-
end server.

Parameter Value Format Descript ion

For more information about the SSSD [pam] configuration parameters in sssd.conf, see the
sssd.conf(5) man page.

3.2.3. Configuring Services: autofs

3.2 .3.1 . Abo ut Aut o mo unt , LDAP, and SSSD

Automount maps are commonly flat files, which define a relationship between a map, a mount
directory, and a fileserver. (Automount is described in the Storage Administration Guide.)

For example, let's say that there is a fileserver called nfs.example.com which hosts the directory
pub, and automount is configured to mount directories in the /shares/ directory. So, the mount
location is /shares/pub. All of the mounts are listed in the auto.master file, which identifies the
different mount directories and the files which configure them. The auto.shares file then identifies
each file server and mount directory which goes into the /shares/ directory. The relationships could
be viewed like this:

 auto.master
 _________|__________
 | |
 | |
/shares/ auto.shares
 |
 |
 |
 nfs.example.com:pub

Every mount point, then, is defined in two different files (at a minimum): the auto.master and
auto.whatever file, and those files have to be available to each local automount process.

One way for administrators to manage that for large environments is to store the automount
configuration in a central LDAP directory, and just configure each local system to point to that LDAP
directory. That means that updates only need to be made in a single location, and any new maps are
automatically recognized by local systems.

For automount-LDAP configuration, the automount files are stored as LDAP entries, which are then
translated into the requisite automount files. Each element is then translated into an LDAP attribute.

The LDAP entries look like this:

container entry
dn: cn=automount,dc=example,dc=com
objectClass: nsContainer

Syst em- Level Aut hent icat ion Guide

62

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/index.html

objectClass: top
cn: automount

master map entry
dn: automountMapName=auto.master,cn=automount,dc=example,dc=com
objectClass: automountMap
objectClass: top
automountMapName: auto.master

shares map entry
dn: automountMapName=auto.shares,cn=automount,dc=example,dc=com
objectClass: automountMap
objectClass: top
automountMapName: auto.shares

shares mount point
dn:
automountKey=/shares,automountMapName=auto.master,cn=automount,dc=exampl
e,dc=com
objectClass: automount
objectClass: top
automountKey: /shares
automountInformation: auto.shares

pub mount point
dn:
automountKey=pub,automountMapName=auto.shares,cn=automount,dc=example,dc
=com
objectClass: automount
objectClass: top
automountKey: pub
automountInformation: filer.example.com:/pub
description: pub

The schema elements, then, match up to the structure like this (with the RFC 2307 schema):

 auto.master
 objectclass: automountMap
 filename attribute: automountMapName
 _______________________|_________________________
 | |
 | |
/shares/ auto.shares
objectclass: automount objectclass: automountMap
mount point name attribute: automountKey filename attribute:
automountMapName
map name attribute: automountInformation |
 |
 |
 nfs.example.com:pub
 objectclass: automount
 mount point name attribute:
automountKey
 fileserver attribute:
automountInformation

Chapt er 3. Using and Caching Credent ials wit h SSSD

63

autofs uses those schema elements to derive the automount configuration. The
/etc/sysconfig/autofs file identifies the LDAP server, directory location, and schema elements
used for automount entities:

LDAP_URI=ldap://ldap.example.com
SEARCH_BASE="cn=automount,dc=example,dc=com"
MAP_OBJECT_CLASS="automountMap"
ENTRY_OBJECT_CLASS="automount"
MAP_ATTRIBUTE="automountMapName"
ENTRY_ATTRIBUTE="automountKey"
VALUE_ATTRIBUTE="automountInformation"

Rather than pointing the automount configuration to the LDAP directory, it can be configured to point
to SSSD. SSSD, then, stores all of the information that automount needs, and as a user attempts to
mount a directory, that information is cached into SSSD. This offers several advantages for
configuration — such as failover, service discovery, and timeouts — as well as performance
improvements by reducing the number of connections to the LDAP server. Most important, using
SSSD allows all mount information to be cached, so that clients can still successfully mount
directories even if the LDAP server goes offline.

3.2 .3.2 . Co nfiguring aut o fs Services in SSSD

1. Make sure that the autofs package is installed.

2. Open the sssd.conf file.

[root@server ~]# vim /etc/sssd/sssd.conf

3. Add the autofs service to the list of services that SSSD manages.

[sssd]
services = nss,pam,autofs
....

4. Create a new [autofs] service configuration section. This section can be left blank; there is
only one configurable option, for timeouts for negative cache hits.

This section is required, however, for SSSD to recognize the autofs service and supply the
default configuration.

[autofs]

5. The automount information is read from a configured LDAP domain in the SSSD
configuration, so an LDAP domain must be available. If no additional settings are made, then
the configuration defaults to the RFC 2307 schema and the LDAP search base
(ldap_search_base) for the automount information. This can be customized:

The directory type, autofs_provider; this defaults to the id_provider value; a value
of none explicitly disables autofs for the domain.

The search base, ldap_autofs_search_base.

The object class to use to recognize map entries, ldap_autofs_map_object_class

Syst em- Level Aut hent icat ion Guide

64

The attribute to use to recognize map names, ldap_autofs_map_name

The object class to use to recognize mount point entries,
ldap_autofs_entry_object_class

The attribute to use to recognize mount point names, ldap_autofs_entry_key

The attribute to use for additional configuration information for the mount point,
ldap_autofs_entry_value

For example:

[domain/LDAP]
...
autofs_provider=ldap
ldap_autofs_search_base=cn=automount,dc=example,dc=com
ldap_autofs_map_object_class=automountMap
ldap_autofs_entry_object_class=automount
ldap_autofs_map_name=automountMapName
ldap_autofs_entry_key=automountKey
ldap_autofs_entry_value=automountInformation

6. Save and close the sssd.conf file.

7. Configure autofs to look for the automount map information in SSSD by editing the
nsswitch.conf file and changing the location from ldap to sss:

[root@server ~]# vim /etc/nsswitch.conf

automount: files sss

8. Restart SSSD.

[root@server ~]# systemctl restart sssd.service

3.2.4 . Configuring Services: sudo

3.2 .4 .1 . Abo ut sudo , LDAP, and SSSD

sudo rules are defined in the sudoers file, which must be distributed separately to every machine to
maintain consistency.

One way for administrators to manage that for large environments is to store the sudo configuration
in a central LDAP directory, and just configure each local system to point to that LDAP directory. That
means that updates only need to be made in a single location, and any new rules are automatically
recognized by local systems.

For sudo -LDAP configuration, each sudo rule is stored as an LDAP entry, with each component of
the sudo rule defined in an LDAP attribute.

The sudoers rule looks like this:

Defaults env_keep+=SSH_AUTH_SOCK
...
%wheel ALL=(ALL) ALL

Chapt er 3. Using and Caching Credent ials wit h SSSD

65

The LDAP entry looks like this:

sudo defaults
dn: cn=defaults,ou=SUDOers,dc=example,dc=com
objectClass: top
objectClass: sudoRole
cn: defaults
description: Default sudoOptions go here
sudoOption: env_keep+=SSH_AUTH_SOCK

sudo rule
dn: cn=%wheel,ou=SUDOers,dc=example,dc=com
objectClass: top
objectClass: sudoRole
cn: %wheel
sudoUser: %wheel
sudoHost: ALL
sudoCommand: ALL

Note

SSSD only caches sudo rules which apply to the local system, depending on the value of the
sudoHost attribute. This can mean that the sudoHost value is set to ALL, uses a regular
expression that matches the hostname, matches the systems netgroup, or matches the systems
hostname, fully-qualified domain name, or IP address.

The sudo service can be configured to point to an LDAP server and to pull its rule configuration from
those LDAP entries. Rather than pointing the sudo configuration to the LDAP directory, it can be
configured to point to SSSD. SSSD, then, stores all of the information that sudo needs, and every
time a user attempts a sudo -related operation, the latest sudo configuration can be pulled from the
LDAP directory (through SSSD). SSSD, however, also caches all of the sudo riles, so that users can
perform tasks, using that centralized LDAP configuration, even if the LDAP server goes offline.

3.2 .4 .2 . Co nfiguring sudo wit h SSSD

All of the SSSD sudo configuration options are listed in the sssd-ldap(5) man page.

To configure the sudo service:

1. Open the sssd.conf file.

[root@server ~]# vim /etc/sssd/sssd.conf

2. Add the sudo service to the list of services that SSSD manages.

[sssd]
services = nss,pam,sudo
....

3. Create a new [sudo] service configuration section. This section can be left blank; there is
only one configurable option, for evaluating the sudo not before/after period.

Syst em- Level Aut hent icat ion Guide

66

This section is required, however, for SSSD to recognize the sudo service and supply the
default configuration.

[sudo]

4. The sudo information is read from a configured LDAP domain in the SSSD configuration, so
an LDAP domain must be available. For an LDAP provider, these parameters are required:

The directory type, sudo_provider; this is always ldap.

The search base, ldap_sudo_search_base.

The URI for the LDAP server, ldap_uri .

For example:

[domain/LDAP]
id_provider = ldap

sudo_provider = ldap
ldap_uri = ldap://example.com
ldap_sudo_search_base = ou=sudoers,dc=example,dc=com

Setting IdM as the ID provider automatically enables the sudo provider, so it is not necessary
to specify sudo_provider = ipa in the configuration file.

[domain/IDM]
id_provider = ipa
ipa_domain = example.com
ipa_server = ipa.example.com

5. Set the intervals to use to refresh the sudo rule cache.

The cache for a specific system user is always checked and updated whenever that user
performs a task. However, SSSD caches all rules which relate to the local system. That
complete cache is updated in two ways:

Incrementally, meaning only changes to rules since the last full update
(ldap_sudo_smart_refresh_interval , the time in seconds); the default is 15
minutes,

Fully, which dumps the entire caches and pulls in all of the current rules on the LDAP
server(ldap_sudo_full_refresh_interval , the time in seconds); the default is six
hours.

These two refresh intervals are set separately. For example:

[domain/LDAP]
...
ldap_sudo_full_refresh_interval=86400
ldap_sudo_smart_refresh_interval=3600

Chapt er 3. Using and Caching Credent ials wit h SSSD

67

Note

SSSD only caches sudo rules which apply to the local system. This can mean that the
sudoHost value is set to ALL, uses a regular expression that matches the hostname,
matches the systems netgroup, or matches the systems hostname, fully-qualified
domain name, or IP address.

6. Optionally, set any values to change the schema used for sudo rules.

Schema elements are set in the ldap_sudorule_* attributes. By default, all of the schema
elements use the schema defined in sudoers.ldap; these defaults will be used in almost all
deployments.

7. Save and close the sssd.conf file.

8. Configure sudo to look for rules configuration in SSSD by editing the nsswitch.conf file
and adding the sss location:

[root@server ~]# vim /etc/nsswitch.conf

sudoers: files sss

9. Restart SSSD.

[root@server ~]# systemctl restart sssd.service

3.2.5. Configuring Services: OpenSSH and Cached Keys

OpenSSH creates secure, encrypted connections between two systems. One machine authenticates
to another machine to allow access; the authentication can be of the machine itself for server
connections or of a user on that machine.

This authentication is performed through public-private key pairs that identify the authenticating user
or machine. The remote machine or user attempting to access the machine presents a key pair. The
local machine then elects whether to trust that remote entity; if it is trusted, the public key for that
remote machine is stored in the known_hosts file or for the remote user in authorized_keys.
Whenever that remote machine or user attempts to authenticate again, the local system simply checks
the known_hosts or authorized_keys file first to see if that remote entity is recognized and
trusted. If it is, then access is granted.

The first problem comes in verifying those identities reliably.

The known_hosts file is a triplet of the machine name, its IP address, and its public key:

server.example.com,172.16.0.1 ssh-rsa
AbcdEfg1234ZYX098776/AbcdEfg1234ZYX098776/AbcdEfg1234ZYX098776=

The known_hosts file can quickly become outdated for a number of different reasons: systems
using DHCP cycle through IP addresses, new keys can be re-issued periodically, or virtual machines
or services can be brought online and removed. This changes the hostname, IP address, and key
triplet.

Syst em- Level Aut hent icat ion Guide

68

http://www.sudo.ws/sudo/sudoers.ldap.man.html

Administrators have to clean and maintain a current known_hosts file to maintain security. (Or
system users get in the habit of simply accepting any machine and key presented, which negates the
security benefits of key-based security.)

Additionally, a problem for both machines and users is distributing keys in a scalable way. Machines
can send their keys as part of establishing an encrypted session, but users have to supply their keys
in advance. Simply propagating and then updating keys consistently is a difficult administrative
task.

Lastly, SSH key and machine information are only maintained locally. There may be machines or
users on the network which are recognized and trusted by some systems and not by others because
the known_hosts file has not been updated uniformly.

The goal of SSSD is to server as a credentials cache. This includes working as a credentials cache
for SSH public keys for machines and users. OpenSSH is configured to reference SSSD to check for
cached keys; SSSD uses Red Hat Linux's Identity Management (IPA) domain as an identity, and
Identity Management actually stores the public keys and host information.

Note

Only Linux machines enrolled, or joined, in the Identity Management domain can use SSSD
as a key cache for OpenSSH. Other Unix machines and Windows machines must use the
regular authentication mechanisms with the known_hosts file.

3.2 .5 .1 . Co nfiguring OpenSSH t o Use SSSD fo r Ho st Keys

OpenSSH is configured in either a user-specific configuration file (~/.ssh/config) or a system-
wide configuration file (/etc/ssh/sshd_config). The user file has precedence over the system
settings and the first obtained value for a parameter is used.

In order to manage host keys, SSSD has a tool, sss_ssh_knownhostsproxy, which performs three
operations:

1. Retrieves the public host key from the enrolled Linux system.

2. Stores the host key in a custom hosts file, /var/lib/sss/pubconf/known_hosts.

3. Establishes a connection with the host machine, either a socket (the default) or a secure
connection.

This tool has the format:

sss_ssh_knownhostsproxy [-d sssd_domain] [-p ssh_port] HOSTNAME
[PROXY_COMMAND]

Table 3.4 . sss_ssh_knownhostsproxy Opt ions

Short Argument Long Argument Descript ion
HOSTNAME Gives the hostname of the host

to check and connect to. In the
OpenSSH configuration file,
this can be a token, %h.

Chapt er 3. Using and Caching Credent ials wit h SSSD

69

PROXY_COMMAND Passes a proxy command to
use to connect to the SSH
client. This is similar to running
ssh -o
ProxyCommand=value. This
option is used when running
sss_ssh_knownhostsproxy
from the command line or
through another script, but is
not necessary in the OpenSSH
configuration file.

-d sssd_domain --domain sssd_domain Only searches for public keys
in entries in the specified
domain. If not given, SSSD
searches for keys in all
configured domains.

-p port --port port Uses this port to connect to the
SSH client. By default, this is
port 22.

Short Argument Long Argument Descript ion

To use this SSSD tool, add or edit two parameters to the /etc/ssh/sshd_config or
~/.ssh/config file:

Specify the command to use to connect to the SSH client (ProxyCommand). This is the
sss_ssh_knownhostsproxy, with the desired arguments and hostname.

Specify the location of the SSSD hosts file, rather than the default known_hosts file
(GlobalKnownHostsFile). The SSSD hosts file is /var/lib/sss/pubconf/known_hosts.

For example, this looks for public keys in the SSSD domain and connects over whatever port and
host are supplied:

ProxyCommand /usr/bin/sss_ssh_knownhostsproxy -p %p %h
GlobalKnownHostsFile /var/lib/sss/pubconf/known_hosts

3.2 .5 .2 . Co nfiguring OpenSSH t o Use SSSD fo r User Keys

User keys are stored on a local system in the authorized_keys file for OpenSSH. As with hosts,
SSSD can maintain and automatically update a separate cache of user public keys for OpenSSH to
refer to. This is kept in the .ssh/sss_authorized_keys file.

OpenSSH is configured in either a user-specific configuration file (~/.ssh/config) or a system-
wide configuration file (/etc/ssh/sshd_config). The user file has precedence over the system
settings and the first obtained value for a parameter is used.

In order to manage user keys, SSSD has a tool, sss_ssh_authorizedkeys, which performs two
operations:

1. Retrieves the user's public key from the user entries in the Identity Management (IPA) domain.

2. Stores the user key in a custom file, .ssh/sss_authorized_keys, in the standard
authorized keys format.

This tool has the format:

Syst em- Level Aut hent icat ion Guide

70

sss_ssh_authorizedkeys [-d sssd_domain] USER

Table 3.5. sss_ssh_authoriz edkeys Opt ions

Short Argument Long Argument Descript ion
USER Gives the username or account

name for which to obtain the
public key. In the OpenSSH
configuration file, this can be
represented by a token, %u.

-d sssd_domain --domain sssd_domain Only searches for public keys
in entries in the specified
domain. If not given, SSSD
searches for keys in all
configured domains.

To configure OpenSSH to use SSSD for user keys, use the authorized key command. Specify the
command to run to retrieve user keys and the user under whose account it is run. For example:

AuthorizedKeysCommand /usr/bin/sss_ssh_authorizedkeys
AuthorizedKeysCommandUser nobody

3.3. SSSD and Ident it y Providers (Domains)

SSSD recognizes domains, which are entries within the SSSD configuration file associated with
different, external data sources. Domains are a combination of an identity provider (for user
information) and, optionally, other providers such as authentication (for authentication requests)
and for other operations, such as password changes. (The identity provider can also be used for all
operations, if all operations are performed within a single domain or server.)

SSSD works with different LDAP identity providers (including OpenLDAP, Red Hat Directory Server,
and Microsoft Active Directory) and can use native LDAP authentication, Kerberos authentication, or
provider-specific authentication protocols (such as Active Directory).

A domain configuration defines the identity provider, the authentication provider, and any specific
configuration to access the information in those providers. There are several types of identity and
authentication providers:

LDAP, for general LDAP servers

Active Directory (an extension of the LDAP provider type)

Identity Management (an extension of the LDAP provider type)

Local, for the local SSSD database

Proxy

Kerberos (authentication provider only)

The identity and authentication providers can be configured in different combinations in the domain
entry. The possible combinations are listed in Table 3.6, “ Identity Store and Authentication Type
Combinations” .

Table 3.6 . Ident ity Store and Authent icat ion Type Combinat ions

Chapt er 3. Using and Caching Credent ials wit h SSSD

71

Ident if icat ion Provider Authent icat ion Provider
Identity Management (LDAP) Identity Management (LDAP)
Active Directory (LDAP) Active Directory (LDAP)
Active Directory (LDAP) Kerberos
LDAP LDAP
LDAP Kerberos
proxy LDAP
proxy Kerberos
proxy proxy

Along with the domain entry itself, the domain name must be added to the list of domains that SSSD
will query. For example:

[sssd]
domains = LOCAL,Name
...

[domain/Name]
id_provider = type
auth_provider = type
provider_specific = value
global = value

global attributes are available to any type of domain, such as cache and time out settings. Each
identity and authentication provider has its own set of required and optional configuration
parameters.

Table 3.7. General [domain] Conf igurat ion Parameters

Parameter Value Format Descript ion
id_provider string Specifies the data backend to

use for this domain. The
supported identity backends
are:

ldap
ipa (Identity Management in
Red Hat Enterprise Linux)
ad (Microsoft Active
Directory)
proxy, for a legacy NSS
provider, such as nss_nis.
Using a proxy ID provider
also requires specifying the
legacy NSS library to load
to start successfully, set in
the proxy_lib_name
option.
local, the SSSD internal
local provider

Syst em- Level Aut hent icat ion Guide

72

auth_provider string Sets the authentication
provider used for the domain.
The default value for this option
is the value of id_provider.
The supported authentication
providers are ldap, ipa, ad,
krb5 (Kerberos), proxy, and
none.

min_id,max_id integer Optional. Specifies the UID and
GID range for the domain. If a
domain contains entries that
are outside that range, they are
ignored. The default value for
min_id is 1; the default value
for max_id is 0 , which is
unlimited.

Important

The default min_id
value is the same for all
types of identity provider.
If LDAP directories are
using UID numbers that
start at one, it could
cause conflicts with
users in the local
/etc/passwd file. To
avoid these conflicts, set
min_id to 1000 or
higher as possible.

cache_credentials Boolean Optional. Specifies whether to
store user credentials in the
local SSSD domain database
cache. The default value for
this parameter is false. Set
this value to true for domains
other than the LOCAL domain
to enable offline authentication.

entry_cache_timeout integer Optional. Specifies how long, in
seconds, SSSD should cache
positive cache hits. A positive
cache hit is a successful query.

Parameter Value Format Descript ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

73

use_fully_qualified_names Boolean Optional. Specifies whether
requests to this domain require
fully-qualified domain names. If
set to true, all requests to this
domain must use fully-qualified
domain names. It also means
that the output from the request
displays the fully-qualified
name. Restricting requests to
fully-qualified user names
allows SSSD to differentiate
between domains with users
with conflicting usernames.

If
use_fully_qualified_nam
es is set to false, it is
possible to use the fully-
qualified name in the requests,
but only the simplified version
is displayed in the output.

SSSD can only parse names
based on the domain name, not
the realm name. The same
name can be used for both
domains and realms, however.

Parameter Value Format Descript ion

3.3.1. Creat ing an LDAP Ident ity Provider

An LDAP domain simply means that SSSD uses an LDAP directory as the identity provider (and,
optionally, also as an authentication provider). SSSD supports several major directory services:

Red Hat Directory Server

OpenLDAP

Identity Management (IdM or IPA)

Microsoft Active Directory 2008 R2

Note

All of the parameters available to a general LDAP identity provider are also available to
Identity Management and Active Directory identity providers, which are subsets of the LDAP
provider.

3.3.1 .1 . Paramet ers fo r Co nfiguring an LDAP Do main

An LDAP directory can function as both an identity provider and an authentication provider. The
configuration requires enough information to identify and connect to the user directory in the LDAP
server, but the way that those connection parameters are defined is flexible.

Syst em- Level Aut hent icat ion Guide

74

Other options are available to provide more fine-grained control, like specifying a user account to
use to connect to the LDAP server or using different LDAP servers for password operations. The most
common options are listed in Table 3.8, “LDAP Domain Configuration Parameters” .

Note

Many other options are listed in the man page for LDAP domain configuration, sssd-
ldap(5).

Table 3.8. LDAP Domain Conf igurat ion Parameters

Parameter Descript ion
ldap_uri Gives a comma-separated list of the URIs of the

LDAP servers to which SSSD will connect. The
list is given in order of preference, so the first
server in the list is tried first. Listing additional
servers provides failover protection. This can be
detected from the DNS SRV records if it is not
given.

ldap_search_base Gives the base DN to use for performing LDAP
user operations.

Important

If used incorrectly, ldap_search_base
might cause SSSD lookups to fail.

With an AD provider, setting
ldap_search_base is not required. The AD
provider automatically discovers all the
necessary information. Red Hat recommends not
to set the parameter in this situation and instead
rely on what the AD provider discovers.

ldap_tls_reqcert Specifies how to check for SSL server
certificates in a TLS session. There are four
options:

never disables requests for certificates.
allow requests a certificate, but proceeds
normally even if no certificate is given or a
bad certificate is given.
try requests a certificate and proceeds
normally if no certificate is given, If a bad
certificate is given, the session terminates.
demand and hard are the same option. This
requires a valid certificate or the session is
terminated.

The default is hard.

Chapt er 3. Using and Caching Credent ials wit h SSSD

75

ldap_tls_cacert Gives the full path and file name to the file that
contains the CA certificates for all of the CAs that
SSSD recognizes. SSSD will accept any
certificate issued by these CAs. This uses the
OpenLDAP system defaults if it is not given
explicitly.

ldap_referrals Sets whether SSSD will use LDAP referrals,
meaning forwarding queries from one LDAP
database to another. SSSD supports database-
level and subtree referrals. For referrals within
the same LDAP server, SSSD will adjust the DN
of the entry being queried. For referrals that go
to different LDAP servers, SSSD does an exact
match on the DN. Setting this value to true
enables referrals; this is the default.

Referrals can negatively impact overall
performance because of the time spent
attempting to trace referrals. Disabling referral
checking can significantly improve performance.

Parameter Descript ion

Syst em- Level Aut hent icat ion Guide

76

ldap_schema Sets what version of schema to use when
searching for user entries. This can be
rfc2307, rfc2307bis, ad , or ipa. The default
is rfc2307.

In RFC 2307, group objects use a multi-valued
attribute, memberuid, which lists the names of
the users that belong to that group. In RFC
2307bis, group objects use the member
attribute, which contains the full distinguished
name (DN) of a user or group entry. RFC
2307bis allows nested groups using the
member attribute. Because these different
schema use different definitions for group
membership, using the wrong LDAP schema
with SSSD can affect both viewing and
managing network resources, even if the
appropriate permissions are in place.

For example, with RFC 2307bis, all groups are
returned when using nested groups or
primary/secondary groups.

$ id
uid=500(myserver)
gid=500(myserver)
groups=500(myserver),510(myotherg
roup)

If SSSD is using RFC 2307 schema, only the
primary group is returned.

This setting only affects how SSSD determines
the group members. It does not change the
actual user data.

ldap_search_timeout Sets the time, in seconds, that LDAP searches
are allowed to run before they are canceled and
cached results are returned. When an LDAP
search times out, SSSD automatically switches
to offline mode.

ldap_rfc2307_fallback_to_local_users Sets whether to check the local system users
(/etc/passwd) if an LDAP group member is not
found in the LDAP directory. This allows local
system users to be added to LDAP groups.

If this is set to false (the default), then any local
user is deleted when running id with an LDAP
provider, because SSSD uses only the LDAP
user accounts for identities.

ldap_network_timeout Sets the time, in seconds, SSSD attempts to poll
an LDAP server after a connection attempt fails.
The default is six seconds.

Parameter Descript ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

77

ldap_opt_timeout Sets the time, in seconds, to wait before aborting
synchronous LDAP operations if no response is
received from the server. This option also
controls the timeout when communicating with
the KDC in case of a SASL bind. The default is
five seconds.

Parameter Descript ion

3.3.1 .2 . Co nfiguring an LDAP Ident it y Pro vider

The LDAP configuration is very flexible, depending on your specific environment and the SSSD
behavior. These are some common examples of an LDAP domain, but the SSSD configuration is not
limited to these examples.

Note

Along with creating the domain entry, add the new domain to the list of domains for SSSD to
query in the sssd.conf file. For example:

domains = LOCAL,LDAP1,AD,PROXYNIS

Example 3.2. A Basic LDAP Domain Conf igurat ion

An LDAP domain requires three things:

An LDAP server

The search base

A way to establish a secure connection

The last item depends on the LDAP environment. SSSD requires a secure connection since it
handles sensitive information. This connection can be a dedicated TLS/SSL connection or it can
use Start TLS.

Using a dedicated TLS/SSL connection simply uses an LDAPS connection to connect to the server
and is therefore set as part of the ldap_uri option:

An LDAP domain
[domain/LDAP]
cache_credentials = true

id_provider = ldap
auth_provider = ldap

ldap_uri = ldaps://ldap.example.com:636
ldap_search_base = dc=example,dc=com

Syst em- Level Aut hent icat ion Guide

78

Using Start TLS requires a way to input the certificate information to establish a secure connection
dynamically over an insecure port. This is done using the ldap_id_use_start_tls option to
use Start TLS and then ldap_tls_cacert to identify the CA certificate which issued the SSL
server certificates.

An LDAP domain
[domain/LDAP]
cache_credentials = true

id_provider = ldap
auth_provider = ldap

ldap_uri = ldap://ldap.example.com
ldap_search_base = dc=example,dc=com
ldap_id_use_start_tls = true
ldap_tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

3.3.2. Creat ing an Ident ity Management (IdM) Ident ity Provider

The Identity Management (IdM or IPA) identity provider is an extension of a generic LDAP provider.
All of the configuration options for an LDAP provider are available to the IdM provider, as well as
some additional parameters which allow SSSD to work as a client of the IdM domain and extend IdM
functionality.

Identity Management can work as a provider for identities, authentication, access control rules, and
passwords, all of the *_provider parameters for a domain. Additionally, Identity Management has
configuration options within its own domain to manage SELinux policies, automount information,
and host-based access control. All of those features in IdM domains can be tied to SSSD
configuraiton, allowing those security-related policies to be applied and cached for system users.

Example 3.3. Basic IdM Provider

An IdM provider, like an LDAP provider, can be set to serve several different services, including
identity, authentication, and access control

For IdM servers, there are two additional settings which are very useful (although not required):

With the id_provider = ipa setting, use ldap_schema = ipa. The rfc2307 default
schema value is used only for id_provider = ldap.

Set SSSD to update the Identity Management domain's DNS server with the IP address of this
client when the client first connects to the IdM domain.

[sssd]
domains = local,example.com
...

[domain/example.com]
id_provider = ipa
ipa_server = ipaserver.example.com
ipa_hostname = ipa1.example.com
auth_provider = ipa
access_provider = ipa

Chapt er 3. Using and Caching Credent ials wit h SSSD

79

chpass_provider = ipa

set which schema to use
ldap_schema = ipa

automatically update IdM DNS records
dyndns_update = true

Identity Management defines and maintains security policies and identities for users across a Linux
domain. This includes access control policies, SELinux policies, and other rules. Some of these
elements in the IdM domain interact directly with SSSD, using SSSD as an IdM client — and those
features can be managed in the IdM domain entry in sssd.conf.

Most of the configuration parameters relate to setting schema elements (which is not relevant in most
deployments because IdM uses a fixed schema) and never need to be changed. In fact, none of the
features in IdM require client-side settings. But there may be circumstances where tweaking the
behavior is helpful.

Example 3.4 . IdM Provider with SELinux

IdM can define SELinux user policies for system users, so it can work as an SELinux provider for
SSSD. This is set in the selinux_provider parameter. The provider defaults to the
id_provider value, so this is not necessary to set explicitly to support SELinux rules. However, it
can be useful to explicitly disable SELinux support for the IdM provider in SSSD.

selinux_provider = ipa

Example 3.5. IdM Provider with Host -Base Access Contro l

IdM can define host-based access controls, restricting access to services or entire systems based
on what host a user is using to connect or attempting to connect to. This rules can be evaluated
and enforced by SSSD as part of the access provider behavior.

For host-based access controls to be in effect, the Identity Management server must be the access
provider, at a minimum.

There are two options which can be set for how SSSD evaluates host-based access control rules:

SSSD can evaluate what machine (source host) the user is using to connect to the IdM
resource; this is disabled by default, so that only the target host part of the rule is evaluated.

SSSD can refresh the host-based access control rules in its cache at a specified interval.

For example:

access_provider = ipa
ipa_hbac_refresh = 120

check for source machine rules; disabled by default

Example 3.6 . Ident ity Management with Cross-Realm Kerberos Trusts

Syst em- Level Aut hent icat ion Guide

80

Identity Management (IdM or IPA) can be configured with trusted relationships between Active
Directory DNS domains and Kerberos realms. This allows Active Directory users to access
services and hosts on Linux systems.

There are two configuration settings in SSSD that are used with cross-realm trusts:

A service that adds required data to Kerberos tickets

A setting to support subdomains

Kerberos T icket Data

Microsoft uses a special authorization structure called privileged access certificates or MS-PAC. A
PAC is embedded in a Kerberos ticket as a way of identifying the entity to other Windows clients
and servers in the Windows domain.

SSSD has a special PAC service which generates the additional data for Kerberos tickets. When
using an Active Directory domain, it may be necessary to include the PAC data for Windows users.
In that case, enable the pac service in SSSD:

[sssd]
services = nss, pam, pac
...

Windows Subdomains

Normally, a domain entry in SSSD corresponds directly to a single identity provider. However, with
IdM cross-realm trusts, the IdM domain can trust another domain, so that the domains are
transparent to each other. SSSD can follow that trusted relationship, so that if an IdM domain is
configured, any Windows domain is also automatically searched and supported by SSSD —
without having to be configured in a domain section in SSSD.

This is configured by adding the subdomains_provider parameter to the IdM domain section.
This is actually an optional parameter; if a subdomain is discovered, then SSSD defaults to using
the ipa provider type. However, this parameter can also be used to disable subdomain fetches by
setting a value of none.

[domain/IDM]
...
subdomains_provider = ipa
get_domains_timeout = 300

3.3.3. Creat ing an Act ive Directory Ident ity Provider

The most basic type of domain is an LDAP domain. Any LDAPv3 directory server can be configured
as an LDAP identity provider for an SSSD domain. Some specialty LDAP services have additional,
specific configuration, which can either simplify service-specific configuration or supply service-
specific functionality. One of those identity provider types is for Active Directory.

As shown in Example 3.1, “Simple sssd.conf File” , the SSSD configuration file has three major
sections: the first configures the SSSD service ([sssd]), the second configures system services
which will use SSSD as an identity cache (such as [nss] and [pam]), and the third section
configures the identity domains ([domain/NAME]).

Chapt er 3. Using and Caching Credent ials wit h SSSD

81

By default, only an identity provider really needs to be configured — the identity provider is used for
the authentication, access (authorization), and password providers if no other types or servers are
identified. Active Directory can be configured as any kind of provider using the ad option.

[domain/ADEXAMPLE]
id_provider = ad
auth_provider = ad
access_provider = ad
chpass_provider = ad

ad_server = dc1.example.com
ad_hostname = client.example.com
ad_domain = example.com

The connection information is required to identify what Active Directory server to use.

Past that basic configuration, the Active Directory identity provider can be configured specifically for
the Active Directory environment and specific features, such as how to use POSIX attributes or
mapping for Windows SIDs on the local system, failover servers, and account information such as
home directories.

All of the LDAP domain parameters are available to the Active Directory provider, as well as Active
Directory-specific configuration parameters. The complete lists are available in the sssd-ldap and
sssd-ad man pages.

There are a number of options in the generic LDAP provider configuration which can be used to
configure an Active Directory provider. Using the ad value is a short-cut which automatically pulls in
the parameters and values to configure a given provider for Active Directory.

For example, the shortcut for an access provider is:

access_provider = ad

Using generic LDAP parameters, that configuration expands to:

access_provider = ldap
ldap_access_order = expire
ldap_account_expire_policy = ad

Those settings are all set implicitly by using the ad provider type.

3.3.3.1 . Abo ut Act ive Direct o ry Ident it ies o n t he Lo cal Syst em

Active Directory can replicate user entries and attributes from its local directory into a global catalog,
which makes the information available to other domains within the forest. SSSD checks this global
catalog for information about users and groups, so information is not limited to a single Active
Directory domain or subdomain — SSSD, too, has access to all user data for all domains within the
topology.

SSSD, then, can be used by applications which need to query the Active Directory global catalog for
user or group information.

There are inherent structural differences between how Windows and Linux handle system users and
in the user schemas used in Active Directory and standard LDAPv3 directory services. When using
an Active Directory identity provider with SSSD to manage system users, it is necessary to reconcile
the Active Directory-style user to the new SSSD user. There are two ways to do this:

Syst em- Level Aut hent icat ion Guide

82

http://linux.die.net/man/5/sssd-ldap
http://linux.die.net/man/5/sssd-ad

Using ID mapping on SSSD to create a map between Active Directory security IDs (SIDs) and the
generated UIDs on Linux.

ID mapping is the simplest option for most environments because it requires no additional
packages or configuration on Active Directory.

Using Services for Unix to insert POSIX attributes on Windows user and group entries, and then
having those attributes pulled into PAM/NSS.

This requires more configuration and information within the Active Directory environment, but it
gives more administrative control over the specific UID/GID values (and other POSIX attributes).

3.3.3.1.1. About Security ID Mapping

3.3.3.1.1.1. The Mechanism of ID Mapping

Linux/Unix systems use a local user ID number and group ID number to identify users on the system.
These UID:GID numbers are a simple integer, such as 501:501. These numbers are simple because
they are always created and administered locally, even for systems which are part of a larger
Linux/Unix domain.

Microsoft Windows and Active Directory use a different user ID structure to identify users, groups,
and machines. Each ID is constructed of different segments that identify the security version, the
issuing authority type, the machine, and the identity itself. For example:

S-1-5-21-3623811015-3361044348-30300820-1013

The third through sixth blocks are the machine identifier:

S-1-5-21-3623811015-3361044348-30300820-1013

The last block is the relative identifier (RID) which identifies the specific entity:

S-1-5-21-3623811015-3361044348-30300820-1013

A range of possible ID numbers are always assigned to SSSD. (This is a local range, so it is the
same for every machine.)

|_____________________________|
| |
minimum ID max ID

This range is divided into 10,000 sections (by default), with each section allocated 200,000 IDs.

slice 1	slice 2	...
_________	_________	_________
minimum ID max ID

When a new Active Directory domain is detected, the SID is hashed. Then, SSSD takes the modulus
of the hash and the number of available sections to determine which ID section to assign to the
Active Directory domain. This is a reliably consistent means of assigning ID sections, so the same ID
range is assigned to the same Active Directory domain on most client machines.

| Active | Active | |

Chapt er 3. Using and Caching Credent ials wit h SSSD

83

Directory	Directory	
domain 1	domain 2	...
slice 1	slice 2	...
_________	_________	_________
minimum ID max ID

Note

While the method of assigning ID sections is consistent, ID mapping is based on the
order that an Act ive Directory domain is encountered on a client machine — so it
may not result in consistent ID range assignments on all Linux client machines. If consistency
is required, then consider disabling ID mapping and using explicit POSIX attributes.

3.3.3.1.1.2. ID Mapping Parameters

ID mapping is enabled in two parameters, one to enable the mapping and one to load the
appropriate Active Directory user schema:

ldap_id_mapping = True
ldap_schema = ad

Note

When ID mapping is enabled, the uidNumber and gidNumber attributes are ignored. This
prevents any manually-assigned values. If any values must be manually assigned, then all
values must be manually assigned, and ID mapping should be disabled.

3.3.3.1.1.3. Mapping Users

When an Active Directory user attempts to log into a local system service for the first time, an entry for
that user is created in the SSSD cache. The remote user is set up much like a system user:

A system UID is created for the user based on his SID and the ID range for that domain.

A GID is created for the user, which is identical to the UID.

A private group is created for the user.

A home directory is created, based on the home directory format in the sssd.conf file.

A shell is created, according to the system defaults or the setting in the sssd.conf file.

If the user belongs to any groups in the Active Directory domain, then, using the SID, SSSD adds
the user to those groups on the Linux system.

3.3.3.1.2. About SSSD and POSIX At t ributes

Active Directory can be configured to create and store POSIX attributes such as uidNumber,
gidNumber, unixHomeDirectory, and loginShell. As with all user attributes, these are
originally stored in the local domain, but they can be replicated to the global catalog — and once

Syst em- Level Aut hent icat ion Guide

84

they are in the global catalog, they are available to SSSD and any application which uses SSSD for
its identity information.

Important

When SSSD uses the POSIX attributes directly, they must be published to the Active Directory
global catalog. SSSD queries the global catalog for user information.

When POSIX attributes are already defined in Active Directory, then it is not recommended to use the
SID/UID mapping as described in Section 3.3.3.1.1, “About Security ID Mapping” . The UID and GID
numbers are already defined, and mapping creates new, different numbers. The best solution in that
situation is to use the UID and GID numbers as defined in Active Directory and then apply that to the
local Linux accounts managed by SSSD.

To use existing POSIX attributes, two things must be configured:

The POSIX attributes must be published to Active Directory's global catalog.

ID mapping (ldap_id_mapping in the Active Directory domain entry) must be disabled in
SSSD.

ldap_id_mapping = False

3.3.3.1.3. Act ive Directory Users and Range Retrieval Searches

Microsoft Active Directory has an attribute, MaxValRange, which sets a limit on how many values for
a multi-valued attribute will be returned. This is the range retrieval search extension. Essentially, this
runs multiple mini-searches, each returning a subset of the results within a given range, until all
matches are returned.

For example, when doing a search for the member attribute, each entry could have multiple values,
and there can be multiple entries with that attribute. If there are 2000 matching results (or more), then
MaxValRange limits how many are displayed at once; this is the value range. The given attribute
then has an additional flag set, showing which range in the set the result is in:

attribute:range=low-high:value

For example, results 100 to 500 in a search:

member;range=99-499: cn=John Smith...

This is described in the Microsoft documentation at http://msdn.microsoft.com/en-
us/library/cc223242.aspx.

SSSD supports range retrievals with Active Directory providers as part of user and group
management, without any additional configuration.

However, some LDAP provider attributes which are available to configure searches — such as
ldap_user_search_base — are not performant with range retrievals. Be cautious when
configuring search bases in the Active Directory provider domain and consider what searches may
trigger a range retrieval.

3.3.3.1.4 . Linux Clients and Act ive Directory DNS Sites

Chapt er 3. Using and Caching Credent ials wit h SSSD

85

http://msdn.microsoft.com/en-us/library/cc223242.aspx

SSSD connects a local Linux system to a larger Active Directory environment. This requires that
SSSD have an awareness of possible configurations within the Active Directory forest and work with
them so that the Linux client is cleanly integrated.

Active Directory forests can be very large, with numerous different domain controllers, domains and
subdomains, and physical sites. To increase client performance, Active Directory uses specially-
named DNS records to identify domain controllers within the same domain but at different physical
locations. Clients connect to the closest domain controller.

Note

Microsoft has a tech brief at http://technet.microsoft.com/es-
es/library/cc759550%28v=ws.10%29.aspx which describes how DNS and Active Directory
work together.

Active Directory extends normal DNS SRV records to identify a specific physical location or site for its
domain controllers. Clients (such as SSSD) can determine which domain controllers to use based on
their own site configuration.

SSSD can determine which domain controller to use by querying the Active Directory domain first for
its site configuration, and then for the domain controller DNS records.

1. SSSD attempts to connect to the Active Directory domain and looks up any available domain
controller through normal DNS discovery.

2. It retrieves a list of primary and fallback servers.

3. SSSD sends a special CLDAP ping to any domain controller. The ping is really an LDAP
search which looks for the DNS domain, domain SID, and version:

(&(&(DnsDomain=ad.domain)(DomainSid=S-1-5-21-1111-2222-3333))
(NtVer=0x01000016))

This is used to retrieve the information about the client's site (if one is configured).

4. If a site is configured for the client, then the reply contains extended DNS SRV records for the
primary server, containing the site name (site-name._sites.):

_service._protocol.site-name._sites.domain.name

The backup server record is also sent, as a standard SRV record:

_service._protocol.domain.name

If no site is configured, then a standard SRV record is sent for all primary and backup
servers.

3.3.3.2 . Co nfiguring an Act ive Direct o ry Do main wit h ID Mapping

When configuring an Active Directory domain, the simplest configuration is to use the ad value for all
providers (identity, access, password). Also, load the native Active Directory schema for user and
group entries, rather than using the default RFC 2307.

Syst em- Level Aut hent icat ion Guide

86

http://technet.microsoft.com/es-es/library/cc759550%28v=ws.10%29.aspx

Other configuration is available in the general LDAP provider configuration (sssd-ldap) and Active
Directory-specific configuration (sssd-ad). This includes setting LDAP filters for a specific user or
group subtree, filters for authentication, and values for some account settings. Some additional
configuration is covered in Section 3.3.3.5, “Additional Configuration Examples” .

1. Make sure that both the Active Directory and Linux systems have a properly configured
environment.

Name resolution must be properly configured, particularly if service discovery is used with
SSSD.

The clocks on both systems must be in sync for Kerberos to work properly.

2. Set up the Linux system as an Active Directory client and enroll it within the Active Directory
domain. This is done by configuring the Kerberos and Samba services on the Linux system.

a. Set up Kerberos to use the Active Directory Kerberos realm.

a. Open the Kerberos client configuration file.

[root@server ~]# vim /etc/krb5.conf

b. Configure the [logging] and [libdefaults] sections so that they
connect to the Active Directory realm.

[logging]
 default = FILE:/var/log/krb5libs.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = true
 dns_lookup_kdc = true
 ticket_lifetime = 24h
 renew_lifetime = 7d
 rdns = false
 forwardable = true

If autodiscovery is not used with SSSD, then also configure the [realms]
and [domain_realm] sections to explicitly define the Active Directory server.

b. Configure the Samba server to connect to the Active directory server.

a. Open the Samba configuration file.

[root@server ~]# vim /etc/samba/smb.conf

b. Set the Active Directory domain information in the [global] section.

[global]
 workgroup = EXAMPLE
 client signing = yes
 client use spnego = yes
 kerberos method = secrets and keytab

Chapt er 3. Using and Caching Credent ials wit h SSSD

87

http://linux.die.net/man/5/sssd-ldap
http://linux.die.net/man/5/sssd-ad

 log file = /var/log/samba/%m.log
 password server = AD.EXAMPLE.COM
 realm = EXAMPLE.COM
 security = ads

c. Add the Linux machine to the Active Directory domain.

a. Obtain Kerberos credentials for a Windows administrative user.

[root@server ~]# kinit Administrator

b. Add the machine to the domain using the net command.

[root@server ~]# net ads join -k
Joined 'server' to dns domain 'example.com'

This creates a new keytab file, /etc/krb5.keytab.

List the keys for the system and check that the host principal is there.

[root@server ~]# klist -k

3. If necessary, install the oddjob-mkhomedir package to allow SSSD to create home
directories for Active Directory users.

[root@server ~]# yum install oddjob-mkhomedir

4. Use authconfig to enable SSSD for system authentication. Use the --enablemkhomedir
to enable SSSD to create home directories.

[root@server ~]# authconfig --enablesssd --enablesssdauth --
enablemkhomedir --update

5. Open the SSSD configuration file.

[root@rhel-server ~]# vim /etc/sssd/sssd.conf

6. Configure the Active Directory domain.

a. In the [sssd] section, add the Active Directory domain to the list of active domains.
This is the name of the domain entry that is set in [domain/NAME] in the SSSD
configuration file.

Also, add pac to the list of services; this enables SSSD to set and use MS-PAC
information on tickets used to communicate with the Active Directory domain.

[sssd]
config_file_version = 2
domains = ad.example.com
services = nss, pam, pac

Syst em- Level Aut hent icat ion Guide

88

b. Create a new domain section at the bottom of the file for the Active Directory domain.
This section has the format domain/NAME, such as domain/ad.example.com. For
each provider, set the value to ad , and give the connection information for the specific
Active Directory instance to connect to.

[domain/ad.example.com]
id_provider = ad
ad_server = adserver.example.com
ad_hostname = client.example.com
auth_provider = ad
chpass_provider = ad
access_provider = ad

c. Enable credentials caching; this allows users to log into the local system using
cached information, even if the Active Directory domain is unavailable.

cache_credentials = true

d. Configure access controls.

ldap_access_order = expire
ldap_account_expire_policy = ad

7. Restart the SSH service to load the new PAM configuration.

[root@server ~]# systemctl restart sshd.service

8. Start the SSSD service.

[root@rhel-server ~]# systemctl start sssd.service

3.3.3.3. Co nfiguring an Act ive Direct o ry Do main wit h POSIX At t ribut es

To use Active Directory-defined POSIX attributes in SSSD, those attributes must be replicated to the
global catalog. That requires additional configuration on the Active Directory domain. Additionally,
ID mapping must be disabled in SSSD, so the POSIX attributes are used from Active Directory
rather than creating new settings locally.

Other configuration is available in the general LDAP provider configuration (sssd-ldap) and Active
Directory-specific configuration (sssd-ad). This includes setting LDAP filters for a specific user or
group subtree, filters for authentication, and values for some account settings. Some additional
configuration is covered in Section 3.3.3.5, “Additional Configuration Examples” .

1. Make sure that both the Active Directory and Linux systems have a properly configured
environment.

Name resolution must be properly configured, particularly if service discovery is used with
SSSD.

The clocks on both systems must be in sync for Kerberos to work properly.

2. In the Active Directory domain, set the POSIX attributes to be replicated to the global catalog.

Chapt er 3. Using and Caching Credent ials wit h SSSD

89

http://linux.die.net/man/5/sssd-ldap
http://linux.die.net/man/5/sssd-ad

a. Install Identity Management for UNIX Components on all primary and child domain
controllers. Full details are available in the Microsoft documentation at
http://technet.microsoft.com/en-us/library/cc731178.aspx.

This allows the POSIX attributes and related schema to be available to user accounts.
These attributes are available in the UNIX Attributes tab in the entry's
Properties menu.

b. Install the Active Directory Schema Snap-in to add attributes to be replicated to the
global catalog. This is described in the Microsoft documentation at
http://technet.microsoft.com/en-us/library/cc755885%28v=ws.10%29.aspx.

c. The full details for replicating schema are in the Microsoft documentation at
http://support.microsoft.com/kb/248717.

For the relevant POSIX attributes (uidNumber, gidNumber, unixHomeDirectory,
and loginShell), open the Properties menu, select the Replicate this
attribute to the Global Catalog checkbox, and then click OK.

3. Set up the Linux system as an Active Directory client and enroll it within the Active Directory
domain. This is done by configuring the Kerberos and Samba services on the Linux system.

a. Set up Kerberos to use the Active Directory Kerberos realm.

a. Open the Kerberos client configuration file.

[root@server ~]# vim /etc/krb5.conf

b. Configure the [logging] and [libdefaults] sections so that they
connect to the Active Directory realm.

[logging]
 default = FILE:/var/log/krb5libs.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = true
 dns_lookup_kdc = true
 ticket_lifetime = 24h
 renew_lifetime = 7d
 rdns = false
 forwardable = true

If autodiscovery is not used with SSSD, then also configure the [realms]
and [domain_realm] sections to explicitly define the Active Directory server.

b. Configure the Samba server to connect to the Active directory server.

a. Open the Samba configuration file.

[root@server ~]# vim /etc/samba/smb.conf

b. Set the Active Directory domain information in the [global] section.

[global]
 workgroup = EXAMPLE
 client signing = yes

Syst em- Level Aut hent icat ion Guide

90

http://technet.microsoft.com/en-us/library/cc731178.aspx
http://technet.microsoft.com/en-us/library/cc755885%28v=ws.10%29.aspx
http://support.microsoft.com/kb/248717

 client use spnego = yes
 kerberos method = secrets and keytab
 log file = /var/log/samba/%m.log
 password server = AD.EXAMPLE.COM
 realm = EXAMPLE.COM
 security = ads

c. Add the Linux machine to the Active Directory domain.

a. Obtain Kerberos credentials for a Windows administrative user.

[root@server ~]# kinit Administrator

b. Add the machine to the domain using the net command.

[root@server ~]# net ads join -k
Joined 'server' to dns domain 'example.com'

This creates a new keytab file, /etc/krb5.keytab.

c. List the keys for the system and check that the host principal is there.

[root@server ~]# klist -ke

d. Test that users can search the global catalog, using an ldapsearch.

[root@server ~]# ldapsearch -H
ldap://server.ad.example.com:3268 -Y GSSAPI -N -b
"dc=ad,dc=example,dc=com" "(&(objectClass=user)
(sAMAccountName=aduser))"

4. Install the sssd-ad package.

[root@server ~]# yum install sssd-ad

5. Open the SSSD configuration file.

[root@rhel-server ~]# vim /etc/sssd/sssd.conf

6. Configure the Active Directory domain.

a. In the [sssd] section, add the Active Directory domain to the list of active domains.
This is the name of the domain entry that is set in [domain/NAME] in the SSSD
configuration file.

Also, add pac to the list of services; this enables SSSD to set and use MS-PAC
information on tickets used to communicate with the Active Directory domain.

[sssd]
config_file_version = 2
domains = ad.example.com
services = nss, pam, pac

Chapt er 3. Using and Caching Credent ials wit h SSSD

91

b. Create a new domain section at the bottom of the file for the Active Directory domain.
This section has the format domain/NAME, such as domain/ad.example.com. For
each provider, set the value to ad , and give the connection information for the specific
Active Directory instance to connect to.

[domain/ad.example.com]
id_provider = ad
ad_server = adserver.example.com
ad_hostname = client.example.com
auth_provider = ad
chpass_provider = ad
access_provider = ad

c. Disable ID mapping. This tells SSSD to search the global catalog for POSIX
attributes, rather than creating UID:GID numbers based on the Windows SID.

disabling ID mapping
ldap_id_mapping = False

d. If home directory and a login shell are set in the user accounts, then comment out
these lines to configure SSSD to use the POSIX attributes rather then creating the
attributes based on the template.

Comment out if the users have the shell and home dir set on
the AD side
#default_shell = /bin/bash
#fallback_homedir = /home/%d/%u

e. Microsoft Active Directory allows each account to have two Kerberos principals. If the
host principal for the domain (such as client.ad.example.com@AD.EXAMPLE.COM) is
not available, then uncomment the ldap_sasl_authid line and set the host
principal to use.

Uncomment and adjust if the default principal
SHORTNAME$@REALM is not available
ldap_sasl_authid =
host/client.ad.example.com@AD.EXAMPLE.COM

f. Set whether to use short names or fully-qualified user names for Active Directory
users. In complex topologies, using fully-qualified names may be necessary for
disambiguation.

Comment out if you prefer to user shortnames.
use_fully_qualified_names = True

g. Enable credentials caching; this allows users to log into the local system using
cached information, even if the Active Directory domain is unavailable.

cache_credentials = true

h. Configure access controls.

Syst em- Level Aut hent icat ion Guide

92

ldap_access_order = expire
ldap_account_expire_policy = ad

7. Set the file permissions and owner for the SSSD configuration file.

[root@server ~]# chown root:root /etc/sssd/sssd.conf
[root@server ~]# chmod 0600 /etc/sssd/sssd.conf
[root@server ~]# restorecon /etc/sssd/sssd.conf

8. Start the SSSD service.

[root@server ~]# systemctl start sssd.service

9. If necessary, install the oddjob-mkhomedir package to allow SSSD to create home
directories for Active Directory users.

[root@server ~]# yum install oddjob-mkhomedir

10. Use authconfig to enable SSSD for system authentication. Use the --enablemkhomedir
to enable SSSD to create home directories.

[root@server ~]# authconfig --enablesssd --enablesssdauth --
enablemkhomedir --update

11. Restart the SSH service to load the new PAM configuration.

[root@server ~]# systemctl restart sshd.service

Using authconfig automatically configured the NSS and PAM configuration files to use SSSD as
their identity source.

For example, the nsswitch.conf file has SSSD (sss) added as a source for user, group, and
service information.

passwd: files sss
shadow: files sss
group: files sss
...
services: files sss
...
netgroup: files sss

The different pam.d files add a line for the pam_sass.so module beneath every pam_unix.so line
in the /etc/pam.d/system-auth and /etc/pam.d/password-auth files.

auth sufficient pam_sss.so use_first_pass
...
account [default=bad success=ok user_unknown=ignore] pam_sss.so
...
password sufficient pam_sss.so use_authtok
...
session optional pam_mkhomedir.so
session optional pam_sss.so

Chapt er 3. Using and Caching Credent ials wit h SSSD

93

3.3.3.4 . Co nfiguring Act ive Direct o ry as an LDAP Do main

While Active Directory can be configured as a type-specific identity provider, it can also be
configured as a pure LDAP identity provider with a Kerberos authentication provider.

1. It is recommended that SSSD connect to the Active Directory server using SASL, which means
that the local host must have a service keytab for the Windows domain on the Linux host.

This keytab can be created using Samba.

a. Configure the /etc/krb5.conf file to use the Active Directory realm.

[logging]
 default = FILE:/var/log/krb5libs.log

[libdefaults]
 default_realm = AD.EXAMPLE.COM
 dns_lookup_realm = true
 dns_lookup_kdc = true
 ticket_lifetime = 24h
 renew_lifetime = 7d
 rdns = false
 forwardable = true

[realms]
Define only if DNS lookups are not working
AD.EXAMPLE.COM = {
kdc = server.ad.example.com
admin_server = server.ad.example.com
}

[domain_realm]
Define only if DNS lookups are not working
.ad.example.com = AD.EXAMPLE.COM
ad.example.com = AD.EXAMPLE.COM

b. Set the Samba configuration file, /etc/samba/smb.conf, to point to the Windows
Kerberos realm.

[global]
 workgroup = EXAMPLE
 client signing = yes
 client use spnego = yes
 kerberos method = secrets and keytab
 log file = /var/log/samba/%m.log
 password server = AD.EXAMPLE.COM
 realm = EXAMPLE.COM
 security = ads

c. Then, run the net ads command to log in as an administrator principal. This
administrator account must have sufficient rights to add a machine to the Windows
domain, but it does not require domain administrator privileges.

[root@server ~]# net ads join -U Administrator

Syst em- Level Aut hent icat ion Guide

94

d. Run net ads again to add the host machine to the domain. This can be done with
the host principal (host/FQDN) or, optionally, with the NFS service (nfs/FQDN).

[root@server ~]# net ads join createupn="host/rhel-
server.example.com@AD.EXAMPLE.COM" -U Administrator

2. Make sure that the Services for Unix package is installed on the Windows server.

3. Set up the Windows domain which will be used with SSSD.

a. On the Windows machine, open Server Manager.

b. Create the Active Directory Domain Services role.

c. Create a new domain, such as ad.example.com.

d. Add the Identity Management for UNIX service to the Active Directory Domain Services
role. Use the Unix NIS domain as the domain name in the configuration.

4. On the Active Directory server, create a group for the Linux users.

a. Open Administrative Tools and select Active Directory Users and
Computers.

b. Select the Active Directory domain, ad.example.com.

c. In the Users tab, right-click and select Create a New Group .

d. Name the new group unixusers, and save.

e. Double-click the unixusers group entry, and open the Users tab.

f. Open the Unix Attributes tab.

g. Set the NIS domain to the NIS domain that was configured for ad.example.com
and, optionally, set a group ID (GID) number.

5. Configure a user to be part of the Unix group.

a. Open Administrative Tools and select Active Directory Users and
Computers.

b. Select the Active Directory domain, ad.example.com.

c. In the Users tab, right-click and select Create a New User.

d. Name the new user aduser, and make sure that the User must change password
at next logon and Lock account checkboxes are not selected.

Then save the user.

e. Double-click the aduser user entry, and open the Unix Attributes tab. Make sure
that the Unix configuration matches that of the Active Directory domain and the
unixgroup group:

The NIS domain, as created for the Active Directory domain

The UID

The login shell, to /bin/bash

Chapt er 3. Using and Caching Credent ials wit h SSSD

95

The home directory, to /home/aduser

The primary group name, to unixusers

Note

Password lookups on large directories can take several seconds per request. The
initial user lookup is a call to the LDAP server. Unindexed searches are much more
resource-intensive, and therefore take longer, than indexed searches because the
server checks every entry in the directory for a match. To speed up user lookups, index
the attributes that are searched for by SSSD:

uid
uidNumber
gidNumber
gecos

For information on ignoring group members, see Section 3.3.4.5, “ Ignoring Group
Members” .

6. On the Linux system, configure the SSSD domain.

[root@rhel-server ~]# vim /etc/sssd/sssd.conf

For a complete list of LDAP provider parameters, see the sssd-ldap(5) man pages.

Example 3.7. An Act ive Directory 2008 R2 Domain with Services for Unix

[sssd]
config_file_version = 2
domains = ad.example.com
services = nss, pam

...

[domain/ad.example.com]
cache_credentials = true

for performance
ldap_referrals = false

id_provider = ldap
auth_provider = krb5
chpass_provider = krb5
access_provider = ldap

ldap_schema = rfc2307bis

ldap_sasl_mech = GSSAPI
ldap_sasl_authid = host/rhel-server.example.com@AD.EXAMPLE.COM

#provide the schema for services for unix
ldap_schema = rfc2307bis

Syst em- Level Aut hent icat ion Guide

96

ldap_user_search_base = ou=user accounts,dc=ad,dc=example,dc=com
ldap_user_object_class = user
ldap_user_home_directory = unixHomeDirectory
ldap_user_principal = userPrincipalName

optional - set schema mapping
parameters are listed in sssd-ldap
ldap_user_object_class = user
ldap_user_name = sAMAccountName

ldap_group_search_base = ou=groups,dc=ad,dc=example,dc=com
ldap_group_object_class = group

ldap_access_order = expire
ldap_account_expire_policy = ad

krb5_realm = AD-REALM.EXAMPLE.COM
required
krb5_canonicalize = false

7. Restart SSSD.

[root@rhel-server ~]# systemctl restart sssd.service

3.3.3.5 . Addit io nal Co nfigurat io n Examples

3.3.3.5.1. Account Set t ings

With Linux users, certain system preferences are set by default for new users. For example, the
pam_oddjob_mkhomedir.so library automatically creates home directories in a defined location.

These system preferences either may not be set in the Windows user accounts or may be set to
something incompatible with a Linux system. There are two such areas:

The user home directory

A default user shell

3.3.3.5.1.1. Set t ing a User Home Directory

Red Hat Enterprise Linux has a PAM library (pam_oddjob_mkhomedir.so) which automatically
creates user directories when a user first logs in. This includes Active Directory users, when they first
log into a Linux system.

With SSSD, the format of the user directory is retrieved from the identity provider. If the identity
provider has a home directory format that is different than the format for the Linux system or if it does
not supply a value, then SSSD can be configured to create a home directory using a template
specified in its configuration. The template can be set globally in the NSS service section or per
domain.

There are two possible parameters:

fallback_homedir, which supplies a template if the identity provider does not supply one

Chapt er 3. Using and Caching Credent ials wit h SSSD

97

override_homedir, which sets a template to use regardless of what information is set in the
identity provider

For more information on the parameters, see Table 3.2, “SSSD [nss] Configuration Parameters” .

[nss]
fallback_homedir = /home/%u

...

[domain/ADEXAMPLE]
id_provider = ad
ad_server = adserver.example.com
ad_hostname = client.example.com
auth_provider = ad
...
override_homedir = /home/%d/%u

3.3.3.5.1.2. Set t ing a User Shell

By default, SSSD attempts to retrieve information about user shells from the identity provider. In both
Active Directory and LDAPv3 schema, this is defined in the loginShell attribute. However, this is an
optional attribute, so it may not be defined for every user. For Active Directory users, the defined login
shell may not be allowed on the Linux system.

There are a number of ways to handle shells in the SSSD configuration:

Setting a fallback value if no shells are supplied (shell_fallback)

Setting lists of allowed or blacklisted shells (allowed_shells and vetoed_shells)

Setting a default value (default_shell)

Setting a value to use, even if another value is given in the identity provider (override_shell)

Note

allowed_shells, vetoed_shells, and shell_fallback can only be set as global
settings, not per domain. However, these parameters do not affect local system users, only
external users retrieved through SSSD identity providers. Using a general setting, such as
/bin/bash, is good for most external users.

Default values can be set per domain, while some values (such as the white and blacklists for shells)
must be set globally, in the NSS service configuration. For example:

[nss]
shell_fallback = /bin/sh
allowed_shells = /bin/sh,/bin/zsh,/bin/bash
vetoed_shells = /bin/ksh
...

[domain/ADEXAMPLE]
id_provider = ad
ad_server = adserver.example.com

Syst em- Level Aut hent icat ion Guide

98

ad_hostname = client.example.com
auth_provider = ad
...
default_shell = /bin/zsh

3.3.3.5.2. Enabling Dynamic DNS Updates

IdM and Active Directory allow clients to refresh their DNS records automatically. It is also possible to
actively maintain the DNS records of the clients to make sure they are updated, including timing out
(aging) and removing (scavenging) inactive records.

SSSD allows the Linux system to imitate a Windows client by refreshing its DNS record, which also
prevents its record from being marked inactive and removed from the DNS record. When dynamic
DNS updates are enabled, then the client's DNS record is refreshed at several times:

When the identity provider comes online (always)

When the Linux system reboots (always)

Periodically (optional configuration)

Note

This can be set to the same interval as the DHCP lease, which means that the Linux client is
renewed after the lease is renewed.

DNS updates are sent to the Active Directory server using Kerberos/GSSAPI for DNS (GSS-TSIG);
this means that only secure connections need to be enabled.

The dynamic DNS configuration is set for each domain. For example:

[domain/ad.example.com]
id_provider = ad
ad_server = adserver.example.com
ad_hostname = client.example.com
auth_provider = ad
chpass_provider = ad
access_provider = ad

ldap_schema = ad

dyndns_update = true
dyndns_refresh_interval = 43200
dyndns_update_ptr = true
dyndns_ttl = 3600

Table 3.9 . Opt ions for Dynamic DNS Updates

Opt ion Descript ion Format

Chapt er 3. Using and Caching Credent ials wit h SSSD

99

dyndns_update Sets whether to update the DNS
server dynamically with the
client IP address. This requires
secure updates. This must be
set to true for any other
dynamic DNS setting to be
enabled. The default is true.

boolean

dyndns_ttl Sets a time-to-live for the
client's DNS record. The default
is 3600 seconds.

integer

dyndns_refresh_interval Sets a frequency to perform an
automatic DNS update, in
addition to the update when the
provider comes online. The
default is 86400 seconds (24
hours).

integer

dyndns_update_ptr Sets whether to update the PTR
record when the client updates
its DNS records. The default is
true.

boolean

dyndns_iface Chooses the interface the IP
address of which is used for the
dynamic DNS updates. This
setting can be used only if
dyndns_update is true, and it
is optional. By default, the IP
address of the AD LDAP
connection is used.

string

dyndns_force_tcp Specifies whether the
nsupdate utility defaults to
using the TCP protocol for
communicating with the DNS
server. By default, this is set to
false, meaning nsupdate
chooses the protocol to be
used.

boolean

Opt ion Descript ion Format

3.3.3.5.3. Using a Filter with Access Contro ls

There is an Active Directory access provider, which means that Active Directory is used as the source
for authorization information. This is actually a shortcut, that combines several generic LDAP
parameters into a single configuration parameter. Setting the Active Directory provider:

access_provider = ad

This is the same as setting several different LDAP parameters, including setting the access order to
check for account expirations.

access_provider = ldap
ldap_access_order = expire
ldap_account_expire_policy = ad

Syst em- Level Aut hent icat ion Guide

100

There is an additional option to identify which user accounts to grant access to based on an LDAP
filter. First, accounts must match the filter, and then they must pass the expiration check (implicit in
the access_provider = ad setting.

For example, this sets that only users which belong to the administrators group and have a
unixHomeDirectory attribute match the access control check:

access_provider = ad
ad_access_filter = (&(memberOf=cn=admins,ou=groups,dc=example,dc=com)
(unixHomeDirectory=*))

The access control check requires a secure connection (SASL with a GSS-API mechanism).
Configuring the same functionality using the generic LDAP parameters requires defining that
SASL/GSS-API connection, the filter, and the expiration checks.

access_provider = ldap
ldap_access_order = filter, expire
ldap_account_expire_policy = ad
ldap_access_filter = (&(memberOf=cn=admins,ou=groups,dc=example,dc=com)
(unixHomeDirectory=*))
ldap_sasl_mech = GSSAPI
ldap_sasl_authid = CLIENT_SHORTNAME$@EXAMPLE.COM
ldap_schema = ad

3.3.4 . Set t ing Addit ional Ident ity Provider Opt ions

3.3.4 .1 . Set t ing Username Fo rmat s

One of the primary actions that SSSD performs is mapping a local system user to an identity in the
remote identity provider. SSSD uses a combination of the username and the domain backend name
to create the login identity.

As long as they belong to different domains, SSSD can recognize different users with the same
username. For example, SSSD can successfully authenticate both jsmith in the
ldap.example.com domain and jsmith in the ldap.otherexample.com domain.

The name format used to construct full username is (optionally) defined universally in the [sssd]
section of the configuration and can then be defined individually in each domain section.

Usernames for different services — LDAP, Samba, Active Directory, Identity Management, even the
local system — all have different formats. The expression that SSSD uses to identify
username/domain name sets must be able to interpret names in different formats. This expression is
set in the re_expression parameter.

In the global default, this filter constructs a name in the form name@domain:

(?P<name>[^@]+)@?(?P<domain>[^@]*$)

Note

The regular expression format is Python syntax.

Chapt er 3. Using and Caching Credent ials wit h SSSD

101

The domain part may be supplied automatically, based on the domain name of the identity provider.
Therefore, a user can log in as jsmith and if the user belongs to the LOCAL domain (for example),
then his username is interpreted by SSSD as jsmith@LOCAL.

However, other identity providers may have other formats. Samba, for example, has a very strict
format so that username must match the form DOMAIN\username. For Samba, then, the regular
expression must be:

(?P<domain>[^\\]*?)\\?(?P<name>[^\\]+$)

Some providers, such as Active Directory, support multiple different name formats. Active Directory
and Identity Management, for example, support three different formats by default:

username

username@domain.name

DOMAIN\username

The default value for Active Directory and Identity Management providers, then, is a more complex
filter that allows all three name formats:

(((?P<domain>[^\\]+)\\(?P<name>.+$))|((?P<name>[^@]+)@(?P<domain>.+$))|
(^(?P<name>[^@\\]+)$))

Note

Requesting information with the fully-qualified name, such as jsmith@ldap.example.com,
always returns the proper user account. If there are multiple users with the same username in
different domains, specifying only the username returns the user for whichever domain comes
first in the lookup order.

While re_expression is the most important method for setting username formats, there are two
other options which are useful for other applications.

Default Domain Name Value

The first sets a default domain name to be used with all users, default_domain_suffix. (This is
a global setting, available in the [sssd] section only.) There may be a case where multiple domains
are configured but only one stores user data and the others are used for host or service identities.
Setting a default domain name allows users to log in with only their username, not specifying the
domain name (which would be required for users outside the primary domain).

[sssd]
...
default_domain_suffix = USERS.EXAMPLE.COM

Full Name Format for Output

The other parameter is related to re_expression, only instead of defining how to interpret a
username, it defines how to print an identified name. The full_name_format parameter sets how
the username and domain name (once determined) are displayed.

Syst em- Level Aut hent icat ion Guide

102

SSSD always returns usernames within a subdomain as fully-qualified. The default format is printed
as username@domain. The full_name_format parameter sets the format in printf format, so
the default is represented as:

full_name_format = %1$s@%2$s

The username is argument 1, the domain is argument 2, and $s means that the value is a string.

Apart from the %1$s and %2$s expansions, the %3$s expansion is also supported. It expands into
the domain flat name and is mostly used for AD domains, either directly configured or discovered
using IdM trusts.

The format of the fully-qualified username is configurable. However, in some possible name
configurations, SSSD could strip the domain component of the name, which can cause
authentication errors. Because of this, if you set the full_name_format to a non-standard value, a
warning will prompt you to change it to a more standard format.

3.3.4 .2 . Enabling Offline Aut hent icat io n

User identities are always cached, as well as information about the domain services. However, user
credentials are not cached by default. This means that SSSD always checks with the backend identity
provider for authentication requests. If the identity provider is offline or unavailable, there is no way
to process those authentication requests, so user authentication could fail.

It is possible to enable offline credentials caching, which stores credentials (after successful login) as
part of the user account in the SSSD cache. Therefore, even if an identity provider is unavailable,
users can still authenticate, using their stored credentials. Offline credentials caching is primarily
configured in each individual domain entry, but there are some optional settings that can be set in
the PAM service section, because credentials caching interacts with the local PAM service as well as
the remote domain.

[domain/EXAMPLE]
cache_credentials = true

There are optional parameters that set when those credentials expire. Expiration is useful because it
can prevent a user with a potentially outdated account or credentials from accessing local services
indefinitely.

The credentials expiration itself is set in the PAM service, which processes authentication requests for
the system.

[sssd]
services = nss,pam
...

[pam]
offline_credentials_expiration = 3
...

[domain/EXAMPLE]
cache_credentials = true
...

Chapt er 3. Using and Caching Credent ials wit h SSSD

103

offline_credentials_expiration sets the number of days after a successful login that a
single credentials entry for a user is preserved in cache. Setting this to zero (0) means that entries are
kept forever. For more information about this setting, see Table 3.3, “SSSD [pam] Configuration
Parameters” .

While not related to the credentials cache specifically, each domain has configuration options on
when individual user and service caches expire:

account_cache_expiration sets the number of days after a successful login that the entire
user account entry is removed from the SSSD cache. This must be equal to or longer than the
individual offline credentials cache expiration period.

entry_cache_timeout sets a validity period, in seconds, for all entries stored in the cache
before SSSD requests updated information from the identity provider. There are also individual
cache timeout parameters for group, service, netgroup, sudo, and autofs entries; these are listed
in the sssd.conf man page. The default time is 5400 seconds (90 minutes).

For example:

[sssd]
services = nss,pam
...

[pam]
offline_credentials_expiration = 3
...

[domain/EXAMPLE]
cache_credentials = true
account_cache_expiration = 7
entry_cache_timeout = 14400
...

3.3.4 .3. Set t ing Passwo rd Expirat io ns

Password policies generally set an expiration time, when passwords expire and must be replaced.
Those password expiration policies are evaluated by server-side, through the identity provider, and
then a warning can be processed and displayed in SSSD through its PAM service.

There are two potential configuration areas for password warnings:

A global default for all domains on how far in advance of the password expiration to display a
warning. This is set for the PAM service.

Per-domain settings on how far in advance of the password expiration to display a warning.

When using a domain-level password expiration warning, an authentication provider
(auth_provider) must also be configured for the domain.

For example:

[sssd]
services = nss,pam
...

[pam]
pam_pwd_expiration_warning = 3

Syst em- Level Aut hent icat ion Guide

104

...

[domain/EXAMPLE]
id_provider = ipa
auth_provider = ipa
pwd_expiration_warning = 7

The password expiration warning must be sent from the server to SSSD for the warning to be
displayed. If no password warning is sent from the server, no message is displayed through SSSD,
even if the password expiration time is within the period set in SSSD.

If the password expiration warning is not set in SSSD or is set to zero (0), then the SSSD password
warning filter is not applied and the server-side password warning is automatically displayed.

Note

The PAM or domain password expirations essentially override (or ignore) the password
warning settings on the backend identity provider — as long as the password warning is sent
from the server.

For example, a backend identity provider has the warning set at 28 days, but the PAM service
in SSSD has it set to seven days. The provider sends the warning to SSSD starting at 28
days, but the warning is not displayed locally until seven days, according to the password
expiration set in the SSSD configuration.

Note

A similar parameter is available when using Kerberos authentication providers to cache
Kerberos credentials, krb5_store_password_if_offline.

3.3.4 .4 . LDAP Gro ups wit h Lo cal Syst em Users

LDAP identity providers (LDAP or IdM) can use RFC 2307 or RC2307bis schema. The Active
Directory LDAP provider uses Active Directory-specific schema, which is compatible with RFC
2307bis. By using these schema elements, SSSD can manage local users within LDAP groups.

When a new LDAP group is created, a local user can be added as a member, with the memberUID
attribute value set to the local user ID.

On the local system, the local user is included in the group members when using getent group:

[root@server ~]# getent group example
example:x:3:jsmith,bjensen,landerson,mreynolds

This queries the LDAP directory for the group information. Once that membership is processed, the
user is added to the system configuration in /etc/passwd .

All of that — querying the LDAP group, creating the local user — is done through NSS (nss_ldap),
outside SSSD.

Chapt er 3. Using and Caching Credent ials wit h SSSD

105

Authentication operations and identity tools like id , however, go through SSSD, and there is no
record of the local user in the LDAP identity provider configured for SSSD. There are two ways that
SSSD can handle local user:

It can delete the user from the local passwd file as if it were a remnant of a deleted local account.

It can query the local user list (passwd) as a fallback if a user in a group is not found in LDAP,
and then add that user to its cache as if it were an LDAP user.

This behavior is configured in the ldap_rfc2307_fallback_to_local_users parameter for the
identity provider domain. By default, this is false, meaning that only users which exist in the LDAP
provider are recognized, and a local user is deleted if it is added to an LDAP group. This can be set
to true, which queries the local system users as a fallback if an LDAP group member is not found in
the LDAP directory.

3.3.4 .5 . Igno ring Gro up Members

When looking up information about an LDAP group, all of the members for that group are returned,
by default. For large groups or for nested groups, this can take a long time to process. The
membership lists themselves are not actually used when evaluating whether a user belongs to a
group — most services use something like getent group to determine if a user belongs to a group
rather than checking the UID in the members list.

To improve overall performance, especially for identity lookups, it is possible to disable the group
membership lookup. This essentially returns an empty group to SSSD to cache.

This is set per domain entry in the ignore_group_members parameter:

[domain\ad.example.com]
id_provider = ad
ad_server = adserver.example.com
ad_hostname = client.example.com
...
ignore_group_members = true

3.3.4 .6 . Using DNS Service Disco very

DNS service discovery, defined in RFC 2782, allows applications to check the SRV records in a
given domain for certain services of a certain type; it then returns any servers discovered of that type.

With SSSD, the identity and authentication providers can either be explicitly defined (by IP address
or hostname) or they can be discovered dynamically, using service discovery. If no provider server is
listed — for example, if id_provider = ldap is set without a corresponding ldap_uri
parameter — then discovery is automatically used.

The DNS discovery query has this format:

_service._protocol.domain

For example, a scan for an LDAP server using TCP in the example.com domain looks like this:

_ldap._tcp.example.com

Syst em- Level Aut hent icat ion Guide

106

http://www.ietf.org/rfc/rfc2782.txt

Note

For every service with which to use service discovery, add a special DNS record to the DNS
server:

_service._protocol._domain TTL priority weight port hostname

For SSSD, the service type is LDAP by default, and almost all services use TCP (except for Kerberos,
which starts with UDP). For service discovery to be enabled, the only thing that is required is the
domain name. The default is to use the domain portion of the machine hostname, but another
domain can be specified (using the dns_discovery_domain parameter).

So, by default, no additional configuration needs to be made for service discovery — with one
exception. The password change provider has server discovery disabled by default, and it must be
explicitly enabled by setting a service type.

[domain/EXAMPLE]
...
chpass_provider = ldap
ldap_chpass_dns_service_name = ldap

While no configuration is necessary, it is possible for server discovery to be customized by using a
different DNS domain (dns_discovery_domain) or by setting a different service type to scan for.
For example:

[domain/EXAMPLE]
id _provider = ldap

dns_discovery_domain = corp.example.com
ldap_dns_service_name = ldap

chpass_provider = krb5
ldap_chpass_dns_service_name = kerberos

Lastly, service discovery is never used with backup servers; it is only used for the primary server for a
provider. What this means is that discovery can be used initially to locate a server, and then SSSD
can fall back to using a backup server. To use discovery for the primary server, use _srv_ as the
primary server value, and then list the backup servers. For example:

[domain/EXAMPLE]
id _provider = ldap
ldap_uri = _srv_
ldap_backup_uri = ldap://ldap2.example.com

auth_provider = krb5
krb5_server = _srv_
krb5_backup_server = kdc2.example.com

chpass_provider = krb5
ldap_chpass_dns_service_name = kerberos
ldap_chpass_uri = _srv_
ldap_chpass_backup_uri = kdc2.example.com

Chapt er 3. Using and Caching Credent ials wit h SSSD

107

Note

Service discovery cannot be used with backup servers, only primary servers.

If a DNS lookup fails to return an IPv4 address for a hostname, SSSD attempts to look up an IPv6
address before returning a failure. This only ensures that the asynchronous resolver identifies the
correct address.

The hostname resolution behavior is configured in the lookup_family_order option in the
sssd.conf configuration file.

3.3.4 .7 . Using IP Addresses in Cert ificat e Subject Names (LDAP Only)

Using an IP address in the ldap_uri option instead of the server name may cause the TLS/SSL
connection to fail. TLS/SSL certificates contain the server name, not the IP address. However, the
subject alternative name field in the certificate can be used to include the IP address of the server,
which allows a successful secure connection using an IP address.

1. Convert an existing certificate into a certificate request. The signing key (-signkey) is the
key of the issuer of whatever CA originally issued the certificate. If this is done by an external
CA, it requires a separate PEM file; if the certificate is self-signed, then this is the certificate
itself. For example:

openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey
key.pem

With a self-signed certificate:

openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey
old_cert.pem

2. Edit the /etc/pki/tls/openssl.cnf configuration file to include the server's IP address
under the [v3_ca] section:

subjectAltName = IP:10.0.0.10

3. Use the generated certificate request to generate a new self-signed certificate with the
specified IP address:

openssl x509 -req -in req.pem -out new_cert.pem -extfile
./openssl.cnf -extensions v3_ca -signkey old_cert.pem

The -extensions option sets which extensions to use with the certificate. For this, it should
be v3_ca to load the appropriate section.

4. Copy the private key block from the old_cert.pem file into the new_cert.pem file to keep
all relevant information in one file.

When creating a certificate through the certut il utility provided by the nss-utils package, note
that certut il supports DNS subject alternative names for certificate creation only.

3.3.4 .8 . Co nfiguring Different T ypes o f Access Co nt ro l

Syst em- Level Aut hent icat ion Guide

108

SSSD provides a rudimentary access control for domain configuration, allowing either simple user
allow/deny lists or using the LDAP backend itself.

3.3.4 .8.1. Using the Simple Access Provider

The Simple Access Provider allows or denies access based on a list of usernames or groups.

The Simple Access Provider is a way to restrict access to certain, specific machines. For example, if a
company uses laptops, the Simple Access Provider can be used to restrict access to only a specific
user or a specific group, even if a different user authenticated successfully against the same
authentication provider.

The most common options are simple_allow_users and simple_allow_groups, which grant
access explicitly to specific users (either the given users or group members) and deny access to
everyone else. It is also possible to create deny lists (which deny access only to explicit people and
implicitly allow everyone else access).

The Simple Access Provider adheres to the following four rules to determine which users should or
should not be granted access:

If both the allow and deny lists are empty, access is granted.

If any list is provided, allow rules are evaluated first, and then deny rules. Practically, this means
that deny rules supersede allow rules.

If an allowed list is provided, then all users are denied access unless they are in the list.

If only deny lists are provided, then all users are allowed access unless they are in the list.

This example grants access to two users and anyone who belongs to the IT group; implicitly, all
other users are denied:

[domain/example.com]
access_provider = simple
simple_allow_users = jsmith,bjensen
simple_allow_groups = itgroup

Note

The LOCAL domain in SSSD does not support simple as an access provider.

Other options are listed in the sssd-simple man page, but these are rarely used.

3.3.4 .8.2. Using the LDAP Access Filter

An LDAP, Active Directory, or Identity Management server can provide access control rules for a
domain. The associated filter option (ldap_access_filter) specifies which users are granted
access to the specified host. The user filter must be used or all users are denied access.

For example:

[domain/example.com]
access_provider = ldap
ldap_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com

Chapt er 3. Using and Caching Credent ials wit h SSSD

109

Note

Offline caching for LDAP access providers is limited to determining whether the user's last
online login attempt was successful. Users that were granted access during their last login will
continue to be granted access while offline.

SSSD can also check results by the authorizedService or host attribute in an entry. In fact, all
options — LDAP filter, authorizedService, and host — can be evaluated, depending on the user
entry and the configuration. The ldap_access_order parameter lists all access control methods to
use, in order of how they should be evaluated.

[domain/example.com]
access_provider = ldap
ldap_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com
ldap_access_order = filter, host, authorized_service

The attributes in the user entry to use to evaluate authorized services or allowed hosts can be
customized. Additional access control parameters are listed in the sssd-ldap(5) man page.

3.3.4 .9 . Co nfiguring Primary Server and Backup Servers

Identity and authentication providers for a domain can be configured for automatic failover. SSSD
attempts to connect to the specified, primary server first. If that server cannot be reached, then SSSD
then goes through the listed backup servers, in order.

Note

SSSD tries to connect to the primary server every 30 seconds, until the connection can be re-
established, and then switches from the backup to the primary.

All of the major service areas have optional settings for primary and backup servers .

Table 3.10. Primary and Secondary Server Parameters

Service Area Primary Server At t ribute Backup Server At t ribute
LDAP identity provider ldap_uri ldap_backup_uri
Active Directory identity
provider

ad_server ad_backup_server

Identity Management (IdM or
IPA) identity provider

ipa_server ipa_backup_server

Kerberos authentication
provider

krb5_server krb5_backup_server

Kerberos password change
provider

krb5_kpasswd krb5_backup_kpasswd

Password change provider ldap_chpass_uri ldap_chpass_backup_uri

Primary and backup servers are given in comma-separated lists. Servers from the primary-server list
are the first-choice servers; SSSD searches the backup servers only when it fails to reach any of the
primary servers. List both primary and backup servers in order of preference; the first server listed is
tried first. Service discovery using _srv_ is supported only for the primary servers.

[2]

Syst em- Level Aut hent icat ion Guide

110

[domain/EXAMPLE]
id_provider = ad
ad_server = ad.example.com, ad1.example.com
ad_backup_server = ad-backup.example.com, ad-backup1.example.com

For more information about the failover mechanism, see the sssd-ldap(5) man page.

3.3.5. Creat ing a Proxy Ident ity Provider

A proxy with SSSD is just a relay, an intermediary configuration. SSSD connects to its proxy service,
and then that proxy loads the specified libraries. This allows SSSD to use some resources that it
otherwise would not be able to use. For example, SSSD only supports LDAP and Kerberos as
authentication providers, but using a proxy allows SSSD to use alternative authentication methods
like a fingerprint scanner or smart card.

Table 3.11. Proxy Domain Conf igurat ion Parameters

Parameter Descript ion
proxy_pam_target Specifies the target to which PAM must proxy as

an authentication provider. The target is a PAM
service – a file containing PAM stack information
located in the default /etc/pam.d/ directory.

This is used to proxy an authentication
provider.

Important

Ensure that the proxy PAM stack does not
recursively include pam_sss.so .

proxy_lib_name Specifies which existing NSS library to proxy
identity requests through. This is used to proxy
an identity provider.

Example 3.8. Proxy Ident ity and Kerberos Authent icat ion

The proxy library is loaded using the proxy_lib_name parameter. This library can be anything
as long as it is compatible with the given authentication service. For a Kerberos authentication
provider, it must be a Kerberos-compatible library, like NIS.

[domain/PROXY_KRB5]
auth_provider = krb5
krb5_server = kdc.example.com
krb5_realm = EXAMPLE.COM

id_provider = proxy
proxy_lib_name = nis
cache_credentials = true

Example 3.9 . LDAP Ident ity and Proxy Authent icat ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

111

The proxy_pam_target specifies a PAM service. For example, this uses a PAM fingerprint
module with LDAP:

[domain/LDAP_PROXY]
id_provider = ldap
ldap_uri = ldap://example.com
ldap_search_base = dc=example,dc=com

auth_provider = proxy
proxy_pam_target = sssdpamproxy
cache_credentials = true

After the SSSD domain is configured, make sure that the specified PAM files are configured. In this
example, the target is sssdpamproxy, so create a /etc/pam.d/sssdpamproxy file and load the
PAM/LDAP modules:

auth required pam_frprint.so
account required pam_frprint.so
password required pam_frprint.so
session required pam_frprint.so

Example 3.10. Proxy Ident ity and Authent icat ion

SSSD can have a domain with both identity and authentication proxies. The only configuration
given then are the proxy settings, proxy_pam_target for the authentication PAM module and
proxy_lib_name for the service, like NIS or LDAP.

This example illustrates a possible configuration, but this is not a realistic configuration. If LDAP is used for
identity and authentication, then both the identity and authentication providers should be set to the LDAP
configuration, not a proxy.

[domain/PROXY_PROXY]
auth_provider = proxy
id_provider = proxy
proxy_lib_name = ldap
proxy_pam_target = sssdproxyldap
cache_credentials = true

Once the SSSD domain is added, then update the system settings to configure the proxy service:

1. Create a /etc/pam.d/sssdproxyldap file which requires the pam_ldap.so module:

auth required pam_ldap.so
account required pam_ldap.so
password required pam_ldap.so
session required pam_ldap.so

2. Make sure the nss-pam-ldap package is installed.

[root@server ~]# yum install nss-pam-ldap

3. Edit the /etc/nslcd.conf file, the configuration file for the LDAP name service daemon,
to contain the information for the LDAP directory:

Syst em- Level Aut hent icat ion Guide

112

uid nslcd
gid ldap
uri ldaps://ldap.example.com:636
base dc=example,dc=com
ssl on
tls_cacertdir /etc/openldap/cacerts

3.3.6. Configuring Kerberos Authent icat ion with an Ident ity Provider

Both LDAP and proxy identity providers can use a separate Kerberos domain to supply
authentication. Configuring a Kerberos authentication provider requires the key distribution center
(KDC) and the Kerberos domain. All of the principal names must be available in the specified identity
provider; if they are not, SSSD constructs the principals using the format username@REALM.

Note

Kerberos can only provide authentication; it cannot provide an identity database.

SSSD assumes that the Kerberos KDC is also a Kerberos kadmin server. However, production
environments commonly have multiple, read-only replicas of the KDC and only a single kadmin
server. Use the krb5_kpasswd option to specify where the password changing service is running or
if it is running on a non-default port. If the krb5_kpasswd option is not defined, SSSD tries to use
the Kerberos KDC to change the password.

The basic Kerberos configuration options are listed in Table 3.12, “Kerberos Authentication
Configuration Parameters” . The sssd-krb5(5) man page has more information about Kerberos
configuration options.

Example 3.11. Basic Kerberos Authent icat ion

A domain with identities provided by LDAP and authentication by
Kerberos
[domain/KRBDOMAIN]
id_provider = ldap
chpass_provider = krb5
ldap_uri = ldap://ldap.example.com
ldap_search_base = dc=example,dc=com
ldap-tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

auth_provider = krb5
krb5_server = kdc.example.com
krb5_backup_server = kerberos.example.com
krb5_realm = EXAMPLE.COM
krb5_kpasswd = kerberos.admin.example.com
krb5_auth_timeout = 15
krb5_use_kdcinfo = true

Example 3.12. Set t ing Kerberos T icket Renewal Opt ions

Chapt er 3. Using and Caching Credent ials wit h SSSD

113

The Kerberos authentication provider, among other tasks, requests ticket granting tickets (TGT) for
users and services. These tickets are used to generate other tickets dynamically for specific
services, as accessed by the ticket principal (the user).

The TGT initially granted to the user principal is valid only for the lifetime of the ticket (by default,
whatever is configured in the configured KDC). After that, the ticket cannot be renewed or extended.
However, not renewing tickets can cause problems with some services when they try to access a
service in the middle of operations and their ticket has expired.

Kerberos tickets are not renewable by default, but ticket renewal can be enabled using the
krb5_renewable_lifetime and krb5_renew_interval parameters.

The lifetime for a ticket is set in SSSD with the krb5_lifetime parameter. This specifies how
long a single ticket is valid, and overrides any values in the KDC.

Ticket renewal itself is enabled in the krb5_renewable_lifetime parameter, which sets the
maximum lifetime of the ticket, counting all renewals.

For example, the ticket lifetime is set at one hour and the renewable lifetime is set at 24 hours:

krb5_lifetime = 1h
krb5_renewable_lifetime = 1d

This means that the ticket expires every hour and can be renewed continually up to one day.

The lifetime and renewable lifetime values can be in seconds (s), minutes (m), hours (h), or days
(d).

The other option — which must also be set for ticket renewal — is the krb5_renew_interval
parameter, which sets how frequently SSSD checks to see if the ticket needs to be renewed. At half
of the ticket lifetime (whatever that setting is), the ticket is renewed automatically. (This value is
always in seconds.)

krb5_lifetime = 1h
krb5_renewable_lifetime = 1d
krb5_renew_interval = 60s

Note

If the krb5_renewable_lifetime value is not set or the krb5_renew_interval parameter
is not set or is set to zero (0), then ticket renewal is disabled. Both
krb5_renewable_lifetime and krb5_renew_interval are required for ticket renewal to
be enabled.

Table 3.12. Kerberos Authent icat ion Conf igurat ion Parameters

Parameter Descript ion
chpass_provider Specifies which service to use for password

change operations. This is assumed to be the
same as the authentication provider. To use
Kerberos, set this to krb5.

Syst em- Level Aut hent icat ion Guide

114

krb5_server Gives the primary Kerberos server, by IP
address or hostnames, to which SSSD will
connect.

krb5_backup_server Gives a comma-separated list of IP addresses or
hostnames of Kerberos servers to which SSSD
will connect if the primary server is not available.
The list is given in order of preference, so the
first server in the list is tried first. After an hour,
SSSD will attempt to reconnect to the primary
service specified in the krb5_server
parameter.

When using service discovery for KDC or
kpasswd servers, SSSD first searches for DNS
entries that specify UDP as the connection
protocol, and then falls back to TCP.

krb5_realm Identies the Kerberos realm served by the KDC.
krb5_lifetime Requests a Kerberos ticket with the specified

lifetime in seconds (s), minutes (m), hours (h) or
days (d).

krb5_renewable_lifetime Requests a renewable Kerberos ticket with a
total lifetime that is specified in seconds (s),
minutes (m), hours (h) or days (d).

krb5_renew_interval Sets the time, in seconds, for SSSD to check if
tickets should be renewed. Tickets are renewed
automatically once they exceed half their
lifetime. If this option is missing or set to zero,
then automatic ticket renewal is disabled.

krb5_store_password_if_offline Sets whether to store user passwords if the
Kerberos authentication provider is offline, and
then to use that cache to request tickets when
the provider is back online. The default is
false, which does not store passwords.

krb5_kpasswd Lists alternate Kerberos kadmin servers to use if
the change password service is not running on
the KDC.

Parameter Descript ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

115

krb5_ccname_template Gives the directory to use to store the user's
credential cache. This can be templatized, and
the following tokens are supported:

%u, the user's login name
%U, the user's login UID
%p, the user's principal name
%r, the realm name
%h, the user's home directory
%d, the value of the krb5ccache_dir
parameter
%P, the process ID of the SSSD client.
%%, a literal percent sign (%)
XXXXXX, a string at the end of the template
which instructs SSSD to create a unique
filename safely

For example:

krb5_ccname_template =
FILE:%d/krb5cc_%U_XXXXXX

krb5_ccachedir Specifies the directory to store credential
caches. This can be templatized, using the same
tokens as krb5_ccname_template, except for
%d and %P . If %u, %U, %p, or %h are used, then
SSSD creates a private directory for each user;
otherwise, it creates a public directory.

krb5_auth_timeout Gives the time, in seconds, before an online
authentication or change password request is
aborted. If possible, the authentication request
is continued offline. The default is 15 seconds.

krb5_use_kdcinfo Sets whether to create Kerberos information files
used by the Kerberos locator plug-in. This is set
to true by default. If it is set to false, then the
files are not created by SSSD, and the Kerberos
options must be set manually in the krb5.conf
file.

Parameter Descript ion

3.4 . Managing Local System Users in SSSD

3.4 .1. Installing SSSD Ut ilit ies

Additional tools to handle the SSSD cache, user entries, and group entries are contained in the
sssd-tools package. This package is not required, but it is useful to install to help administer user
accounts.

[root@server ~]# yum install sssd-tools

3.4 .2. SSSD and UID and GID Numbers

Syst em- Level Aut hent icat ion Guide

116

When a user is created — using system tools such as useradd or through an application such as
Red Hat Identity Management or other client tools — the user is automatically assigned a user ID
number and a group ID number.

When the user logs into a system or service, SSSD caches that username with the associated
UID/GID numbers. The UID number is then used as the identifying key for the user. If a user with the
same name but a different UID attempts to log into the system, then SSSD treats it as two different
users with a name collision.

What this means is that SSSD does not recognize UID number changes. It interprets it as a different
and new user, not an existing user with a different UID number. If an existing user changes the UID
number, that user is prevented from logging into SSSD and associated services and domains. This
also has an impact on any client applications which use SSSD for identity information; the user with
the conflict will not be found or accessible to those applications.

Important

UID/GID changes are not supported in SSSD.

If a user for some reason has a changed UID/GID number, then the SSSD cache must be cleared for
that user before that user can log in again. For example:

[root@server ~]# sss_cache -u jsmith

Cleaning the SSSD cache is covered in Section 3.4.5.1, “Purging the SSSD Cache” .

3.4 .3. Creat ing Local System Users

There can be times when it is useful to seed users into the SSSD database rather than waiting for
users to login and be added.

Note

Adding user accounts manually requires the sssd-tools package to be installed.

When creating new system users, it is possible to create a user within the SSSD local identity
provider domain. This can be useful simply for creating new system users, for troubleshooting SSSD
configuration, or for creating specialized or nested groups.

New users can be added using the sss_useradd command.

At its most basic, the sss_useradd command only requires the new username.

[root@server ~]# sss_useradd jsmith

There are other options (listed in the sss_useradd(8) man page) which can be used to set
attributes on the account, like the UID and GID, the home directory, or groups which the user belongs
to.

[root@server ~]# sss_useradd --UID 501 --home /home/jsmith --groups
admin,dev-group jsmith

Chapt er 3. Using and Caching Credent ials wit h SSSD

117

3.4 .4 . Seeding Users into the SSSD Cache During Kickstart

Note

Adding user accounts manually requires the sssd-tools package to be installed.

With SSSD, users in a remote domain are not available in a local system until that identity is retrieved
from the identity provider. However, some network interfaces are not available until a user has logged
in — which is not possible if the user identity is somewhere over the network. In that case, it is
possible to seed the SSSD cache with that user identity, associated with the appropriate domain, so
that the user can log in locally and active the appropriate interfaces.

This is done using the sss_seed utility:

sss_seed --domain EXAMPLE.COM --username testuser --password-file
/tmp/sssd-pwd.txt

This utility requires options that identify, at a minimum, the username, domain name, and password.

--domain gives the domain name from the SSSD configuration. This domain must already exist
in the SSSD configuration.

--username for the short name of the user account.

--password-file for the path and name of a file containing a temporary password for the seed
entry. If the user account already exists in the SSSD cache, then the temporary password in this
file overwrites the stored password in the SSSD cache.

Additional account configuration options are listed in the sss_seed(8) man page.

This would almost always be run as part of a kickstart or automated setup, so it would be part of a
larger set of scripts, which would also enable SSSD, set up an SSSD domain, and create the
password file. For example:

function make_sssd {
cat <<- _EOF_
[sssd]
domains = LOCAL
services = nss,pam

[nss]

[pam]

[domain/LOCAL]
id_provider = local
auth_provider = local
access_provider = permit

EOF
}

make_sssd >> /etc/sssd/sssd.conf

authconfig --enablesssd --enablesssdauth --update

Syst em- Level Aut hent icat ion Guide

118

function make_pwdfile {
cat <<1 _EOF_
password
EOF
}

make_pwdfile >> /tmp/sssd-pwd.txt

sss_seed --domain EXAMPLE.COM --username testuser --password-file
/tmp/sssd-pwd.txt

3.4 .5. Managing the SSSD Cache

SSSD can define multiple domains of the same type and different types of domain. SSSD maintains
a separate database file for each domain, meaning each domain has its own cache. These cache
files are stored in the /var/lib/sss/db/ directory.

3.4 .5 .1 . Purging t he SSSD Cache

As LDAP updates are made to the identity provider for the domains, it can be necessary to clear the
cache to reload the new information quickly.

The cache purge utility, sss_cache, invalidates records in the SSSD cache for a user, a domain, or
a group. Invalidating the current records forces the cache to retrieve the updated records from the
identity provider, so changes can be realized quickly.

Note

This utility is included with SSSD in the sssd package.

Most commonly, this is used to clear the cache and update the records for an entire domain:

Example 3.13. Purging Domain Records

[root@server ~]# sss_cache -d LDAP1

If the administrator knows that a specific record (user, group, or netgroup) has been updated, then
sss_cache can purge the records for that specific account, and leave the rest of the cache intact.

Example 3.14 . Purging a User Record

[root@server ~]# sss_cache -u jsmith

Table 3.13. sss_cache Opt ions

Short Argument Long Argument Descript ion

Chapt er 3. Using and Caching Credent ials wit h SSSD

119

-d name --domain name Invalidates cache entries for
users, groups, and other
entries only within the specified
domain.

-G --groups Invalidates all group records. If
-g is also used, -G takes
precedence and -g is ignored.

-g name --group name Invalidates the cache entry for
the specified group.

-N --netgroups Invalidates cache entries for all
netgroup cache records. If -n is
also used, -N takes precedence
and -n is ignored.

-n name --netgroup name Invalidates the cache entry for
the specified netgroup.

-U --users Invalidates cache entries for all
user records. If the -u option is
also used, -U takes precedence
and -u is ignored.

-u name --user name Invalidates the cache entry for
the specified user.

Short Argument Long Argument Descript ion

3.4 .5 .2 . Delet ing Do main Cache Files

All cache files are named for the domain. For example, for a domain named exampleldap, the
cache file is named cache_exampleldap.ldb.

Be carefu l when you delete a cache f ile. This operation has significant effects:

Deleting the cache file deletes all user data, both identification and cached credentials.
Consequently, do not delete a cache file unless the system is online and can authenticate with a
username against the domain's servers. Without a credentials cache, offline authentication will
fail.

If the configuration is changed to reference a different identity provider, SSSD will recognize users
from both providers until the cached entries from the original provider time out.

It is possible to avoid this by purging the cache, but the better option is to use a different domain
name for the new provider. When SSSD is restarted, it creates a new cache file with the new name
and the old file is ignored.

3.5. Downgrading SSSD

When downgrading — either downgrading the version of SSSD or downgrading the operating
system itself — then the existing SSSD cache needs to be removed. If the cache is not removed, then
SSSD process is dead but a PID file remains. The SSSD logs show that it cannot connect to any of
its associated domains because the cache version is unrecognized.

(Wed Nov 28 21:25:50 2012) [sssd] [sysdb_domain_init_internal] (0x0010):
Unknown DB version [0.14], expected [0.10] for domain AD!

Users are then no longer recognized and are unable to authenticate to domain services and hosts.

Syst em- Level Aut hent icat ion Guide

120

After downgrading the SSSD version:

1. Delete the existing cache database files.

[root@server ~]# rm -rf /var/lib/sss/db/*

2. Restart the SSSD process.

[root@server ~]# systemctl restart sssd.service

3.6. Using NSCD with SSSD

SSSD is not designed to be used with the NSCD daemon. Even though SSSD does not directly
conflict with NSCD, using both services can result in unexpected behavior, especially with how long
entries are cached.

The most common evidence of a problem is conflicts with NFS. When using Network Manager to
manage network connections, it may take several minutes for the network interface to come up.
During this time, various services attempt to start. If these services start before the network is up and
the DNS servers are available, these services fail to identify the forward or reverse DNS entries they
need. These services will read an incorrect or possibly empty resolv.conf file. This file is typically
only read once, and so any changes made to this file are not automatically applied. This can cause
NFS locking to fail on the machine where the NSCD service is running, unless that service is
manually restarted.

To avoid this problem, enable caching for hosts and services in the /etc/nscd.conf file and rely
on the SSSD cache for the passwd , group, services, and netgroup entries.

Change the /etc/nscd.conf file:

enable-cache hosts yes
enable-cache passwd no
enable-cache group no
enable-cache netgroup no
enable-cache services no

With NSCD answering hosts requests, these entries will be cached by NSCD and returned by NSCD
during the boot process. All other entries are handled by SSSD.

3.7. Troubleshoot ing SSSD

Section 3.7.1, “Setting Debug Logs for SSSD Domains”

Section 3.7.2, “Checking SSSD Log Files”

Section 3.7.3, “Problems with SSSD Configuration”

3.7.1. Set t ing Debug Logs for SSSD Domains

Each domain sets its own debug log level. Increasing the log level can provide more information
about problems with SSSD or with the domain configuration.

To change the log level, set the debug_level parameter for each section in the sssd.conf file for
which to produce extra logs. For example:

Chapt er 3. Using and Caching Credent ials wit h SSSD

121

Q:

A:

[domain/LDAP]
cache_credentials = true
debug_level = 9

Table 3.14 . Debug Log Levels

Level Descript ion
0 Fatal failures. Anything that would prevent

SSSD from starting up or causes it to cease
running.

1 Critical failures. An error that doesn't kill the
SSSD, but one that indicates that at least one
major feature is not going to work properly.

2 Serious failures. An error announcing that a
particular request or operation has failed.

3 Minor failures. These are the errors that would
percolate down to cause the operation failure of
2.

4 Configuration settings.
5 Function data.
6 Trace messages for operation functions.
7 Trace messages for internal control functions.
8 Contents of function-internal variables that may

be interesting.
9 Extremely low-level tracing information.

To change the debug level while SSSD is running, use the sss_debuglevel utility, which is part of
the sssd-tools package. For more information about how it works, see the sss_debuglevel man
page.

3.7.2. Checking SSSD Log Files

SSSD uses a number of log files to report information about its operation, located in the
/var/log/sssd/ directory. SSSD produces a log file for each domain, as well as an
sssd_pam.log and an sssd_nss.log file.

Additionally, the /var/log/secure file logs authentication failures and the reason for the failure.

3.7.3. Problems with SSSD Configurat ion

SSSD fails to start

SSSD requires that the configuration file be properly set up, with all the required entries, before
the daemon will start.

SSSD requires at least one properly configured domain before the service will start. Without
a domain, attempting to start SSSD returns an error that no domains are configured:

sssd -d4

Syst em- Level Aut hent icat ion Guide

122

Q:

A:

Q:

[sssd] [ldb] (3): server_sort:Unable to register control with
rootdse!
[sssd] [confdb_get_domains] (0): No domains configured, fatal
error!
[sssd] [get_monitor_config] (0): No domains configured.

Edit the /etc/sssd/sssd.conf file and create at least one domain.

SSSD also requires at least one available service provider before it will start. If the problem
is with the service provider configuration, the error message indicates that there are no
services configured:

[sssd] [get_monitor_config] (0): No services configured!

Edit the /etc/sssd/sssd.conf file and configure at least one service provider.

Important

SSSD requires that service providers be configured as a comma-separated list in a
single services entry in the /etc/sssd/sssd.conf file. If services are listed in
multiple entries, only the last entry is recognized by SSSD.

I don ' t see any groups with ' id ' or group members with 'getent group' .

This may be due to an incorrect ldap_schema setting in the [domain/DOMAINNAME] section
of sssd.conf.

SSSD supports RFC 2307 and RFC 2307bis schema types. By default, SSSD uses the more
common RFC 2307 schema.

The difference between RFC 2307 and RFC 2307bis is the way which group membership is
stored in the LDAP server. In an RFC 2307 server, group members are stored as the multi-
valued memberuid attribute, which contains the name of the users that are members. In an
RFC2307bis server, group members are stored as the multi-valued member or uniqueMember
attribute which contains the DN of the user or group that is a member of this group. RFC2307bis
allows nested groups to be maintained as well.

If group lookups are not returning any information:

1. Set ldap_schema to rfc2307bis.

2. Delete /var/lib/sss/db/cache_DOMAINNAME.ldb.

3. Restarting SSSD.

If that doesn't work, add this line to sssd.conf:

ldap_group_name = uniqueMember

Then delete the cache and restart SSSD again.

Chapt er 3. Using and Caching Credent ials wit h SSSD

123

A:

Q:

A:

Q:

Authent icat ion fails against LDAP.

To perform authentication, SSSD requires that the communication channel be encrypted. This
means that if sssd.conf is configured to connect over a standard protocol (ldap://), it
attempts to encrypt the communication channel with Start TLS. If sssd.conf is configured to
connect over a secure protocol (ldaps://), then SSSD uses SSL.

This means that the LDAP server must be configured to run in SSL or TLS. TLS must be enabled
for the standard LDAP port (389) or SSL enabled on the secure LDAPS port (636). With either
SSL or TLS, the LDAP server must also be configured with a valid certificate trust.

An invalid certificate trust is one of the most common issues with authenticating against LDAP. If
the client does not have proper trust of the LDAP server certificate, it is unable to validate the
connection, and SSSD refuses to send the password. The LDAP protocol requires that the
password be sent in plain text to the LDAP server. Sending the password in plain text over an
unencrypted connection is a security problem.

If the certificate is not trusted, a syslog message is written, indicating that TLS encryption
could not be started. The certificate configuration can be tested by checking if the LDAP server
is accessible apart from SSSD. For example, this tests an anonymous bind over a TLS
connection to test.example.com:

$ ldapsearch -x -ZZ -h test.example.com -b dc=example,dc=com

If the certificate trust is not properly configured, the test fails with this error:

ldap_start_tls: Connect error (-11) additional info: TLS error -
8179:Unknown code ___f 13

To trust the certificate:

1. Obtain a copy of the public CA certificate for the certificate authority used to sign the
LDAP server certificate and save it to the local system.

2. Add a line to the sssd.conf file that points to the CA certificate on the filesystem.

ldap_tls_cacert = /path/to/cacert

3. If the LDAP server uses a self-signed certificate, remove the ldap_tls_reqcert line
from the sssd.conf file.

This parameter directs SSSD to trust any certificate issued by the CA certificate, which is
a security risk with a self-signed CA certificate.

Connect ing to LDAP servers on non-standard ports fail.

When running SELinux in enforcing mode, the client's SELinux policy has to be modified to
connect to the LDAP server over the non-standard port. For example:

semanage port -a -t ldap_port_t -p tcp 1389

Syst em- Level Aut hent icat ion Guide

124

A:

Q:

A:

Q:

A:

NSS fails to return user in format ion

This usually means that SSSD cannot connect to the NSS service.

Ensure that the NSS service is running:

service sssd status
Redirecting to /bin/systemctl status sssd.service
 sssd.service - System Security Services Daemon
 Loaded: loaded (/usr/lib/systemd/system/sssd.service; enabled)
 Active: active (running) since Wed 2015-01-14 10:17:26 CET; 1min
30s ago
 Process: 683 ExecStart=/usr/sbin/sssd -D -f (code=exited,
status=0/SUCCESS)
 Main PID: 745 (sssd)
 CGroup: /system.slice/sssd.service
 ├─745 /usr/sbin/sssd -D -f
 ├─746 /usr/libexec/sssd/sssd_be --domain default --debug-to-
files...
 ├─804 /usr/libexec/sssd/sssd_nss --debug-to-files
 └─805 /usr/libexec/sssd/sssd_pam --debug-to-files

NSS service is running when SSSD is in the Active: active (running) state and
when the output includes sssd_nss.

If NSS is running, make sure that the provider is properly configured in the [nss] section of
the /etc/sssd/sssd.conf file. Especially check the filter_users and
filter_groups attributes.

Make sure that NSS is included in the list of services that SSSD uses.

Check the configuration in the /etc/nsswitch.conf file. For more information, see
Section 3.2.1.2, “Configuring NSS Services to Use SSSD” .

NSS returns incorrect user in format ion

If searches are returning the incorrect user information, check that there are not conflicting
usernames in separate domains. When there are multiple domains, set the
use_fully_qualified_domains attribute to true in the /etc/sssd/sssd.conf file. This
differentiates between different users in different domains with the same name.

Set t ing the password for the local SSSD user prompts twice for the password

When attempting to change a local SSSD user's password, it may prompt for the password
twice:

[root@clientF11 tmp]# passwd user1000
Changing password for user user1000.
New password:
Retype new password:

Chapt er 3. Using and Caching Credent ials wit h SSSD

125

Q:

A:

Q:

A:

New Password:
Reenter new Password:
passwd: all authentication tokens updated successfully.

This is the result of an incorrect PAM configuration. Ensure that the use_authtok option is
correctly configured in your /etc/pam.d/system-auth file. For examples of the correct
configuration, see Section 3.2.2, “Configuring Services: PAM” .

An Act ive Directory ident ity provider is properly conf igured in my sssd.conf f i le,
but SSSD fails to connect to it , with GSS-API errors.

SSSD can only connect with an Active Directory provider using its hostname. If the hostname is
not given, the SSSD client cannot resolve the IP address to the host, and authentication fails.

For example, with this configuration:

[domain/ADEXAMPLE]
debug_level = 0xFFF0
id_provider = ad
ad_server = 172.16.0.1
ad_domain = example.com
krb5_canonicalize = False

The SSSD client returns this GSS-API failure, and the authentication request fails:

(Fri Jul 27 18:27:44 2012) [sssd[be[ADTEST]]] [sasl_bind_send]
(0x0020): ldap_sasl_bind failed (-2)[Local error]
(Fri Jul 27 18:27:44 2012) [sssd[be[ADTEST]]] [sasl_bind_send]
(0x0080): Extended failure message: [SASL(-1): generic failure:
GSSAPI Error: Unspecified GSS failure. Minor code may provide more
information (Cannot determine realm for numeric host address)]

To avoid this error, set the ad_server to the name of the Active Directory host, or use the
srv keyword to use the DNS service discovery, as described in Section 3.3.4.6, “Using DNS
Service Discovery” .

I conf igured SSSD for cent ral authent icat ion, but now several o f my applicat ions
(such as Firefox or Adobe) will not start .

Even on 64-bit systems, 32-bit applications require a 32-bit version of SSSD client libraries to
use to access the password and identity cache. If a 32-bit version of SSSD is not available, but
the system is configured to use the SSSD cache, then 32-bit applications can fail to start.

For example, Firefox can fail with permission denied errors:

Failed to contact configuration server. See
http://www.gnome.org/projects/gconf/
for information. (Details - 1: IOR file '/tmp/gconfd-
somebody/lock/ior'

Syst em- Level Aut hent icat ion Guide

126

Q:

A:

not opened successfully, no gconfd located: Permission denied 2: IOR
file '/tmp/gconfd-somebody/lock/ior' not opened successfully, no
gconfd
located: Permission denied)

For Adobe Reader, the error shows that the current system user is not recognized:

[jsmith@server ~]$ acroread
(acroread:12739): GLib-WARNING **: getpwuid_r(): failed due to
unknown
user id (366)

Other applications may show similar user or permissions errors.

SSSD is showing an automount locat ion that I removed.

The SSSD cache for the automount location persists even if the location is subsequently
changed or removed. To update the autofs information in SSSD:

1. Remove the autofs cache, as described in Section 3.4.5.1, “Purging the SSSD Cache” .

2. Restart SSSD, as in Section 3.1.2, “Starting and Stopping SSSD” .

[2] Mo st services d efault to the id entity p ro vid er server if a sp ecific server fo r that service is no t set.

Chapt er 3. Using and Caching Credent ials wit h SSSD

127

Chapter 4. Using realmd to Connect to an Identity Domain

The realmd system provides a clear and simple way to discover and join identity domains. It does
not connect to the domain itself but configures underlying Linux system services, such as SSSD or
Winbind, to connect to the domain.

The Windows Integration Guide describes using realmd to connect to a Microsoft Active Directory
(AD) domain. The same procedures apply to using realmd to connect to non-AD identity domains.
See the corresponding chapter in the Windows Integration Guide.

Syst em- Level Aut hent icat ion Guide

128

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Windows_Integration_Guide/ch-Configuring_Authentication.html

Part III. Secure Applications

Part III. Secure Applicat ions

129

Chapter 5. Using Pluggable Authentication Modules (PAM)

Pluggable authentication modules (PAMs) are a common framework for authentication and
authorization. Most system applications in Red Hat Enterprise Linux depend on underlying PAM
configuration for authentication and authorization.

5.1. About PAM

Pluggable Authentication Modules (PAMs) provide a centralized authentication mechanism which
system application can use to relay authentication to a centrally configured framework.

PAM is pluggable because there is a PAM module for different types of authentication sources (such
as Kerberos, SSSD, NIS, or the local file system). Different authentication sources can be prioritized.

This modular architecture offers administrators a great deal of flexibility in setting authentication
policies for the system. PAM is a useful system for developers and administrators for several reasons:

PAM provides a common authentication scheme that can be used with a wide variety of
applications.

PAM provides significant flexibility and control over authentication for system administrators.

PAM provides a single, fully-documented library which allows developers to write programs
without having to create their own authentication schemes.

5.1.1. Other PAM Resources

PAM has an extensive documentation set with much more detail about both using PAM and writing
modules to extend or integrate PAM with other applications. Almost all of the major modules and
configuration files with PAM have their own man pages. Additionally, the
/usr/share/doc/pam-version#/ directory contains a System Administrators' Guide, a Module
Writers' Manual, and the Application Developers' Manual, as well as a copy of the PAM standard, DCE-
RFC 86.0.

The libraries for PAM are available at http://www.linux-pam.org. This is the primary distribution
website for the Linux-PAM project, containing information on various PAM modules, frequently asked
questions, and additional PAM documentation.

5.1.2. Custom PAM Modules

New PAM modules can be created or added at any time for use by PAM-aware applications. PAM-
aware programs can immediately use the new module and any methods it defines without being
recompiled or otherwise modified. This allows developers and system administrators to mix-and-
match, as well as test, authentication methods for different programs without recompiling them.

Documentation on writing modules is included in the /usr/share/doc/pam-devel-version#/
directory.

5.2. About PAM Configurat ion Files

Each PAM-aware application or service has a file in the /etc/pam.d/ directory. Each file in this
directory has the same name as the service to which it controls access. For example, the login
program defines its service name as login and installs the /etc/pam.d/login PAM
configuration file.

Syst em- Level Aut hent icat ion Guide

130

http://www.linux-pam.org

Warning

It is highly recommended to configure PAMs using the authconfig tool instead of manually
editing the PAM configuration files.

5.2.1. PAM Configurat ion File Format

Each PAM configuration file contains a group of directives that define the module (the authentication
configuration area) and any controls or arguments with it.

The directives all have a simple syntax that identifies the module purpose (interface) and the
configuration settings for the module.

module_interface control_flag module_name module_arguments

In a PAM configuration file, the module interface is the first field defined. For example:

auth required pam_unix.so

A PAM interface is essentially the type of authentication action which that specific module can
perform. Four types of PAM module interface are available, each corresponding to a different aspect
of the authentication and authorization process:

auth — This module interface authenticates use. For example, it requests and verifies the validity
of a password. Modules with this interface can also set credentials, such as group memberships.

account — This module interface verifies that access is allowed. For example, it checks if a user
account has expired or if a user is allowed to log in at a particular time of day.

password — This module interface is used for changing user passwords.

session — This module interface configures and manages user sessions. Modules with this
interface can also perform additional tasks that are needed to allow access, like mounting a
user's home directory and making the user's mailbox available.

An individual module can provide any or all module interfaces. For instance, pam_unix.so
provides all four module interfaces.

The module name, such as pam_unix.so , provides PAM with the name of the library containing the
specified module interface. The directory name is omitted because the application is linked to the
appropriate version of libpam, which can locate the correct version of the module.

All PAM modules generate a success or failure result when called. Control flags tell PAM what do with
the result. Modules can be listed (stacked) in a particular order, and the control flags determine how
important the success or failure of a particular module is to the overall goal of authenticating the user
to the service.

There are several simple flags , which use only a keyword to set the configuration:

required — The module result must be successful for authentication to continue. If the test fails
at this point, the user is not notified until the results of all module tests that reference that interface
are complete.

[3]

Chapt er 5. Using Pluggable Aut hent icat ion Modules (PAM)

131

requisite — The module result must be successful for authentication to continue. However, if a
test fails at this point, the user is notified immediately with a message reflecting the first failed
required or requisite module test.

sufficient — The module result is ignored if it fails. However, if the result of a module flagged
sufficient is successful and no previous modules flagged required have failed, then no
other results are required and the user is authenticated to the service.

optional — The module result is ignored. A module flagged as optional only becomes
necessary for successful authentication when no other modules reference the interface.

include — Unlike the other controls, this does not relate to how the module result is handled.
This flag pulls in all lines in the configuration file which match the given parameter and appends
them as an argument to the module.

Module interface directives can be stacked, or placed upon one another, so that multiple modules are
used together for one purpose.

Note

If a module's control flag uses the sufficient or requisite value, then the order in which
the modules are listed is important to the authentication process.

Stacking makes it easy for an administrator to require specific conditions to exist before allowing the
user to authenticate. For example, the setup utility normally uses several stacked modules, as seen
in its PAM configuration file:

[root@MyServer ~]# cat /etc/pam.d/setup

auth sufficient pam_rootok.so
auth include system-auth
account required pam_permit.so
session required pam_permit.so

auth sufficient pam_rootok.so — This line uses the pam_rootok.so module to check
whether the current user is root, by verifying that their UID is 0. If this test succeeds, no other
modules are consulted and the command is executed. If this test fails, the next module is
consulted.

auth include system-auth — This line includes the content of the /etc/pam.d/system-
auth module and processes this content for authentication.

account required pam_permit.so — This line uses the pam_permit.so module to allow
the root user or anyone logged in at the console to reboot the system.

session required pam_permit.so — This line is related to the session setup. Using
pam_permit.so , it ensures that the setup utility does not fail.

PAM uses arguments to pass information to a pluggable module during authentication for some
modules.

For example, the pam_pwquality.so module checks how strong a password is and can take
several arguments. In the following example, enforce_for_root specifies that even password of
the root user must successfully pass the strength check and retry defines that a user will receive
three opportunities to enter a strong password.

Syst em- Level Aut hent icat ion Guide

132

password requisite pam_pwquality.so enforce_for_root retry=3

Invalid arguments are generally ignored and do not otherwise affect the success or failure of the PAM
module. Some modules, however, may fail on invalid arguments. Most modules report errors to the
journald service. For information on how to use journald and the related journalctl tool, see
the System Administrator's Guide.

Note

The journald service was introduced in Red Hat Enterprise Linux 7.1. In previous versions of
Red Hat Enterprise Linux, most modules report errors to the /var/log/secure file.

5.2.2. Annotated PAM Configurat ion Example

Example 5.1, “Simple PAM Configuration” is a sample PAM application configuration file:

Example 5.1. Simple PAM Conf igurat ion

#%PAM-1.0
auth required pam_securetty.so
auth required pam_unix.so nullok
auth required pam_nologin.so
account required pam_unix.so
password required pam_pwquality.so retry=3
password required pam_unix.so shadow nullok use_authtok
session required pam_unix.so

The first line is a comment, indicated by the hash mark (#) at the beginning of the line.

Lines two through four stack three modules for login authentication.

auth required pam_securetty.so — This module ensures that if the user is trying to log in
as root, the tty on which the user is logging in is listed in the /etc/securetty file, if that file
exists.

If the tty is not listed in the file, any attempt to log in as root fails with a Login incorrect
message.

auth required pam_unix.so nullok — This module prompts the user for a password and
then checks the password using the information stored in /etc/passwd and, if it exists,
/etc/shadow.

The argument nullok instructs the pam_unix.so module to allow a blank password.

auth required pam_nologin.so — This is the final authentication step. It checks whether
the /etc/nologin file exists. If it exists and the user is not root, authentication fails.

Chapt er 5. Using Pluggable Aut hent icat ion Modules (PAM)

133

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#ch-Viewing_and_Managing_Log_Files

Note

In this example, all three auth modules are checked, even if the first auth module fails. This
prevents the user from knowing at what stage their authentication failed. Such knowledge
in the hands of an attacker could allow them to more easily deduce how to crack the
system.

account required pam_unix.so — This module performs any necessary account
verification. For example, if shadow passwords have been enabled, the account interface of the
pam_unix.so module checks to see if the account has expired or if the user has not changed
the password within the allowed grace period.

password required pam_pwquality.so retry=3 — If a password has expired, the
password component of the pam_pwquality.so module prompts for a new password. It then
tests the newly created password to see whether it can easily be determined by a dictionary-based
password cracking program.

The argument retry=3 specifies that if the test fails the first time, the user has two more chances
to create a strong password.

password required pam_unix.so shadow nullok use_authtok — This line specifies
that if the program changes the user's password, using the password interface of the
pam_unix.so module.

The argument shadow instructs the module to create shadow passwords when updating a
user's password.

The argument nullok instructs the module to allow the user to change their password from a
blank password, otherwise a null password is treated as an account lock.

The final argument on this line, use_authtok, provides a good example of the importance of
order when stacking PAM modules. This argument instructs the module not to prompt the user
for a new password. Instead, it accepts any password that was recorded by a previous
password module. In this way, all new passwords must pass the pam_pwquality.so test for
secure passwords before being accepted.

session required pam_unix.so — The final line instructs the session interface of the
pam_unix.so module to manage the session. This module logs the user name and the service
type to /var/log/secure at the beginning and end of each session. This module can be
supplemented by stacking it with other session modules for additional functionality.

5.3. PAM and Administ rat ive Credent ial Caching

A number of graphical administrative tools in Red Hat Enterprise Linux, such as the GNOME's
control-center, provide users with elevated privileges for up to five minutes using the
pam_timestamp.so module. It is important to understand how this mechanism works, because a
user who walks away from a terminal while pam_timestamp.so is in effect leaves the machine open
to manipulation by anyone with physical access to the console.

In the PAM timestamp scheme, the graphical administrative application prompts the user for the root
password when it is launched. When the user has been authenticated, the pam_timestamp.so
module creates a timestamp file. By default, this is created in the /var/run/sudo/ directory. If the
timestamp file already exists, graphical administrative programs do not prompt for a password.
Instead, the pam_timestamp.so module freshens the timestamp file, reserving an extra five minutes
of unchallenged administrative access for the user.

Syst em- Level Aut hent icat ion Guide

134

You can verify the actual state of the timestamp file by inspecting the file in the /var/run/sudo/user
directory. For the desktop, the relevant file is unknown:root. If it is present and its timestamp is less
than five minutes old, the credentials are valid.

The existence of the timestamp file is indicated by an authentication icon, which appears in the
notification area of the panel.

Figure 5.1. The Authent icat ion Icon

5.3.1. Removing the T imestamp File

Before abandoning a console where a PAM timestamp is active, it is recommended that the timestamp
file be destroyed. To do this from a graphical environment, click the authentication icon on the panel.
This causes a dialog box to appear. Click the Forget Authorization button to destroy the active
timestamp file.

Figure 5.2. Dismiss Authent icat ion Dialog

The PAM timestamp file has some important characteristics:

If logged in to the system remotely using ssh, use the /sbin/pam_timestamp_check -k root
command to destroy the timestamp file.

Run the /sbin/pam_timestamp_check -k root command from the same terminal window
where the privileged application was launched.

The logged in user who originally invoked the pam_timestamp.so module must be the user who
runs the /sbin/pam_timestamp_check -k command. Do not run this command as root.

Killing the credentials on the desktop without using the Forget Authorization action on the
icon can be done with the /sbin/pam_timestamp_chec command.

/sbin/pam_timestamp_check -k root </dev/null >/dev/null 2>/dev/null

Any other method only removes the credentials from the pty where the command was run.

Refer to the pam_timestamp_check man page for more information about destroying the timestamp
file using pam_timestamp_check.

5.3.2. Common pam_t imestamp Direct ives

The pam_timestamp.so module accepts several directives, with two used most commonly:

Chapt er 5. Using Pluggable Aut hent icat ion Modules (PAM)

135

timestamp_timeout — Specifies the period (in seconds) for which the timestamp file is valid.
The default value is 300 (five minutes).

timestampdir — Specifies the directory in which the timestamp file is stored. The default value is
/var/run/sudo/.

[3] There are many co mp lex co ntro l flag s that can b e set. These are set in attribute=value p airs; a
co mp lete l is t o f attrib utes is availab le in the pam.d manp ag e.

Syst em- Level Aut hent icat ion Guide

136

Chapter 6. Using Kerberos

Maintaining system security and integrity within a network is critical, and it encompasses every user,
application, service, and server within the network infrastructure. It requires an understanding of
everything that is running on the network and the manner in which these services are used. At the
core of maintaining this security is maintaining access to these applications and services and
enforcing that access.

Kerberos provides a mechanism that allows both users and machines to identify themselves to
network and receive defined, limited access to the areas and services that the administrator
configured. Kerberos authenticates entities by verifying their identity, and Kerberos also secures this
authenticating data so that it cannot be accessed and used or tampered with by an outsider.

6.1. About Kerberos

Kerberos uses symmetric-key cryptography to authenticate users to network services, which
means passwords are never actually sent over the network.

Consequently, when users authenticate to network services using Kerberos, unauthorized users
attempting to gather passwords by monitoring network traffic are effectively thwarted.

6.1.1. T he Basics of How Kerberos Works

Most conventional network services use password-based authentication schemes, where a user
supplies a password to access a given network server. However, the transmission of authentication
information for many services is unencrypted. For such a scheme to be secure, the network has to be
inaccessible to outsiders, and all computers and users on the network must be trusted and
trustworthy.

With simple, password-based authentication, a network that is connected to the Internet cannot be
assumed to be secure. Any attacker who gains access to the network can use a simple packet
analyzer, or packet sniffer, to intercept usernames and passwords, compromising user accounts and,
therefore, the integrity of the entire security infrastructure.

Kerberos eliminates the transmission of unencrypted passwords across the network and removes the
potential threat of an attacker sniffing the network.

Rather than authenticating each user to each network service separately as with simple password
authentication, Kerberos uses symmetric encryption and a trusted third party (a key distribution center
or KDC) to authenticate users to a suite of network services. The computers managed by that KDC
and any secondary KDCs constitute a realm.

When a user authenticates to the KDC, the KDC sends a set of credentials (a ticket) specific to that
session back to the user's machine, and any Kerberos-aware services look for the ticket on the user's
machine rather than requiring the user to authenticate using a password.

As shown in Figure 6.1, “Kerberos Authentication, in Steps” , each user is identified to the KDC with a
unique identity, called a principal. When a user on a Kerberos-aware network logs into his
workstation, his principal is sent to the KDC as part of a request for a ticket-getting ticket (or TGT) from
the authentication server. This request can be sent by the login program so that it is transparent to
the user or can be sent manually by a user through the kinit program after the user logs in.

The KDC then checks for the principal in its database. If the principal is found, the KDC creates a
TGT, encrypts it using the user's key, and sends the TGT to that user.

[4]

Chapt er 6 . Using Kerberos

137

Figure 6 .1. Kerberos Authent icat ion, in Steps

The login or kinit program on the client then decrypts the TGT using the user's key, which it
computes from the user's password. The user's key is used only on the client machine and is not
transmitted over the network. The ticket (or credentials) sent by the KDC are stored in a local store,
the credential cache (ccache), which can be checked by Kerberos-aware services. Red Hat
Enterprise Linux 7 supports the following types of credential caches:

KEYRING; the persistent KEYRING ccache type is the default for Red Hat Enterprise Linux 7

FILE

DIR

MEMORY

After authentication, servers can check an unencrypted list of recognized principals and their keys
rather than checking kinit; this is kept in a keytab.

The TGT is set to expire after a certain period of time (usually ten to twenty-four hours) and is stored
in the client machine's credential cache. An expiration time is set so that a compromised TGT is of
use to an attacker for only a short period of time. After the TGT has been issued, the user does not
have to re-enter their password until the TGT expires or until they log out and log in again.

Whenever the user needs access to a network service, the client software uses the TGT to request a
new ticket for that specific service from the ticket-granting server (TGS). The service ticket is then used
to authenticate the user to that service transparently.

6.1.2. About the Domain-to-Realm Mapping

Syst em- Level Aut hent icat ion Guide

138

When a client attempts to access a service running on a particular server, it knows the name of the
service (host) and the name of the server (foo.example.com), but because more than one realm can be
deployed on the network, it must guess at the name of the Kerberos realm in which the service
resides.

By default, the name of the realm is taken to be the DNS domain name of the server in all capital
letters.

foo.example.org → EXAMPLE.ORG
foo.example.com → EXAMPLE.COM
foo.hq.example.com → HQ.EXAMPLE.COM

In some configurations, this will be sufficient, but in others, the realm name which is derived will be
the name of a non-existent realm. In these cases, the mapping from the server's DNS domain name to
the name of its realm must be specified in the domain_realm section of the client system's
/etc/krb5.conf file. For example:

[domain_realm]
.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

The configuration specifies two mappings. The first mapping specifies that any system in the
example.com DNS domain belongs to the EXAMPLE.COM realm. The second specifies that a system
with the exact name example.com is also in the realm. The distinction between a domain and a
specific host is marked by the presence or lack of an initial period character. The mapping can also
be stored directly in DNS using the "_kerberos TXT" records, for example:

$ORIGIN example.com
_kerberos TXT "EXAMPLE.COM"

6.1.3. Environmental Requirements

Kerberos relies on being able to resolve machine names. Thus, it requires a working domain name
service (DNS). Both DNS entries and hosts on the network must be properly configured, which is
covered in the Kerberos documentation in /usr/share/doc/krb5-server-version-number.

Applications that accept Kerberos authentication require time synchronization. You can set up
approximate clock synchronization between the machines on the network using a service such as
ntpd . For information on the ntpd service, see the documentation in
/usr/share/doc/ntp-version-number/html/index.html or the ntpd(8) man page.

Note

Kerberos clients running Red Hat Enterprise Linux 7 support automatic time adjustment with
the KDC and have no strict timing requirements. This enables better tolerance to clocking
differences when deploying IdM clients with Red Hat Enterprise Linux 7.

6.1.4 . Considerat ions for Deploying Kerberos

Although Kerberos removes a common and severe security threat, it is difficult to implement for a
variety of reasons:

Chapt er 6 . Using Kerberos

139

Kerberos assumes that each user is trusted but is using an untrusted host on an untrusted
network. Its primary goal is to prevent unencrypted passwords from being transmitted across that
network. However, if anyone other than the proper user has access to the one host that issues
tickets used for authentication — the KDC — the entire Kerberos authentication system are at risk.

For an application to use Kerberos, its source must be modified to make the appropriate calls into
the Kerberos libraries. Applications modified in this way are considered to be Kerberos-aware, or
kerberized. For some applications, this can be quite problematic due to the size of the application
or its design. For other incompatible applications, changes must be made to the way in which the
server and client communicate. Again, this can require extensive programming. Closed-source
applications that do not have Kerberos support by default are often the most problematic.

Kerberos is an all-or-nothing solution. To secure a network with Kerberos, one must either use
Kerberos-aware versions of all client/server applications that transmit passwords unencrypted, or
not use that client/server application at all.

Migrating user passwords from a standard UNIX password database, such as /etc/passwd or
/etc/shadow, to a Kerberos password database can be tedious. There is no automated
mechanism to perform this task. Migration methods can vary substantially depending on the
particular way Kerberos is deployed. That is why it is recommended that you use the
Identity Management feature; it has specialized tools and methods for migration.

Warning

The Kerberos system can be compromised if a user on the network authenticates against a
non-Kerberos aware service by transmitting a password in plain text. The use of non-Kerberos
aware services (including telnet and FTP) is highly discouraged. Other encrypted protocols,
such as SSH or SSL-secured services, are preferred to unencrypted services, bit this is still not
ideal.

6.1.5. Addit ional Resources for Kerberos

Kerberos can be a complex service to implement, with a lot of flexibility in how it is deployed.
Table 6.1, “External Kerberos Documentation” and Table 6.2, “ Important Kerberos Manpages” list of
a few of the most important or most useful sources for more information on using Kerberos.

Table 6 .1. External Kerberos Documentat ion

Documentat ion Locat ion
Kerberos V5 Installation Guide (in both
PostScript and HTML)

/usr/share/doc/krb5-server-version-number

Kerberos V5 System Administrator's Guide (in
both PostScript and HTML)

/usr/share/doc/krb5-server-version-number

Kerberos V5 UNIX User's Guide (in both
PostScript and HTML)

/usr/share/doc/krb5-workstation-version-number

"Kerberos: The Network Authentication
Protocol" webpage from MIT

http://web.mit.edu/kerberos/www/

The Kerberos Frequently Asked Questions
(FAQ)

http://www.cmf.nrl.navy.mil/CCS/people/kenh/ker
beros-faq.html

Kerberos: An Authentication Service for Open
Network Systems by Jennifer G. Steiner, Clifford
Neuman, and Jeffrey I. Schille, the original
paper describing Kerberos. In PostScript format.

ftp://athena-
dist.mit.edu/pub/kerberos/doc/usenix.PS

Syst em- Level Aut hent icat ion Guide

14 0

http://web.mit.edu/kerberos/www/
http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
ftp://athena-dist.mit.edu/pub/kerberos/doc/usenix.PS

Designing an Authentication System: a Dialogue in
Four Scenes, originally by Bill Bryant in 1988,
modified by Theodore Ts'o in 1997. This
document is a conversation between two
developers who are thinking through the
creation of a Kerberos-style authentication
system. The conversational style of the
discussion makes this a good starting place for
people who are completely unfamiliar with
Kerberos.

http://web.mit.edu/kerberos/www/dialogue.html

A how-to article for kerberizing a network. http://www.ornl.gov/~jar/HowToKerb.html
Kerberos Network Design Manual is a thorough
overview of the Kerberos system.

http://www.networkcomputing.com/netdesign/ker
b1.html

Documentat ion Locat ion

Any of the manpage files can be opened by running man command_name.

Table 6 .2. Important Kerberos Manpages

Manpage Descript ion
Client Applicat ions
kerberos An introduction to the Kerberos system which

describes how credentials work and provides
recommendations for obtaining and destroying
Kerberos tickets. The bottom of the man page
references a number of related man pages.

kinit Describes how to use this command to obtain
and cache a ticket-granting ticket.

kdestroy Describes how to use this command to destroy
Kerberos credentials.

klist Describes how to use this command to list
cached Kerberos credentials.

Administ rat ive Applicat ions
kadmin Describes how to use this command to

administer the Kerberos V5 database.
kdb5_util Describes how to use this command to create

and perform low-level administrative functions
on the Kerberos V5 database.

Server Applicat ions
krb5kdc Describes available command line options for

the Kerberos V5 KDC.
kadmind Describes available command line options for

the Kerberos V5 administration server.
Conf igurat ion Files
krb5.conf Describes the format and options available

within the configuration file for the Kerberos V5
library.

kdc.conf Describes the format and options available
within the configuration file for the Kerberos V5
AS and KDC.

6.2. Configuring the Kerberos KDC

Chapt er 6 . Using Kerberos

14 1

http://web.mit.edu/kerberos/www/dialogue.html
http://www.ornl.gov/~jar/HowToKerb.html
http://www.networkcomputing.com/netdesign/kerb1.html

Install the master KDC first and then install any necessary secondary servers after the master is set
up.

Important

Setting up Kerberos KDC manually is not recommended. The recommended way to introduce
Kerberos into Red Hat Enterprise Linux environments is to use the Identity Management
feature.

6.2.1. Configuring the Master KDC Server

Important

The KDC system should be a dedicated machine. This machine needs to be very secure — if
possible, it should not run any services other than the KDC.

1. Install the required packages for the KDC:

[root@server ~]# yum install krb5-server krb5-libs krb5-workstation

2. Edit the /etc/krb5.conf and /var/kerberos/krb5kdc/kdc.conf configuration files to
reflect the realm name and domain-to-realm mappings. For example:

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
 allow_weak_crypto = true

[realms]
 EXAMPLE.COM = {
 kdc = kdc.example.com.:88
 admin_server = kdc.example.com
 default_domain = example.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

A simple realm can be constructed by replacing instances of EXAMPLE.COM and example.com
with the correct domain name — being certain to keep uppercase and lowercase names in the

Syst em- Level Aut hent icat ion Guide

14 2

correct format — and by changing the KDC from kerberos.example.com to the name of the
Kerberos server. By convention, all realm names are uppercase and all DNS hostnames and
domain names are lowercase. The man pages of these configuration files have full details
about the file formats.

3. Create the database using the kdb5_util utility.

[root@server ~]# kdb5_util create -s

The create command creates the database that stores keys for the Kerberos realm. The -s
argument creates a stash file in which the master server key is stored. If no stash file is present
from which to read the key, the Kerberos server (krb5kdc) prompts the user for the master
server password (which can be used to regenerate the key) every time it starts.

4. Edit the /var/kerberos/krb5kdc/kadm5.acl file. This file is used by kadmind to
determine which principals have administrative access to the Kerberos database and their
level of access. Most organizations can be accommodated by a single line:

*/admin@EXAMPLE.COM *

Most users are represented in the database by a single principal (with a NULL, or empty,
instance, such as joe@EXAMPLE.COM). In this configuration, users with a second principal
with an instance of admin (for example, joe/admin@EXAMPLE.COM) are able to exert full
administrative control over the realm's Kerberos database.

After kadmind has been started on the server, any user can access its services by running
kadmin on any of the clients or servers in the realm. However, only users listed in the
kadm5.acl file can modify the database in any way, except for changing their own
passwords.

Note

The kadmin utility communicates with the kadmind server over the network, and uses
Kerberos to handle authentication. Consequently, the first principal must already exist
before connecting to the server over the network to administer it. Create the first
principal with the kadmin.local command, which is specifically designed to be
used on the same host as the KDC and does not use Kerberos for authentication.

5. Create the first principal using kadmin.local at the KDC terminal:

[root@server ~]# kadmin.local -q "addprinc username/admin"

6. Start Kerberos using the following commands:

[root@server ~]# systemctl start krb5kdc.service
[root@server ~]# systemctl start kadmin.service

7. Add principals for the users using the addprinc command within kadmin. kadmin and
kadmin.local are command line interfaces to the KDC. As such, many commands — such
as addprinc — are available after launching the kadmin program. Refer to the kadmin
man page for more information.

Chapt er 6 . Using Kerberos

14 3

8. Verify that the KDC is issuing tickets. First, run kinit to obtain a ticket and store it in a
credential cache file. Next, use klist to view the list of credentials in the cache and use
kdestroy to destroy the cache and the credentials it contains.

Note

By default, kinit attempts to authenticate using the same system login username (not
the Kerberos server). If that username does not correspond to a principal in the
Kerberos database, kinit issues an error message. If that happens, supply kinit
with the name of the correct principal as an argument on the command line:

kinit principal

6.2.2. Set t ing up Secondary KDCs

When there are multiple KDCs for a given realm, one KDC (the master KDC) keeps a writable copy of
the realm database and runs kadmind . The master KDC is also the realm's admin server. Additional
secondary KDCs keep read-only copies of the database and run kpropd .

The master-slave propagation procedure entails the master KDC dumping its database to a
temporary dump file and then transmitting that file to each of its slaves, which then overwrite their
previously-received read-only copies of the database with the contents of the dump file.

To set up a secondary KDC:

1. Install the required packages for the KDC:

[root@slavekdc ~]# yum install krb5-server krb5-libs krb5-
workstation

2. Copy the master KDC's krb5.conf and kdc.conf files to the secondary KDC.

3. Start kadmin.local from a root shell on the master KDC.

a. Use the kadmin.local add_principal command to create a new entry for the
master KDC's host service.

[root@slavekdc ~]# kadmin.local -r EXAMPLE.COM
 Authenticating as principal root/admin@EXAMPLE.COM with
password.
kadmin: add_principal -randkey host/masterkdc.example.com
Principal "host/masterkdc.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/masterkdc.example.com
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type Triple DES cbc mode with HMAC/sha1 added to
keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type ArcFour with HMAC/md5 added to keytab
WRFILE:/etc/krb5.keytab.
Entry for principal host/masterkdc.example.com with kvno 3,
encryption type DES with HMAC/sha1 added to keytab
WRFILE:/etc/krb5.keytab.

Syst em- Level Aut hent icat ion Guide

14 4

Entry for principal host/masterkdc.example.com with kvno 3,
encryption type DES cbc mode with RSA-MD5 added to keytab
WRFILE:/etc/krb5.keytab.
kadmin: quit

b. Use the kadmin.local ktadd command to set a random key for the service and
store the random key in the master's default keytab file.

Note

This key is used by the kprop command to authenticate to the secondary
servers. You will only need to do this once, regardless of how many secondary
KDC servers you install.

4. Start kadmin from a root shell on the secondary KDC.

a. Use the kadmin.local add_principal command to create a new entry for the
secondary KDC's host service.

[root@slavekdc ~]# kadmin -p jsmith/admin@EXAMPLE.COM -r
EXAMPLE.COM
Authenticating as principal jsmith/admin@EXAMPLE.COM with
password.
Password for jsmith/admin@EXAMPLE.COM:
kadmin: add_principal -randkey host/slavekdc.example.com
Principal "host/slavekdc.example.com@EXAMPLE.COM" created.
kadmin: ktadd host/slavekdc.example.com@EXAMPLE.COM
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type Triple DES cbc mode with HMAC/sha1 added to
keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type ArcFour with HMAC/md5 added to keytab
WRFILE:/etc/krb5.keytab.
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type DES with HMAC/sha1 added to keytab
WRFILE:/etc/krb5.keytab.
Entry for principal host/slavekdc.example.com with kvno 3,
encryption type DES cbc mode with RSA-MD5 added to keytab
WRFILE:/etc/krb5.keytab.
kadmin: quit

b. Use the kadmin.local ktadd command to set a random key for the service and
store the random key in the secondary KDC server's default keytab file. This key is
used by the kpropd service when authenticating clients.

5. With its service key, the secondary KDC could authenticate any client which would connect to
it. Obviously, not all potential clients should be allowed to provide the kprop service with a
new realm database. To restrict access, the kprop service on the secondary KDC will only
accept updates from clients whose principal names are listed in
/var/kerberos/krb5kdc/kpropd.acl .

Add the master KDC's host service's name to that file.

Chapt er 6 . Using Kerberos

14 5

[root@slavekdc ~]# echo host/masterkdc.example.com@EXAMPLE.COM >
/var/kerberos/krb5kdc/kpropd.acl

6. Once the secondary KDC has obtained a copy of the database, it will also need the master
key which was used to encrypt it. If the KDC database's master key is stored in a stash file on
the master KDC (typically named /var/kerberos/krb5kdc/.k5.REALM), either copy it to
the secondary KDC using any available secure method, or create a dummy database and
identical stash file on the secondary KDC by running kdb5_util create -s and
supplying the same password. The dummy database will be overwritten by the first successful
database propagation.

7. Ensure that the secondary KDC's firewall allows the master KDC to contact it using TCP on
port 754 (krb5_prop), and start the kprop service.

8. Double-check that the kadmin service is disabled.

9. Perform a manual database propagation test by dumping the realm database on the master
KDC to the default data file which the kprop command will read
(/var/kerberos/krb5kdc/slave_datatrans).

[root@masterkdc ~]# kdb5_util dump
/var/kerberos/krb5kdc/slave_datatrans

10. Use the kprop command to transmit its contents to the secondary KDC.

[root@slavekdc ~]# kprop slavekdc.example.com

11. Using kinit, verify that the client system is able to correctly obtain the initial credentials from
the KDC.

The /etc/krb5.conf for the client should list only the secondary KDC in its list of KDCs.

[realms]
 EXAMPLE.COM = {
 kdc = slavekdc.example.com.:88
 admin_server = kdc.example.com
 default_domain = example.com
 }

12. Create a script which dumps the realm database and runs the kprop command to transmit
the database to each secondary KDC in turn, and configure the cron service to run the script
periodically.

6.3. Configuring a Kerberos Client

All that is required to set up a Kerberos 5 client is to install the client packages and provide each
client with a valid krb5.conf configuration file. While ssh and slogin are the preferred methods
of remotely logging in to client systems, Kerberized versions of rsh and rlogin are still available,
with additional configuration changes.

1. Install the krb5-libs and krb5-workstation packages on all of the client machines.

[root@server ~]# yum install krb5-workstation krb5-libs

Syst em- Level Aut hent icat ion Guide

14 6

2. Supply a valid /etc/krb5.conf file for each client (usually this can be the same
krb5.conf file used by the KDC). For example:

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
 allow_weak_crypto = true

[realms]
 EXAMPLE.COM = {
 kdc = kdc.example.com.:88
 admin_server = kdc.example.com
 default_domain = example.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

3. To use kerberized rsh and rlogin services, install the rsh package.

4. Before a workstation can use Kerberos to authenticate users who connect using ssh, rsh, or
rlogin, it must have its own host principal in the Kerberos database. The sshd , kshd , and
klogind server programs all need access to the keys for the host service's principal.

a. Using kadmin, add a host principal for the workstation on the KDC. The instance in
this case is the hostname of the workstation. Use the -randkey option for the
kadmin's addprinc command to create the principal and assign it a random key:

addprinc -randkey host/server.example.com

b. The keys can be extracted for the workstation by running kadmin on the workstation
itself and using the ktadd command.

ktadd -k /etc/krb5.keytab host/server.example.com

5. To use other kerberized network services, install the krb5-server package and start the
services. The kerberized services are listed in Table 6.3, “Common Kerberized Services” .

Table 6 .3. Common Kerberiz ed Services

Service Name Usage In format ion

Chapt er 6 . Using Kerberos

14 7

ssh OpenSSH uses GSS-API to authenticate users
to servers if the client's and server's
configuration both have
GSSAPIAuthentication enabled. If the client
also has GSSAPIDelegateCredentials
enabled, the user's credentials are made
available on the remote system.

rsh and rlogin Enable klogin, eklogin, and kshell .
Telnet Enable krb5-telnet.
FTP Create and extract a key for the principal with a

root of ftp. Be certain to set the instance to the
fully qualified hostname of the FTP server, then
enable gssftp.

IMAP The cyrus-imap package uses Kerberos 5 if it
also has the cyrus-sasl-gssapi package
installed. The cyrus-sasl-gssapi package
contains the Cyrus SASL plugins which support
GSS-API authentication. Cyrus IMAP functions
properly with Kerberos as long as the cyrus
user is able to find the proper key in
/etc/krb5.keytab, and the root for the
principal is set to imap (created with kadmin).

An alternative to cyrus-imap can be found in
the dovecot package, which is also included
in Red Hat Enterprise Linux. This package
contains an IMAP server but does not, to date,
support GSS-API and Kerberos.

Service Name Usage In format ion

6.4 . Set t ing up a Kerberos Client for Smart Cards

Smart cards can be used with Kerberos, but it requires additional configuration to recognize the
X.509 (SSL) user certificates on the smart cards:

1. Install the required PKI/OpenSSL package, along with the other client packages:

[root@server ~]# yum install krb5-pkinit-openssl
[root@server ~]# yum install krb5-workstation krb5-libs

2. Edit the /etc/krb5.conf configuration file to add a parameter for the public key
infrastructure (PKI) to the [realms] section of the configuration. The pkinit_anchors
parameter sets the location of the CA certificate bundle file.

[realms]
 EXAMPLE.COM = {
 kdc = kdc.example.com.:88
 admin_server = kdc.example.com
 default_domain = example.com
 ...
 pkinit_anchors = FILE:/usr/local/example.com.crt
 }

Syst em- Level Aut hent icat ion Guide

14 8

3. Add the PKI module information to the PAM configuration for both smart card authentication
(/etc/pam.d/smartcard-auth) and system authentication (/etc/pam.d/system-auth).
The line to be added to both files is as follows:

auth optional pam_krb5.so use_first_pass
no_subsequent_prompt
preauth_options=X509_user_identity=PKCS11:/usr/lib64/pkcs11/libcoolk
eypk11.so

6.5. Set t ing up Cross-Realm Kerberos Trusts

The Kerberos v5 realm is a set of Kerberos principals defined in the Kerberos database on all
connected masters and slaves. You must configure cross-realm Kerberos trust if you want principals
from different realms to communicate with each other.

A lot of Linux environments, as well as mixed environments, will already have a Kerberos realm
deployed for single sign-on, application authentication, and user management. That makes Kerberos
a potentially common integration path for different domains and mixed system (such as Windows-
Linux) environments, particularly if the Linux environment is not using a more structured domain
configuration like Identity Management.

6.5.1. A T rust Relat ionship

A trust means that the users within one realm are trusted to access the resources in another domain
as if they belonged to that realm. This is done by creating a shared key for a single principal that is held
in common by both domains.

Figure 6 .2. Basic Trust

In Figure 6.2, “Basic Trust” , the shared principal would belong to Domain B
(krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM). When that principal is also added to Domain A,
then the clients in Domain A can access the resources in Domain B. The configured principal exists
in both realms. That shared principal has three characteristics:

It exists in both realms.

When a key is created, the same password is used in both realms.

The key has the same key version number (kvno).

A cross- realm t rust is unid irect ional by default. This trust is not automatically reciprocated so

Chapt er 6 . Using Kerberos

14 9

that the B.EXAMPLE.COM realm are trusted to authenticate to services in the A.EXAMPLE.COM
realm. To establish trust in the other direction, both realms would need to share keys for the
krbtgt/A.EXAMPLE.COM@B.EXAMPLE.COM service — an entry with a reverse mapping from the
previous example.

A realm can have multiple trusts, both realms that it trusts and realms it is trusted by. With Kerberos
trusts, the trust can flow in a chain. If Realm A trusts Realm B and Realm B trusts Realm C, Realm A
implicity trusts Realm C, as well. The trust flows along realms; this is a transitive trust.

Figure 6 .3. Transit ive Trust

The direction of a transitive trust is the trust flow. The trust flow has to be defined, first by recognizing
to what realm a service belongs and then by identifying what realms a client must contact to access
that service.

A Kerberos principal name is structured in the format service/hostname@REALM. The service is
generally a protocol, such as LDAP, IMAP, HTTP, or host. The hostname is the fully-qualified domain
name of the host system, and the REALM is the Kerberos realm to which it belongs. Clients usually
map the hostname or DNS domain name to the realm. The realm, then, somewhat related to the DNS
domain name (uncless a realm is explicitly defined in the domain_realm section of
/etc/krb5.conf).

When traversing a trust, Kerberos assumes that each realm is structured like a hierarchical DNS
domain, with a root domain and subdomains. This means that the trust flows up to a shared root.
Each step, or hop, has a shared key. In Figure 6.4, “Trusts in the Same Domain” , A shares a key with
EXAMPLE.COM, and EXAMPLE.COM shares a key with B.

Figure 6 .4 . Trusts in the Same Domain

Syst em- Level Aut hent icat ion Guide

150

The client treats the realm name as a DNS name, and it determines its trust path by stripping off
elements of its own realm name until it reaches the root name. It then begins prepending names until
it reaches the service's realm.

Figure 6 .5. Child /Parent Trusts in the Same Domain

This is a nature of trusts being transitive. SITE.SALES.EXAMPLE.COM only has a single shared key,
with SALES.EXAMPLE.COM. But because of a series of small trusts, there is a large trust flow that
allows trust to go from SITE.SALES.EXAMPLE.COM to EVERYWHERE.EXAMPLE.COM.

That trust flow can even go between completely different domains by creating a shared key at the
domain level, where the sites share no common suffix.

Figure 6 .6 . Trusts in Dif ferent Domains

It is also possible to reduce the number of hops and represent very complex trust flows by explicitly
defining the flow. The capaths section of the /etc/krb5.conf file defines the trust flow between

Chapt er 6 . Using Kerberos

151

different realms.

The format of the capaths section is relatively straightforward: there is a main entry for each realm
where a client has a principal, and then inside each realm section is a list of intermediate realms from
which the client must obtain credentials.

For example, this has the realm of A.EXAMPLE.COM, and a set of hops from A to D. A client in Realm
A must obtain credentials first from Realm B (the . means that it can obtain credentials directly,
without any intermmediate hops; otherwise, it would attempt to gain credentials by going through a
hierarchy). It must then use the B credentials to obtain credentials from C, and then use the C
credentials to obtain credentials for D.

[capaths]
A.EXAMPLE.COM = {
B.EXAMPLE.COM = .
C.EXAMPLE.COM = B.EXAMPLE.COM
D.EXAMPLE.COM = C.EXAMPLE.COM
}

6.5.2. Set t ing up a Realm T rust

In this example, the Kerberos realms are A.EXAMPLE.COM and B.EXAMPLE.COM.

Create the entry for the shared principal for the B realm in the A realm, using kadmin.

[root@server ~]# kadmin -r A.EXAMPLE.COM
kadmin: add_principal krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM
Enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Re-enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM" created.
quit

That means that the A realm will trust the B principal.

Important

It is recommended that you choose very strong passwords for cross-realm principals. Unlike
many other passwords, for which the user can be prompted as often as several times a day,
the system will not request the password for cross-realm principal frequently from you, which is
why it does not need to be easy to memorize.

To create a bi-directional trust, then create principals going the reverse way. Create a principal for
the A realm in the B realm, using kadmin.

[root@server ~]# kadmin -r B.EXAMPLE.COM
kadmin: add_principal krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM
Enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Re-enter password for principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM":
Principal "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM" created.
quit

Use the get_principal command to verify that both entries have matching key version numbers
(kvno values) and encryption types.

Syst em- Level Aut hent icat ion Guide

152

Important

A common, but incorrect, situation is for administrators to try to use the add_principal
command's -randkey option to assign a random key instead of a password, dump the new
entry from the database of the first realm, and import it into the second. This will not work
unless the master keys for the realm databases are identical, as the keys contained in a
database dump are themselves encrypted using the master key.

[4] A system where b o th the c lient and the server share a co mmo n key that is used to encryp t and
d ecryp t netwo rk co mmunicatio n.

Chapt er 6 . Using Kerberos

153

Chapter 7. Working with certmonger

Part of managing machine authentication is managing machine certificates. The certmonger service
manages certificate life cycle for applications and, if properly configured, can work together with a
certificate authority (CA) to renew and revoke certificates.

The certmonger daemon and its command-line clients simplify the process of generating
public/private key pairs, creating certificate requests, and submitting requests to the CA for signing.
As part of managing certificates, the certmonger daemon monitors certificates for expiration and
can renew certificates that are about to expire. The certificates that certmonger monitors are tracked
in files stored in a configurable directory. The default location is
/var/lib/certmonger/requests.

7.1. certmonger and Cert ificate Authorit ies

By default, certmonger can automatically obtain three kinds of certificates that differ in what
authority source the certificate employs:

Self-signed certificate

Generating a self-signed certificate does not involve any CA, because each certificate is signed
using the certificate's own key. The software that is verifying a self-signed certificate needs to be
instructed to trust that certificates directly in order to verify it.

To obtain a self-signed certificate, run the selfsign-getcert command.

Certificate from the Dogtag Certificate System CA as part of Red Hat Enterprise Linux IdM

To obtain a certificate using an IdM server, run the ipa-getcert command

Certificate signed by a local CA present on the system

The software that is verifying a certificate signed by a local signer needs to be instructed to trust
certificates from this local signer in order to verify them.

To obtain a locally-signed certificate, run the local-getcert command.

Other CAs can also use certmonger to manage certificates, but support must be added to
certmonger by creating special CA helpers. For more information on how to create CA helpers, see
the certmonger project documentation at
https://git.fedorahosted.org/cgit/certmonger.git/tree/doc/submit.txt.

7.2. Request ing a Cert ificate with certmonger

To request a certificate with certmonger, use the getcert request utility.

Certificates and keys are stored locally in plain text files with the .pem extension or in an NSS
database, identified by the certificate nickname. When requesting a certificate, then, the request
should identify the location where the certificate will be stored and the nickname of the certificate. For
example:

[root@server ~]# selfsign-getcert request -d /etc/pki/nssdb -n Server-
Cert

Syst em- Level Aut hent icat ion Guide

154

https://git.fedorahosted.org/cgit/certmonger.git/tree/doc/submit.txt

The /etc/pki/nssdb file is the global NSS database, and Server-Cert is the nickname of this
certificate. The certificate nickname must be unique within this database.

The options you can provide with the command to generate a certificate vary depending on what
kind of certificate you are requesting and the desired configuration for the final certificate, as well as
other settings:

-r automatically renews the certificate when its expiration date is close if the key pair already
exists. This option is used by default.

-f stores the certificate in the given file.

-k either stores the key in the given file or, if the key file already exists, uses the key in the file.

-K gives the Kerberos principal name of the service that will be using the certificate; -K is required
when requesting a certificate from an IdM server and optional when requesting a self-signed or
locally-signed certificate

-N gives the subject name.

-D requests a DNS domain name to be included in the certificate as a subjectAltName value.

-U sets the extended key usage flag.

-A requests an IP address to be included in the certificate as a subjectAltName value.

-I sets an ID for the request; certmonger uses this nickname to refer to the combination of
storage locations and request options, and the nickname is also displayed in the output of the
getcert list command. If you do not specify this option, certmonger assigns an
automatically-generated nickname.

A real CA, such as the one in IdM, can ignore anything that you specify in the signing request using
the -K, -N, -D , -U, and -A options according to the CA's own policies. For example, IdM requires that
-K and -N agree with the local host name. Certificates generated using the selfsign-getcert and
local-getcert commands, on the other hand, agree with the options that you specify because
these commands do not enforce any policy.

Example 7.1. Using certmonger for a Service

[root@server ~]# selfsign-getcert request -f
/etc/httpd/conf/ssl.crt/server.crt -k /etc/httpd/conf/ssl.key/server.key
-N CN=`hostname --fqdn` -D `hostname` -U id-kp-serverAuth

7.3. Storing Cert ificates in NSS Databases

By default, certmonger uses .pem files to store the key and the certificate. To store the key and the
certificate in an NSS database, specify the -d and -n with the command you use for requesting the
certificate.

-d sets the security database location

-n gives the certificate nickname which is used for the certificate in the NSS database

Chapt er 7 . Working wit h cert monger

155

Note

The -d and -n options are used instead of the -f and -k options that give the .pem file.

For example:

[root@server ~]# selfsign-getcert request -d /export/alias -n ServerCert
...

Requesting a certificate using ipa-getcert and local-getcert allows you to specify another
two options:

-F gives the file where the certificate of the CA is to be stored.

-a gives the location of the NSS database where the certificate of the CA is to be stored.

Note

If you request a certificate using selfsign-getcert, there is no need to specify the -F and -
a options because generating a self-signed certificate does not involve any CA.

Supplying the -F option, the -a option, or both with local-getcert allows you to obtain a copy of
the CA certificate that is required in order to verify a certificate issued by the local signer. For
example:

[root@server ~]# local-getcert request -F /etc/httpd/conf/ssl.crt/ca.crt
-n ServerCert -f /etc/httpd/conf/ssl.crt/server.crt -k
/etc/httpd/conf/ssl.key/server.key

7.4 . Tracking Cert ificates with certmonger

certmonger can monitor expiration date of a certificate and automatically renew the certificate at the
end of its validity period. To track a certificate in this way, run the getcert start-tracking
command.

Note

It is not required that you run getcert start-tracking after running getcert request,
because the getcert request command by default automatically tracks and renews the
requested certificate. The getcert start-tracking command is intended for situations
when you have already obtained the key and certificate through some other process, and
therefore you have to manually instruct certmonger to start the tracking.

The getcert start-tracking command takes several options:

-r automatically renews the certificate when its expiration date is close if the key pair already
exists. This option is used by default.

Syst em- Level Aut hent icat ion Guide

156

-I sets an ID for the tracking request; certmonger uses this nickname to refer to the combination
of storage locations and request options, and the nickname is also displayed in the output of the
getcert list command. If you do not specify this option, certmonger assigns an
automatically-generated nickname.

[root@server ~]# getcert start-tracking -I cert1-tracker -d /export/alias
-n ServerCert

To cancel tracking for a certificate, run the stop-tracking command.

Chapt er 7 . Working wit h cert monger

157

Chapter 8. Configuring Applications for Single Sign-On

Some common applications, such as browsers and email clients, can be configured to use Kerberos
tickets, SSL certifications, or tokens as a means of authenticating users.

The precise procedures to configure any application depend on that application itself. The examples
in this chapter (Mozilla Thunderbird and Mozilla Firefox) are intended to give you an idea of how to
configure a user application to use Kerberos or other credentials.

8.1. Configuring Firefox to Use Kerberos for Single Sign-On

Firefox can use Kerberos for single sign-on (SSO) to intranet sites and other protected websites. For
Firefox to use Kerberos, it first has to be configured to send Kerberos credentials to the appropriate
KDC.

Even after Firefox is configured to pass Kerberos credentials, it still requires a valid Kerberos ticket to
use. To generate a Kerberos ticket, use the kinit command and supply the user password for the
user on the KDC.

[jsmith@host ~] $ kinit
Password for jsmith@EXAMPLE.COM:

To configure Firefox to use Kerberos for SSO:

1. In the address bar of Firefox, type about:config to display the list of current configuration
options.

2. In the Filter field, type negotiate to restrict the list of options.

3. Double-click the network.negotiate-auth.trusted-uris entry.

4. Enter the name of the domain against which to authenticate, including the preceding period
(.). If you want to add multiple domains, enter them in a comma-separated list.

Syst em- Level Aut hent icat ion Guide

158

Figure 8.1. Manual Firefox Conf igurat ion

Important

It is not recommended to configure delegation using the network.negotiate-
auth.delegation-uris entry in the Firefox configuration options because this enables
every Kerberized server to act as the user.

Note

For information about configuring Firefox to use Kerberos in Identity Management, refer to the
corresponding section in the Linux Domain Identity, Authentication, and Policy Guide.

8.1.1. Firefox Configurat ion for Kerberos T roubleshoot ing

If Kerberos authentication is not working, turn on verbose logging for the authentication process.

1. Close all instances of Firefox.

2. In a command prompt, export values for the NSPR_LOG_* variables:

export NSPR_LOG_MODULES=negotiateauth:5
export NSPR_LOG_FILE=/tmp/moz.log

3. Restart Firefox from that shell, and visit the website where Kerberos authentication is failing.

4. Check the /tmp/moz.log file for error messages with nsNegotiateAuth in the message.

There are several common errors that occur with Kerberos authentication.

No credent ials found

-1208550944[90039d0]: entering nsNegotiateAuth::GetNextToken()
-1208550944[90039d0]: gss_init_sec_context() failed: Miscellaneous
failure
No credentials cache found

This means that no Kerberos tickets are available (meaning that they expired or were not
generated). To fix this, run kinit to generate the Kerberos ticket, and then open the
website again.

Server not found in Kerberos database

-1208994096[8d683d8]: entering nsAuthGSSAPI::GetNextToken()
-1208994096[8d683d8]: gss_init_sec_context() failed: Miscellaneous
failure
Server not found in Kerberos database

This means that the browser is unable to contact the KDC. This is usually a Kerberos
configuration problem. The correct entries must be in the [domain_realm] section of the
/etc/krb5.conf file to identify the domain. For example:

Chapt er 8 . Configuring Applicat ions for Single Sign- On

159

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/using-the-ui.html#config-browser

.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

No errors are present in the log

An HTTP proxy server could be stripping off the HTTP headers required for Kerberos
authentication. Try to connect to the site using HTTPS, which allows the request to pass
through unmodified.

8.2. Cert ificate Management in Firefox

To manage certificates in Firefox, open the Certificate Manager.

1. In Mozilla Firefox, open the Firefox menu and click Preferences.

Syst em- Level Aut hent icat ion Guide

160

Figure 8.2. Firefox Preferences

2. Open the Advanced section and choose the Certificates tab.

Chapt er 8 . Configuring Applicat ions for Single Sign- On

161

Figure 8.3. Cert if icates Tab in Firefox

3. Click View Certificates to open the Certificate Manager.

To import a CA certificate:

1. Download and save the CA certificate to your computer.

2. In the Certificate Manager, choose the Authorities tab and click Import.

Figure 8.4 . Import ing the CA Cert if icate in Firefox

3. Select the downloaded CA certificate.

To set the certificate trust relationships:

Syst em- Level Aut hent icat ion Guide

162

1. In the Certificate Manager, under the Authorities tab, select the appropriate
certificate and click Edit Trust.

2. Edit the certificate trust settings.

Figure 8.5. Edit ing the Cert if icate Trust Set t ings in Firefox

To use a personal certificate for authentication:

1. In the Certificate Manager, under the Your Certificates tab, click Import.

Figure 8.6 . Import ing a Personal Cert if icate for Authent icat ion in Firefox

2. Select the required certificate from your computer.

8.3. Cert ificate Management in Email Clients

Chapt er 8 . Configuring Applicat ions for Single Sign- On

163

The following example shows how to manage certificates in the Mozilla Thunderbird email client. It
represents a procedure to set up certificates in email clients in general.

1. In Mozilla Thunderbird, open the Thunderbird main menu and select Preferences →
Account Settings.

2. Select the Security item, and click View Certificates to open the Certificate
Manager.

Figure 8.7. Account Set t ings in Thunderbird

To import a CA certificate:

1. Download and save the CA certificate to your computer.

2. In the Certificate Manager, choose the Authorities tab and click Import.

Syst em- Level Aut hent icat ion Guide

164

Figure 8.8. Import ing the CA Cert if icate in Thunderbird

3. Select the downloaded CA certificate.

To set the certificate trust relationships:

1. In the Certificate Manager, under the Authorities tab, select the appropriate
certificate and click Edit Trust.

2. Edit the certificate trust settings.

Figure 8.9 . Edit ing the Cert if icate Trust Set t ings in Thunderbird

To use a personal certificate for authentication:

1. In the Certificate Manager, under the Your Certificates tab, click Import.

Chapt er 8 . Configuring Applicat ions for Single Sign- On

165

Figure 8.10. Import ing a Personal Cert if icate for Authent icat ion in Thunderbird

2. Select the required certificate from your computer.

3. Close the Certificate Manager and return to the Security item in Account Settings.

4. Under the Digital Signing section of the form, click Select to choose your personal
certificate to use for signing messages.

5. Under Encryption, click Select to choose your personal certificate to encrypt and decrypt
messages.

Syst em- Level Aut hent icat ion Guide

166

Appendix A. Revision History

Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
Enterprise Linux.

Revision 7.0-9 Thu Nov 12 2015 Aneta Pet rová
Version for 7.2 GA release.

Revision 7.0-8 Fri Mar 13 2015 Tomáš Čapek
Async update with last-minute edits for 7.1.

Revision 7.0-6 Wed Feb 25 2015 Tomáš Čapek
Version for 7.1 GA release.

Revision 7.0-4 Fri Dec 05 2014 Tomáš Čapek
Rebuild to update the sort order on the splash page.

Revision 7.0-1 July 16 , 2014 Ella Deon Ballard
Initial draft for RHEL 7.0.

Appendix A. Revision Hist ory

167

	Table of Contents
	Chapter 1. Introduction to System Authentication
	1.1. Confirming User Identities
	1.2. As Part of Planning Single Sign-On
	1.3. Available Services

	Part I. System Logins
	Chapter 2. Configuring System Authentication
	2.1. Using the authconfig Utilities
	2.1.1. Tips for Using the authconfig CLI
	2.1.2. Installing the authconfig UI
	2.1.3. Launching the authconfig UI
	2.1.4. Testing Authentication Settings

	2.2. Selecting the Identity Store for Authentication
	2.2.1. IPAv2
	2.2.1.1. Configuring IdM from the UI
	2.2.1.2. Configuring IdM from the Command Line

	2.2.2. LDAP and FreeIPA
	2.2.2.1. Configuring LDAP Authentication from the UI
	2.2.2.2. Configuring LDAP User Stores from the Command Line

	2.2.3. NIS
	2.2.3.1. Configuring NIS Authentication from the UI
	2.2.3.2. Configuring NIS from the Command Line

	2.2.4. Winbind
	2.2.4.1. Enabling Winbind in the authconfig GUI
	2.2.4.2. Enabling Winbind in the Command Line

	2.3. Configuring Authentication Mechanisms
	2.3.1. Local Accounts
	2.3.1.1. Enabling Local Access Control in the UI
	2.3.1.2. Configuring Local Access Control in the Command Line

	2.3.2. System Passwords
	2.3.2.1. Password Security
	2.3.2.2. Password Complexity

	2.3.3. Kerberos (with LDAP or NIS)
	2.3.3.1. Configuring Kerberos Authentication from the UI
	2.3.3.2. Configuring Kerberos Authentication from the Command Line

	2.3.4. Smart Cards
	2.3.4.1. Enabling Smart Card Authentication from the UI
	2.3.4.2. Configuring Smart Card Authentication from the Command Line

	2.3.5. One-Time Passwords
	Supported OTP Algorithms
	Offline Authentication and GNOME Keyring Service
	2.3.5.1. Enabling OTP Authentication in IdM
	2.3.5.2. Hardware and Software Tokens
	2.3.5.3. User-Managed Tokens and Administrator-Managed Tokens
	2.3.5.4. Offline Authentication with OTP
	2.3.5.5. Migrating from a Proprietary OTP Solution
	2.3.5.6. Token Synchronization

	2.3.6. Fingerprints
	2.3.6.1. Using Fingerprint Authentication in the UI
	2.3.6.2. Configuring Fingerprint Authentication in the Command Line

	2.4. Managing Kickstart and Configuration Files
	2.5. Enabling Custom Home Directories
	2.6. Saving and Restoring Configuration

	Part II. Identity and Authentication Stores
	Chapter 3. Using and Caching Credentials with SSSD
	3.1. The Basics of SSSD Configuration
	3.1.1. Setting up the sssd.conf File
	3.1.1.1. Creating the sssd.conf File
	3.1.1.2. Using a Custom Configuration File
	3.1.1.3. Additional Resources

	3.1.2. Starting and Stopping SSSD

	3.2. SSSD and System Services
	3.2.1. Configuring Services: NSS
	3.2.1.1. About NSS Service Maps and SSSD
	3.2.1.2. Configuring NSS Services to Use SSSD
	3.2.1.3. Configuring SSSD to Work with NSS

	3.2.2. Configuring Services: PAM
	3.2.3. Configuring Services: autofs
	3.2.3.1. About Automount, LDAP, and SSSD
	3.2.3.2. Configuring autofs Services in SSSD

	3.2.4. Configuring Services: sudo
	3.2.4.1. About sudo, LDAP, and SSSD
	3.2.4.2. Configuring sudo with SSSD

	3.2.5. Configuring Services: OpenSSH and Cached Keys
	3.2.5.1. Configuring OpenSSH to Use SSSD for Host Keys
	3.2.5.2. Configuring OpenSSH to Use SSSD for User Keys

	3.3. SSSD and Identity Providers (Domains)
	3.3.1. Creating an LDAP Identity Provider
	3.3.1.1. Parameters for Configuring an LDAP Domain
	3.3.1.2. Configuring an LDAP Identity Provider

	3.3.2. Creating an Identity Management (IdM) Identity Provider
	3.3.3. Creating an Active Directory Identity Provider
	3.3.3.1. About Active Directory Identities on the Local System
	3.3.3.2. Configuring an Active Directory Domain with ID Mapping
	3.3.3.3. Configuring an Active Directory Domain with POSIX Attributes
	3.3.3.4. Configuring Active Directory as an LDAP Domain
	3.3.3.5. Additional Configuration Examples

	3.3.4. Setting Additional Identity Provider Options
	3.3.4.1. Setting Username Formats
	3.3.4.2. Enabling Offline Authentication
	3.3.4.3. Setting Password Expirations
	3.3.4.4. LDAP Groups with Local System Users
	3.3.4.5. Ignoring Group Members
	3.3.4.6. Using DNS Service Discovery
	3.3.4.7. Using IP Addresses in Certificate Subject Names (LDAP Only)
	3.3.4.8. Configuring Different Types of Access Control
	3.3.4.9. Configuring Primary Server and Backup Servers

	3.3.5. Creating a Proxy Identity Provider
	3.3.6. Configuring Kerberos Authentication with an Identity Provider

	3.4. Managing Local System Users in SSSD
	3.4.1. Installing SSSD Utilities
	3.4.2. SSSD and UID and GID Numbers
	3.4.3. Creating Local System Users
	3.4.4. Seeding Users into the SSSD Cache During Kickstart
	3.4.5. Managing the SSSD Cache
	3.4.5.1. Purging the SSSD Cache
	3.4.5.2. Deleting Domain Cache Files

	3.5. Downgrading SSSD
	3.6. Using NSCD with SSSD
	3.7. Troubleshooting SSSD
	3.7.1. Setting Debug Logs for SSSD Domains
	3.7.2. Checking SSSD Log Files
	3.7.3. Problems with SSSD Configuration

	Chapter 4. Using realmd to Connect to an Identity Domain
	Part III. Secure Applications
	Chapter 5. Using Pluggable Authentication Modules (PAM)
	5.1. About PAM
	5.1.1. Other PAM Resources
	5.1.2. Custom PAM Modules

	5.2. About PAM Configuration Files
	5.2.1. PAM Configuration File Format
	5.2.2. Annotated PAM Configuration Example

	5.3. PAM and Administrative Credential Caching
	5.3.1. Removing the Timestamp File
	5.3.2. Common pam_timestamp Directives

	Chapter 6. Using Kerberos
	6.1. About Kerberos
	6.1.1. The Basics of How Kerberos Works
	6.1.2. About the Domain-to-Realm Mapping
	6.1.3. Environmental Requirements
	6.1.4. Considerations for Deploying Kerberos
	6.1.5. Additional Resources for Kerberos

	6.2. Configuring the Kerberos KDC
	6.2.1. Configuring the Master KDC Server
	6.2.2. Setting up Secondary KDCs

	6.3. Configuring a Kerberos Client
	6.4. Setting up a Kerberos Client for Smart Cards
	6.5. Setting up Cross-Realm Kerberos Trusts
	6.5.1. A Trust Relationship
	6.5.2. Setting up a Realm Trust

	Chapter 7. Working with certmonger
	7.1. certmonger and Certificate Authorities
	7.2. Requesting a Certificate with certmonger
	7.3. Storing Certificates in NSS Databases
	7.4. Tracking Certificates with certmonger

	Chapter 8. Configuring Applications for Single Sign-On
	8.1. Configuring Firefox to Use Kerberos for Single Sign-On
	8.1.1. Firefox Configuration for Kerberos Troubleshooting

	8.2. Certificate Management in Firefox
	8.3. Certificate Management in Email Clients

	Appendix A. Revision History

