
Dayle Parker Scott Radvan
Red Hat Subject Matter Experts

Red Hat Enterprise Linux 7
Virtualization Tuning and
Optimization Guide

Optimizing your virtual environment

Red Hat Enterprise Linux 7 Virtualizat ion Tuning and Opt imizat ion Guide

Opt imizing your virtual environment

Dayle Parker
Red Hat Engineering Content Services
dayleparker@redhat.com

Scott Radvan
Red Hat Engineering Content Services
sradvan@redhat.com

Red Hat Subject Matter Experts

Legal Notice

Copyright © 2013-2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
The Red Hat Enterprise Linux Virtualization Tuning and Optimization Guide covers KVM and
virtualization performance. Within this guide you can find tips and suggestions for making full
use o f KVM performance features and options for your host systems and virtualized guests.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapt er 1 . Int roduct ion
1.1. KVM Overview
1.2. KVM Perfo rmance Architecture Overview
1.3. Virtualizatio n Perfo rmance Features and Imp ro vements

Chapt er 2 . Performance Monit oring T ools
2.1. p erf kvm
2.2. Virtual Perfo rmance Mo nito ring Unit (vPMU)

Chapt er 3. Opt imizing virt ualizat ion performance wit h virt - manager
3.1. Op erating System Details and Devices
3.2. CPU Perfo rmance Op tio ns
3.3. Virtual Disk Perfo rmance Op tio ns

Chapt er 4 . t uned and t uned- adm

Chapt er 5. Net working
5.1. Netwo rking Tuning Tip s
5.2. Virtio and vho st_net
5.3. Device Assig nment and SR-IOV
5.4. Netwo rk Tuning Techniq ues

Chapt er 6 . Block I/O
6 .1. Blo ck I/O Tuning
6 .2. Caching
6 .3. I/O Mo d e
6 .4. Blo ck I/O Tuning Techniq ues

Chapt er 7 . Memory
7.1. Memo ry Tuning Tip s
7.2. Memo ry Tuning o n Virtual Machines
7.3. Kernel Same-p ag e Merg ing (KSM)

Chapt er 8 . NUMA
8 .1. NUMA Memo ry Allo catio n Po lic ies
8 .2. Auto matic NUMA Balancing
8 .3. l ib virt NUMA Tuning
8 .4. NUMA-Aware Kernel SamePag e Merg ing (KSM)

Appendix A. Revision Hist ory

2
2
2
2

5
5
6

8
8
9

13

1 5

1 7
17
17
18
18

2 1
21
22
22
23

2 5
25
25
30

35
35
35
36
45

4 6

T able of Cont ent s

1

Chapter 1. Introduction

1.1. KVM Overview

The following diagram represents the architecture of KVM:

Figure 1.1. KVM architecture

1.2. KVM Performance Architecture Overview

The following points provide a brief overview of KVM as it pertains to system performance and
process/thread management:

When using KVM, guests run as a Linux process on the host.

Virtual CPUs (vCPUs) are implemented as normal threads, handled by the Linux scheduler.

Guests inherit features such as NUMA and huge pages from the kernel.

Disk and network I/O settings in the host have a significant performance impact.

Network traffic typically travels through a software-based bridge.

1.3. Virtualizat ion Performance Features and Improvements

Virtualiz at ion Performance Improvements in Red Hat Enterprise Linux 7

The following features improve virtualization performance in Red Hat Enterprise Linux 7:

Automat ic NUMA Balancing

Virt ualizat ion T uning and Opt imizat ion Guide

2

Automatic NUMA balancing improves the performance of applications running on NUMA
hardware systems, without any manual tuning required for Red Hat Enterprise Linux 7
guests. Automatic NUMA balancing moves tasks, which can be threads or processes, closer
to the memory they are accessing.

For more information on automatic NUMA balancing, see Section 8.2, “Automatic NUMA
Balancing” .

Mult i-queue virt io -net

A networking approach that enables packet sending/receiving processing to scale with the
number of available vCPUs of the guest.

For more information on multi-queue virtio-net, see Section 5.4.2, “Multi-Queue virtio-net” .

Bridge Zero Copy Transmit

Zero copy transmit mode reduces the host CPU overhead in transmitting large packets
between a guest network and an external network by up to 15%, without affecting
throughput. Bridge zero copy transmit is fully supported on Red Hat Enterprise Linux 7
virtual machines, but disabled by default.

For more information on zero copy transmit, see Section 5.4.1, “Bridge Zero Copy
Transmit” .

APIC Virtualiz at ion (APICv)

Newer Intel processors offer hardware virtualization of the Advanced Programmable
Interrupt Controller (APICv). APICv improves virtualized x86_64 guest performance by
allowing the guest to directly access the APIC, dramatically cutting down interrupt latencies
and the number of virtual machine exits caused by the APIC. This feature is used by default
in newer Intel processors and improves I/O performance.

EOI Accelerat ion

End-of-interrupt acceleration for high bandwidth I/O on older chipsets without virtual APIC
capabilities.

Mult i-queue virt io -scsi

Improved storage performance and scalability provided by multi-queue support in the
virtio-scsi driver. This enables each virtual CPU to have a separate queue and interrupt to
use without affecting other vCPUs.

For more information on multi-queue virtio-scsi, see Section 6.4.2, “Multi-Queue virtio-scsi” .

Para-virtualiz ed T icket locks

Para-virtualized ticketlocks (pvticketlocks) improve the performance of Red Hat Enterprise
Linux 7 guest virtual machines running on Red Hat Enterprise Linux 7 hosts with
oversubscribed CPUs.

Para-virtualiz ed Page Faults

Para-virtualized page faults are injected into a guest when it attempts to access a page
swapped out by the host. This improves KVM guest performance when host memory is
overcommitted and guest memory is swapped out.

Para-virtualiz ed T ime vsyscall Opt imiz at ion

The gettimeofday and clock_gettime system calls execute in the userspace through

Chapt er 1 . Int roduct ion

3

The gettimeofday and clock_gettime system calls execute in the userspace through
the vsyscall mechanism. Previously, issuing these system calls required the system to
switch into kernel mode, and then back into the userspace. This greatly improves
performance for some applications.

Virtualiz at ion Performance Features in Red Hat Enterprise Linux

CPU/Kernel

NUMA - Non-Uniform Memory Access. See Chapter 8, NUMA for details on NUMA.

CFS - Completely Fair Scheduler. A modern class-focused scheduler.

RCU - Read Copy Update. Better handling of shared thread data.

Up to 160 virtual CPUs (vCPUs).

Memory

huge pages and other optimizations for memory-intensive environments. See Chapter 7,
Memory for details.

Networking

vhost-net - A fast, kernel-based VirtIO solution.

SR-IOV - For near-native networking performance levels.

Block I/O

AIO - Support for a thread to overlap other I/O operations.

MSI - PCI bus device interrupt generation.

Disk I/O throttling - Controls on guest disk I/O requests to prevent over-utilizing host
resources. See Section 6.4.1, “Disk I/O Throttling” for details.

Note

For more details on virtualization support, limits, and features, refer to the Red Hat Enterprise
Linux 7 Virtualization Getting Started Guide and the following URLs:

https://access.redhat.com/certified-hypervisors

https://access.redhat.com/articles/rhel-kvm-limits

Virt ualizat ion T uning and Opt imizat ion Guide

4

https://access.redhat.com/certified-hypervisors
https://access.redhat.com/articles/rhel-kvm-limits

Chapter 2. Performance Monitoring Tools

This chapter describes tools used to monitor guest virtual machine environments.

2.1. perf kvm

You can use the perf command with the kvm option to collect and analyze guest operating system
statistics from the host. The perf package provides the perf command. It is installed by running the
following command:

yum install perf

In order to use perf kvm in the host, you must have access to the /proc/modules and
/proc/kallsyms files from the guest. Refer to the following procedure, Procedure 2.1, “Copying
/proc files from guest to host” to transfer the files into the host and run reports on the files.

Procedure 2.1. Copying /proc f iles f rom guest to host

Important

If you directly copy the required files (for instance, via scp) you will only copy files of zero
length. This procedure describes how to first save the files in the guest to a temporary location
(with the cat command), and then copy them to the host for use by perf kvm.

1. Log in to the guest and save f iles

Log in to the guest and save /proc/modules and /proc/kallsyms to a temporary
location, /tmp:

cat /proc/modules > /tmp/modules
cat /proc/kallsyms > /tmp/kallsyms

2. Copy the temporary f iles to the host

Once you have logged off from the guest, run the following example scp commands to copy
the saved files to the host. You should substitute your host name and TCP port if they are
different:

scp root@GuestMachine:/tmp/kallsyms guest-kallsyms
scp root@GuestMachine:/tmp/modules guest-modules

You now have two files from the guest (guest-kallsyms and guest-modules) on the
host, ready for use by perf kvm.

3.

Recording and report ing events with perf kvm

Using the files obtained in the previous steps, recording and reporting of events in the guest,
the host, or both is now possible.

Chapt er 2 . Performance Monit oring T ools

5

Run the following example command:

perf kvm --host --guest --guestkallsyms=guest-kallsyms \
--guestmodules=guest-modules record -a -o perf.data

Note

If both - -host and - -guest are used in the command, output will be stored in
perf.data.kvm. If only - -host is used, the file will be named perf.data.host.
Similarly, if only - -guest is used, the file will be named perf.data.guest.

Pressing Ctrl-C stops recording.

4.

Report ing events

The following example command uses the file obtained by the recording process, and
redirects the output into a new file, analyze.

perf kvm --host --guest --guestmodules=guest-modules report -i
perf.data.kvm \
--force > analyze

View the contents of the analyze file to examine the recorded events:

cat analyze

Events: 7K cycles

Overhead Command Shared Object Symbol
........
.........................

 95.06% vi vi [.] 0x48287
 0.61% init [kernel.kallsyms] [k] intel_idle
 0.36% vi libc-2.12.so [.]
_wordcopy_fwd_aligned
 0.32% vi libc-2.12.so [.] __strlen_sse42
 0.14% swapper [kernel.kallsyms] [k] intel_idle
 0.13% init [kernel.kallsyms] [k] uhci_irq
 0.11% perf [kernel.kallsyms] [k] generic_exec_single
 0.11% init [kernel.kallsyms] [k] tg_shares_up
 0.10% qemu-kvm [kernel.kallsyms] [k] tg_shares_up

[output truncated...]

2.2. Virtual Performance Monitoring Unit (vPMU)

The virtual performance monitoring unit (vPMU) displays statistics which indicate how a guest virtual
machine is functioning.

Virt ualizat ion T uning and Opt imizat ion Guide

6

The virtual performance monitoring unit allows users to identify sources of possible performance
problems in their guest virtual machines. The vPMU is based on Intel's PMU (Performance Monitoring
Units) and can only be used on Intel machines.

This feature is only supported with guest virtual machines running Red Hat Enterprise Linux 6 or Red
Hat Enterprise Linux 7 and is disabled by default.

To verify if the vPMU is supported on your system, check for the arch_perfmon flag on the host CPU
by running:

cat /proc/cpuinfo|grep arch_perfmon

To enable the vPMU, specify the cpu mode in the guest XML as host-passthrough:

virsh dumpxml guest_name |grep "cpu mode"
<cpu mode='host-passthrough'>

After the vPMU is enabled, display a virtual machine's performance statistics by running the perf
command from the guest virtual machine.

Chapt er 2 . Performance Monit oring T ools

7

Chapter 3. Optimizing virtualization performance with virt-
manager

This chapter covers performance tuning options available in virt -manager, a desktop tool for
managing guest virtual machines.

3.1. Operat ing System Details and Devices

3.1.1. Specifying Guest Virtual Machine Details

The virt -manager tool provides different profiles depending on what operating system type and
version are selected for a new guest virtual machine. When creating a guest, you should provide as
many details as possible; this can improve performance by enabling features available for your
specific type of guest.

Refer to the following example screen capture of the virt -manager tool. When creating a new guest
virtual machine, always specify your intended OS type and Version:

Figure 3.1. Provide the OS type and Version

Virt ualizat ion T uning and Opt imizat ion Guide

8

3.1.2. Remove Unused Devices

Removing unused or unnecessary devices can improve performance. For instance, a guest tasked
as a web server is unlikely to require audio features or an attached tablet.

Refer to the following example screen capture of the virt -manager tool. Click the Remove button to
remove unnecessary devices:

Figure 3.2. Remove unused devices

3.2. CPU Performance Opt ions

Several CPU related options are available to your guest virtual machines. Configured correctly, these
options can have a large impact on performance. The following image shows the CPU options
available to your guests. The remainder of this section shows and explains the impact of these
options.

Chapt er 3. Opt imizing virt ualizat ion performance wit h virt - manager

9

Figure 3.3. CPU Performance Opt ions

3.2.1. Opt ion: Available CPUs

Use this option to adjust the amount of virtual CPUs (vCPUS) available to the guest. If you allocate
more than is available on the host (known as overcommitting), a warning is displayed, as shown in
the following image:

Figure 3.4 . CPU overcommit

Virt ualizat ion T uning and Opt imizat ion Guide

10

CPUs are overcommitted when the sum of vCPUs for all guests on the system is greater than the
number of host CPUs on the system. You can overcommit CPUs with one or multiple guests if the total
number of vCPUs is greater than the number of host CPUs.

Important

As with memory overcommitting, CPU overcommitting can have a negative impact on
performance, for example, in situations with a heavy or unpredictable guest workload. Refer to
the Red Hat Enterprise Linux Virtualization Deployment and Administration Guide, Overcommitting with
KVM for more details on overcommitting.

3.2.2. Opt ion: CPU Configurat ion

Use this option to select the CPU configuration type, based on the desired CPU model. Expand the
list to see available options, or click the Copy host CPU configuration button to detect and apply the
physical host's CPU model and configuration. Once you select a CPU configuration, its available
CPU features/instructions are displayed and can be individually enabled/disabled in the CPU
Features list. Refer to the following diagram which shows these options:

Figure 3.5. CPU Conf igurat ion Opt ions

Note

Copying the host CPU configuration is recommended over manual configuration.

Chapt er 3. Opt imizing virt ualizat ion performance wit h virt - manager

11

Note

Alternately, run the virsh capabilities command on your host machine to view the
virtualization capabilities of your system, including CPU types and NUMA capabilities.

3.2.3. Opt ion: CPU T opology

Use this option to apply a particular CPU topology (Sockets, Cores, Threads) to the virtual CPUs for
your guest virtual machine. Refer to the following diagram which shows an example of this option:

Figure 3.6 . CPU Topology Opt ions

Note

Although your environment may dictate other requirements, selecting any desired number of
sockets, but with only a single core and a single thread usually gives the best performance
results.

3.2.4 . Opt ion: CPU Pinning

Large performance improvements can be obtained by adhering to the system's specific NUMA
topology. Use this option to automatically generate a pinning configuration that is valid for the host.

Virt ualizat ion T uning and Opt imizat ion Guide

12

Figure 3.7. CPU Pinning

Warning

Do not use this option if the guest has more vCPUs than a single NUMA node.

Using the Pinning option will constrain the guest's vCPU threads to a single NUMA node; however,
threads will be able to move around within that NUMA node. For tighter binding capabilities, use the
output from the lscpu command to establish a 1:1 physical CPU to vCPU binding using virsh
cpupin. Refer to Chapter 8, NUMA for more information on NUMA and CPU pinning.

3.3. Virtual Disk Performance Opt ions

Several virtual disk related options are available to your guest virtual machines during installation
that can impact performance. The following image shows the virtual disk options available to your
guests.

The cache mode, IO mode, and IO tuning can be selected in the Virtual Disk section in virt -
manager. Set these parameters in the fields under Performance options, as shown in the
following image:

Chapt er 3. Opt imizing virt ualizat ion performance wit h virt - manager

13

Figure 3.8. Virtual Disk Performance Opt ions

Important

When setting the virtual disk performance options in virt -manager, the virtual machine must
be restarted for the settings to take effect.

See Section 6.2, “Caching” and Section 6.3, “ I/O Mode” for descriptions of these settings and
instructions for editing these settings in the guest XML configuration.

Virt ualizat ion T uning and Opt imizat ion Guide

14

Chapter 4. tuned and tuned-adm

This chapter covers using the tuned daemon for tuning system settings in virtualized environments.

tuned is a tuning profile delivery mechanism that adapts Red Hat Enterprise Linux for certain
workload characteristics, such as requirements for CPU-intensive tasks, or storage/network
throughput responsiveness.

The accompanying ktune partners with the tuned-adm tool to provide a number of tuning profiles
that are pre-configured to enhance performance and reduce power consumption in a number of
specific use cases. Edit these profiles or create new profiles to create performance solutions tailored
to your environment.

The virtualization-related profiles provided as part of tuned-adm include:

virtual-guest

Based on the throughput-performance profile, virtual-guest also decreases the
swappiness of virtual memory.

The virtual-guest profile is automatically selected when creating a Red Hat Enterprise
Linux 7 guest virtual machine. It is the recommended profile for virtual machines.

This profile is available in Red Hat Enterprise Linux 6.3 and later, but must be manually
selected when installing a virtual machine.

virtual-host

Based on the throughput-performance profile, virtual-host also decreases the
swappiness of virtual memory and enables more aggressive writeback of dirty pages. This
profile is the recommended profile for virtualization hosts, including both KVM and Red Hat
Enterprise Virtualization hosts.

By default in a Red Hat Enterprise Linux 7 installation, the tuned package is installed and the tuned
service is enabled.

To list all available profiles and identify the current active profile, run:

tuned-adm list
Available profiles:
- balanced
- desktop
- latency-performance
- network-latency
- network-throughput
- powersave
- sap
- throughput-performance
- virtual-guest
- virtual-host
Current active profile: throughput-performance

It is also possible to create custom tuned profiles to encapsulate a set of tuning parameters. For
instructions on creating custom tuned profiles, refer to the tuned.conf man page.

To only display the currently active profile, run:

Chapt er 4 . t uned and t uned- adm

15

tuned-adm active

To switch to one of the available profiles, run:

tuned-adm profile profile_name

For example, to switch to the virtual-host profile, run:

tuned-adm profile virtual-host

Important

After setting a tuned profile in Red Hat Enterprise Linux 7.1 and above, the tuned service must
be restarted and the system must be rebooted to apply the changes persistently. For more
information, see the Red Hat Enterprise Linux 7 Performance Tuning Guide.

In some cases, it is preferable to disable tuned to use parameters set manually. To disable all
tuning, run:

tuned-adm off

Note

Refer to the Red Hat Enterprise Linux 7 Power Management Guide, available from
https://access.redhat.com/documentation/en-US/, for further information about tuned , tuned-
adm and ktune .

Virt ualizat ion T uning and Opt imizat ion Guide

16

https://access.redhat.com/documentation/en-US/

Chapter 5. Networking

This chapter covers network optimization topics for virtualized environments.

5.1. Networking Tuning T ips

Use multiple networks to avoid congestion on a single network. For example, have dedicated
networks for management, backups and/or live migration.

Usually, matching the default MTU (1500 bytes) in all components is sufficient. If you require
larger messages, increasing the MTU value can reduce fragmentation. If you change the MTU, all
devices in the path should have a matching MTU value.

Red Hat recommends not using multiple interfaces in the same network segment. However, if this is
unavoidable, you can use arp_filter to prevent ARP Flux, an undesirable condition that can
occur in both hosts and guests and is caused by the machine responding to ARP requests from
more than one network interface: echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
or edit /etc/sysctl.conf to make this setting persistent.

Note

Refer to the following URL for more information on ARP Flux: http://linux-ip.net/html/ether-
arp.html#ether-arp-flux

5.2. Virt io and vhost_net

The following diagram demonstrates the involvement of the kernel in the Virtio and vhost_net
architectures.

Figure 5.1. Virt io and vhost_net architectures

Chapt er 5. Net working

17

http://linux-ip.net/html/ether-arp.html#ether-arp-flux

vhost_net moves part of the Virtio driver from the userspace into the kernel. This reduces copy
operations, lowers latency and CPU usage.

5.3. Device Assignment and SR-IOV

The following diagram demonstrates the involvement of the kernel in the Device Assignment and SR-
IOV architectures.

Figure 5.2. Device assignment and SR- IOV

Device assignment presents the entire device to the guest. SR-IOV needs support in drivers and
hardware, including the NIC and the system board and allows multiple virtual devices to be created
and passed into different guests. A vendor-specific driver is required in the guest, however, SR-IOV
offers the lowest latency of any network option.

5.4 . Network Tuning Techniques

This section describes techniques for tuning network performance in virtualized environments.

5.4 .1. Bridge Zero Copy T ransmit

Zero copy transmit mode is effective on large packet sizes. It typically reduces the host CPU
overhead by up to 15% when transmitting large packets between a guest network and an external
network, without affecting throughput.

It does not affect performance for guest-to-guest, guest-to-host, or small packet workloads.

Bridge zero copy transmit is fully supported on Red Hat Enterprise Linux 7 virtual machines, but
disabled by default. To enable zero copy transmit mode, set the experimental_zcopytx kernel
module parameter for the vhost_net module to 1.

Virt ualizat ion T uning and Opt imizat ion Guide

18

Note

An additional data copy is normally created during transmit as a threat mitigation technique
against denial of service and information leak attacks. Enabling zero copy transmit disables
this threat mitigation technique.

If performance regression is observed, or if host CPU utilization is not a concern, zero copy transmit
mode can be disabled by setting experimental_zcopytx to 0.

5.4 .2. Mult i-Queue virt io-net

Multi-queue virtio-net provides an approach that scales the network performance as the number of
vCPUs increases, by allowing them to transfer packets through more than one virtqueue pair at a
time.

Today's high-end servers have more processors, and guests running on them often have an
increasing number of vCPUs. In single queue virtio-net, the scale of the protocol stack in a guest is
restricted, as the network performance does not scale as the number of vCPUs increases. Guests
cannot transmit or retrieve packets in parallel, as virtio-net has only one TX and RX queue.

Multi-queue support removes these bottlenecks by allowing paralleled packet processing.

Multi-queue virtio-net provides the greatest performance benefit when:

Traffic packets are relatively large.

The guest is active on many connections at the same time, with traffic running between guests,
guest to host, or guest to an external system.

The number of queues is equal to the number of vCPUs. This is because multi-queue support
optimizes RX interrupt affinity and TX queue selection in order to make a specific queue private to
a specific vCPU.

Note

Multi-queue virtio-net works well for incoming traffic, but can occasionally hurt performance for
outgoing traffic. Enabling multi-queue virtio-net increases the total throughput, and in parallel
increases CPU consumption.

5.4 .2 .1 . Co nfiguring Mult i-Queue virt io -net

To use multi-queue virtio-net, enable support in the guest by adding the following to the guest XML
configuration (where the value of N is from 1 to 8, as the kernel supports up to 8 queues for a multi-
queue tap device):

<interface type='network'>
 <source network='default'/>
 <model type='virtio'/>
 <driver name='vhost' queues='N'/>
</interface>

Chapt er 5. Net working

19

When running a virtual machine with N virtio-net queues in the guest, enable the multi-queue support
with the following command (where the value of M is from 1 to N):

ethtool -L eth0 combined M

Virt ualizat ion T uning and Opt imizat ion Guide

20

Chapter 6. Block I/O

This chapter covers optimizing I/O settings in virtualized environments.

6.1. Block I/O Tuning

The virsh blkiotune command allows administrators to set or display a guest virtual machine's
block I/O parameters manually in the <blkio> element in the guest XML configuration.

To display current <blkio> parameters for a virtual machine:

virsh blkiotune virtual_machine

To set a virtual machine's <blkio> parameters, refer to the following command and replace values
according to your environment:

virsh blkiotune virtual_machine [--weight number] [--device-weights
string] [--config] [--live] [--current]

Parameters include:

weight

The I/O weight, within the range 100 to 1000.

device-weights

A single string listing one or more device/weight pairs, in the format of
/path/to/device,weight,/path/to/device,weight. Each weight must be within
the range 100-1000, or the value 0 to remove that device from per-device listings. Only the
devices listed in the string are modified; any existing per-device weights for other devices
remain unchanged.

config

Add the --config option for changes to take effect at next boot.

live

Add the --live option to apply the changes to the running virtual machine.

Note

The --live option requires the hypervisor to support this action. Not all
hypervisors allow live changes of the maximum memory limit.

current

Add the --current option to apply the changes to the current virtual machine.

Chapt er 6 . Block I/O

21

Note

See # virsh help blkiotune for more information on using the virsh blkiotune
command.

6.2. Caching

Caching options can be configured with virt -manager during guest installation, or on an existing
guest virtual machine by editing the guest XML configuration.

Table 6 .1. Caching opt ions

Caching Opt ion Descript ion
Cache=none I/O from the guest is not cached on the host, but

may be kept in a writeback disk cache. Use this
option for guests with large I/O requirements.
This option is generally the best choice, and is
the only option to support migration.

Cache=writethrough I/O from the guest is cached on the host but
written through to the physical medium. This
mode is slower and prone to scaling problems.
Best used for small number of guests with lower
I/O requirements. Suggested for guests that do
not support a writeback cache (such as Red Hat
Enterprise Linux 5.5 and earlier), where
migration is not needed.

Cache=writeback I/O from the guest is cached on the host.
Cache=directsync Similar to writethrough, but I/O from the guest

bypasses the host page cache.
Cache=unsafe The host may cache all disk I/O, and sync

requests from guest are ignored.
Cache=default If no cache mode is specified, the system's

default settings are chosen.

In virt -manager, the caching mode can be specified under Virtual Disk. For information on
using virt -manager to change the cache mode, see Section 3.3, “Virtual Disk Performance Options”

To configure the cache mode in the guest XML, edit the cache setting inside the driver tag to
specify a caching option. For example, to set the cache as writeback:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='writeback'/>

6.3. I/O Mode

I/O mode options can be configured with virt -manager during guest installation, or on an existing
guest virtual machine by editing the guest XML configuration.

Table 6 .2. IO mode opt ions

Virt ualizat ion T uning and Opt imizat ion Guide

22

IO Mode Opt ion Descript ion
IO=native The default for Red Hat Enterprise Virtualization

environments. This mode refers to kernel
asynchronous I/O with direct I/O options.

IO=threads The default are host user-mode based threads.
IO=default The default in Red Hat Enterprise Linux 7 is

threads mode.

In virt -manager, the I/O mode can be specified under Virtual Disk. For information on using
virt -manager to change the I/O mode, see Section 3.3, “Virtual Disk Performance Options”

To configure the I/O mode in the guest XML, edit the io setting inside the driver tag, specifying
native, threads, or default. For example, to set the I/O mode to threads:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw' io='threads'/>

6.4 . Block I/O Tuning Techniques

This section describes more techniques for tuning block I/O performance in virtualized environments.

6.4 .1. Disk I/O T hrot t ling

When several virtual machines are running simultaneously, they can interfere with system
performance by using excessive disk I/O. Disk I/O throttling in KVM provides the ability to set a limit
on disk I/O requests sent from virtual machines to the host machine. This can prevent a virtual
machine from over-utilizing shared resources and impacting the performance of other virtual
machines.

Disk I/O throttling can be useful in various situations, for example, where guest virtual machines
belonging to different customers are running on the same host, or when quality of service guarantees
are given for different guests. Disk I/O throttling can also be used to simulate slower disks.

I/O throttling can be applied independently to each block device attached to a guest and supports
limits on throughput and I/O operations. Use the virsh blkdeviotune command to set I/O limits
for a virtual machine. Refer to the following example:

virsh blkdeviotune virtual_machine device --parameter limit

Device specifies a unique target name (<target dev='name'/>) or source file (<source
file='name'/>) for one of the disk devices attached to the virtual machine. Use the virsh
domblklist command for a list of disk device names.

Optional parameters include:

total-bytes-sec

The total throughput limit in bytes per second.

read-bytes-sec

The read throughput limit in bytes per second.

write-bytes-sec

Chapt er 6 . Block I/O

23

The write throughput limit in bytes per second.

total-iops-sec

The total I/O operations limit per second.

read-iops-sec

The read I/O operations limit per second.

write-iops-sec

The write I/O operations limit per second.

For example, to throttle vda on virtual_machine to 1000 I/O operations per second and 50 MB
per second throughput, run this command:

virsh blkdeviotune virtual_machine vda --total-iops-sec 1000 --total-
bytes-sec 52428800

6.4 .2. Mult i-Queue virt io-scsi

Multi-queue virtio-scsi provides improved storage performance and scalability in the virtio-scsi
driver. It enables each virtual CPU to have a separate queue and interrupt to use without affecting
other vCPUs.

6.4 .2 .1 . Co nfiguring Mult i-Queue virt io -scsi

Multi-queue virtio-scsi is disabled by default on Red Hat Enterprise Linux 7.

To enable multi-queue virtio-scsi support in the guest, add the following to the guest XML
configuration, where N is the total number of vCPU queues:

 <controller type='scsi' index='0' model='virtio-scsi'>
 <driver queues='N' />
 </controller>

Virt ualizat ion T uning and Opt imizat ion Guide

24

Chapter 7. Memory

This chapter covers memory optimization options for virtualized environments.

7.1. Memory Tuning T ips

To optimize memory performance in a virtualized environment, consider the following:

Do not allocate more resources to guest than it will use.

If possible, assign a guest to a single NUMA node, providing that resources are sufficient on that
NUMA node. For more information on using NUMA, see Chapter 8, NUMA.

7.2. Memory Tuning on Virtual Machines

7.2.1. Memory Monitoring T ools

Memory usage can be monitored in virtual machines using tools used in bare metal environments.
Tools useful for monitoring memory usage and diagnosing memory-related problems include:

top

vmstat

numastat

/proc/

Note

For details on using these performance tools, refer to the Red Hat Enterprise Linux 7 Performance
Tuning Guide and the man pages for these commands.

7.2.2. Memory T uning with virsh

The optional <memtune> element in the guest XML configuration allows administrators to configure
guest virtual machine memory settings manually. If <memtune> is omitted, default memory settings
apply.

Display or set memory parameters in the <memtune> element in a virtual machine with the virsh
memtune command, replacing values according to your environment:

virsh memtune virtual_machine --parameter size

Optional parameters include:

hard_limit

The maximum memory the virtual machine can use, in kibibytes (blocks of 1024 bytes).

Chapt er 7 . Memory

25

Warning

Setting this limit too low can result in the virtual machine being killed by the kernel.

soft_limit

The memory limit to enforce during memory contention, in kibibytes (blocks of 1024 bytes).

swap_hard_limit

The maximum memory plus swap the virtual machine can use, in kibibytes (blocks of 1024
bytes). The swap_hard_limit value must be more than the hard_limit value.

min_guarantee

The guaranteed minimum memory allocation for the virtual machine, in kibibytes (blocks of
1024 bytes).

Note

See # virsh help memtune for more information on using the virsh memtune command.

The optional <memoryBacking> element may contain several elements that influence how virtual
memory pages are backed by host pages.

Setting locked prevents the host from swapping out memory pages belonging to the guest. Add the
following to the guest XML to lock the virtual memory pages in the host's memory:

<memoryBacking>
 <locked/>
</memoryBacking>

Important

When setting locked, a hard_limit must be set in the <memtune> element to the maximum
memory configured for the guest, plus any memory consumed by the process itself.

Setting nosharepages prevents the host from merging the same memory used among guests. To
instruct the hypervisor to disable share pages for a guest, add the following to the guest's XML:

<memoryBacking>
 <nosharepages/>
</memoryBacking>

7.2.3. Huge Pages and T ransparent Huge Pages (T HP)

x86 CPUs usually address memory in 4kB pages, but they are capable of using larger 2 MB or 1 GB
pages known as huge pages. KVM guests can be deployed with huge page memory support in order
to improve performance by increasing CPU cache hits against the Transaction Lookaside Buffer
(TLB).

Virt ualizat ion T uning and Opt imizat ion Guide

26

A kernel feature enabled by default in Red Hat Enterprise Linux 7, huge pages can significantly
increase performance, particularly for large memory and memory-intensive workloads. Red Hat
Enterprise Linux 7 is able to more effectively manage large amounts of memory by increasing the
page size through the use of huge pages.

Red Hat Enterprise Linux 7.1 systems support 2 MB and 1 GB huge pages, which can be allocated at
boot or at runtime. See Section 7.2.3.3, “Enabling 1 GB huge pages for guests at boot or runtime” for
instructions on enabling multiple huge page sizes.

7.2 .3.1 . Co nfiguring T ransparent Huge Pages

Transparent huge pages (THP) automatically optimize system settings for performance. By allowing
all free memory to be used as cache, performance is increased. As KSM can reduce the occurance of
transparent huge pages, you may want to disable it before enabling THP. If you want fo disable KSM,
refer to Section 7.3.4, “Deactivating KSM” .

To enable transparent huge pages to be used by default, run:

cat /sys/kernel/mm/transparent_hugepage/enabled

This will set /sys/kernel/mm/transparent_hugepage/enabled to always. To disable
transparent huge pages:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Transparent Huge Page support does not prevent the use of static huge pages. However, when static
huge pages are not used, KVM will use transparent huge pages instead of the regular 4kB page size.

7.2 .3.2 . Co nfiguring St at ic Huge Pages

In some cases, greater control of huge pages is preferable. To use static huge pages on guests, add
the following to the guest XML configuration using virsh edit:

<memoryBacking>
 <hugepages/>
</memoryBacking>

This instructs the host to allocate memory to the guest using huge pages, instead of using the default
page size.

In Red Hat Enterprise Linux 7.1, huge pages from the host can be allocated to guest NUMA nodes.
Specify the huge page size, units, and the guest NUMA nodeset in the <memoryBacking> element in
the guest XML. For more information and an example of configuration, see Section 8.3.10, “Assigning
Host Huge Pages to Multiple Guest NUMA Nodes” .

View the current huge pages value by running the following command:

cat /proc/sys/vm/nr_hugepages

Procedure 7.1. Set t ing huge pages

The following example procedure shows the commands to set huge pages.

1. View the current huge pages value:

Chapt er 7 . Memory

27

cat /proc/meminfo | grep Huge
AnonHugePages: 2048 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

2. Huge pages are set in increments of 2MB. To set the number of huge pages to 25000, use the
following command:

echo 25000 > /proc/sys/vm/nr_hugepages

Note

Alternatively, to make the setting persistent, use the # sysctl -w
vm.nr_hugepages=N command with N being the number of huge pages.

3. Mount the huge pages:

mount -t hugetlbfs hugetlbfs /dev/hugepages

4. Restart l ibvirtd , then restart the virtual machine with the following commands:

systemctl start libvirtd

virsh start virtual_machine

5. Verify the changes in /proc/meminfo :

cat /proc/meminfo | grep Huge
AnonHugePages: 0 kB
HugePages_Total: 25000
HugePages_Free: 23425
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

Huge pages can benefit not only the host but also guests, however, their total huge pages value must
be less than what is available in the host.

7.2 .3.3. Enabling 1 GB huge pages fo r guest s at bo o t o r runt ime

Red Hat Enterprise Linux 7.1 systems support 2 MB and 1 GB huge pages, which can be allocated at
boot or at runtime.

Procedure 7.2. Allocat ing 1 GB huge pages at boot t ime

1. To allocate different sizes of huge pages at boot time, use the following command, specifying
the number of huge pages. This example allocates 4 1 GB huge pages and 1024 2 MB huge
pages:

Virt ualizat ion T uning and Opt imizat ion Guide

28

'default_hugepagesz=1G hugepagesz=1G hugepages=4 hugepagesz=2M
hugepages=1024'

Change this command line to specify a different number of huge pages to be allocated at
boot.

Note

The next two steps must also be completed the first time you allocate 1 GB huge pages
at boot time.

2. Mount the 2 MB and 1 GB huge pages on the host:

mkdir /dev/hugepages1G
mount -t hugetlbfs -o pagesize=1G none /dev/hugepages1G
mkdir /dev/hugepages2M
mount -t hugetlbfs -o pagesize=2M none /dev/hugepages2M

3. Restart libvirtd to enable the use of 1 GB huge pages on guests:

systemctl restart libvirtd

Procedure 7.3. Allocat ing 1 GB huge pages at runt ime

1 GB huge pages can also be allocated at runtime. Runtime allocation allows the system
administrator to choose which NUMA node to allocate those pages from. However, runtime page
allocation can be more prone to allocation failure than boot time allocation due to memory
fragmentation.

1. To allocate different sizes of huge pages at runtime, use the following command, replacing
values for the number of huge pages, the NUMA node to allocate them from, and the huge
page size:

echo 4 > /sys/devices/system/node/node1/hugepages/hugepages-
1048576kB/nr_hugepages
echo 1024 > /sys/devices/system/node/node3/hugepages/hugepages-
2048kB/nr_hugepages

This example command allocates 4 1 GB huge pages from node1 and 1024 2MB huge
pages from node3.

These huge page settings can be changed at any time with the above command, depending
on the amount of free memory on the host system.

Note

The next two steps must also be completed the first time you allocate 1 GB huge pages
at runtime.

2. Mount the 2 MB and 1 GB huge pages on the host:

Chapt er 7 . Memory

29

mkdir /dev/hugepages1G
mount -t hugetlbfs -o pagesize=1G none /dev/hugepages1G
mkdir /dev/hugepages2M
mount -t hugetlbfs -o pagesize=2M none /dev/hugepages2M

3. Restart libvirtd to enable the use of 1 GB huge pages on guests:

systemctl restart libvirtd

Note

See Section 8.3.10, “Assigning Host Huge Pages to Multiple Guest NUMA Nodes” to configure
NUMA-node specific huge pages.

7.3. Kernel Same-page Merging (KSM)

Kernel Same-page Merging (KSM), used by the KVM hypervisor, allows KVM guests to share identical
memory pages. These shared pages are usually common libraries or other identical, high-use data.
KSM allows for greater guest density of identical or similar guest operating systems by avoiding
memory duplication.

The concept of shared memory is common in modern operating systems. For example, when a
program is first started, it shares all of its memory with the parent program. When either the child or
parent program tries to modify this memory, the kernel allocates a new memory region, copies the
original contents and allows the program to modify this new region. This is known as copy on write.

KSM is a Linux feature which uses this concept in reverse. KSM enables the kernel to examine two or
more already running programs and compare their memory. If any memory regions or pages are
identical, KSM reduces multiple identical memory pages to a single page. This page is then marked
copy on write. If the contents of the page is modified by a guest virtual machine, a new page is
created for that guest.

This is useful for virtualization with KVM. When a guest virtual machine is started, it only inherits the
memory from the host qemu-kvm process. Once the guest is running, the contents of the guest
operating system image can be shared when guests are running the same operating system or
applications. KSM allows KVM to request that these identical guest memory regions be shared.

KSM provides enhanced memory speed and utilization. With KSM, common process data is stored in
cache or in main memory. This reduces cache misses for the KVM guests, which can improve
performance for some applications and operating systems. Secondly, sharing memory reduces the
overall memory usage of guests, which allows for higher densities and greater utilization of
resources.

Virt ualizat ion T uning and Opt imizat ion Guide

30

Note

In Red Hat Enterprise Linux 7, KSM is NUMA aware. This allows it to take NUMA locality into
account while coalescing pages, thus preventing performance drops related to pages being
moved to a remote node. Red Hat recommends avoiding cross-node memory merging when
KSM is in use. If KSM is in use, change the /sys/kernel/mm/ksm/merge_across_nodes
tunable to 0 to avoid merging pages across NUMA nodes. This can be done with the virsh
node-memory-tune --shm-merge-across-nodes 0 command. Kernel memory
accounting statistics can eventually contradict each other after large amounts of cross-node
merging. As such, numad can become confused after the KSM daemon merges large amounts
of memory. If your system has a large amount of free memory, you may achieve higher
performance by turning off and disabling the KSM daemon. Refer to Chapter 8, NUMA" for
more information on NUMA.

Important

Ensure the swap size is sufficient for the committed RAM even with KSM. KSM reduces the RAM
usage of identical or similar guests. Overcommitting guests with KSM without sufficient swap
space may be possible, but is not recommended because guest virtual machine memory use
can result in pages becoming unshared.

Red Hat Enterprise Linux uses two separate methods for controlling KSM:

The ksm service starts and stops the KSM kernel thread.

The ksmtuned service controls and tunes the ksm service, dynamically managing same-page
merging. The ksmtuned service starts ksm and stops the ksm service if memory sharing is not
necessary. The ksmtuned service must be instructed with the retune parameter to run when new
guests are created or destroyed.

Both of these services are controlled with the standard service management tools.

7.3.1. T he KSM service

The ksm service is included in the qemu-kvm package. KSM is off by default on Red Hat Enterprise
Linux 7.

When the ksm service is not started, KSM shares only 2000 pages. This default is low and provides
limited memory saving benefits.

When the ksm service is started, KSM will share up to half of the host system's main memory. Start the
ksm service to enable KSM to share more memory.

systemctl start ksm
Starting ksm: [OK]

The ksm service can be added to the default startup sequence. Make the ksm service persistent with
the systemctl command.

systemctl enable ksm

7.3.2. T he KSM tuning service

Chapt er 7 . Memory

31

7.3.2. T he KSM tuning service

The ksmtuned service does not have any options. The ksmtuned service loops and adjusts ksm.
The ksmtuned service is notified by libvirt when a guest virtual machine is created or destroyed.

systemctl start ksmtuned
Starting ksmtuned: [OK]

The ksmtuned service can be tuned with the retune parameter. The retune parameter instructs
ksmtuned to run tuning functions manually.

The /etc/ksmtuned.conf file is the configuration file for the ksmtuned service. The file output
below is the default ksmtuned.conf file:

Configuration file for ksmtuned.
How long ksmtuned should sleep between tuning adjustments
KSM_MONITOR_INTERVAL=60

Millisecond sleep between ksm scans for 16Gb server.
Smaller servers sleep more, bigger sleep less.
KSM_SLEEP_MSEC=10

KSM_NPAGES_BOOST - is added to the `npages` value, when `free memory`
is less than `thres`.
KSM_NPAGES_BOOST=300

KSM_NPAGES_DECAY - is the value given is subtracted to the `npages`
value, when `free memory` is greater than `thres`.
KSM_NPAGES_DECAY=-50

KSM_NPAGES_MIN - is the lower limit for the `npages` value.
KSM_NPAGES_MIN=64

KSM_NPAGES_MAX - is the upper limit for the `npages` value.
KSM_NPAGES_MAX=1250

KSM_THRES_COEF - is the RAM percentage to be calculated in parameter
`thres`.
KSM_THRES_COEF=20

KSM_THRES_CONST - If this is a low memory system, and the `thres` value
is less than `KSM_THRES_CONST`, then reset `thres` value to
`KSM_THRES_CONST` value.
KSM_THRES_CONST=2048

uncomment the following to enable ksmtuned debug information
LOGFILE=/var/log/ksmtuned
DEBUG=1

Within the /etc/ksmtuned.conf file, npages sets how many pages ksm will scan before ksmd
goes to sleep. It will be set at /sys/kernel/mm/ksm/pages_to_scan.

`thres` sets the activation threshold, in kbytes. A KSM cycle is triggered when the `thres` value
added to the sum of all qemu-kvm processes RSZ exceeds total system memory. This parameter is
the equivalent in kbytes of the percentage defined in parameter `KSM_THRES_COEF`.

Virt ualizat ion T uning and Opt imizat ion Guide

32

7.3.3. KSM variables and monitoring

KSM stores monitoring data in the /sys/kernel/mm/ksm/ directory. Files in this directory are
updated by the kernel and are an accurate record of KSM usage and statistics.

The variables in the list below are also configurable variables in the /etc/ksmtuned.conf file as
noted below.

Files in /sys/kernel/mm/ksm/:

fu ll_scans

Full scans run.

merge_across_nodes

Whether pages from different NUMA nodes can be merged.

pages_shared

Total pages shared.

pages_sharing

Pages presently shared.

pages_to_scan

Pages not scanned.

pages_unshared

Pages no longer shared.

pages_volat ile

Number of volatile pages.

run

Whether the KSM process is running.

sleep_millisecs

Sleep milliseconds.

These variables can be manually tuned using the virsh node-memory-tune command. For
example, the following specifies the number of pages to scan before the shared memory service goes
to sleep:

virsh node-memory-tune --shm-pages-to-scan number

KSM tuning activity is stored in the /var/log/ksmtuned log file if the DEBUG=1 line is added to the
/etc/ksmtuned.conf file. The log file location can be changed with the LOGFILE parameter.
Changing the log file location is not advised and may require special configuration of SELinux
settings.

7.3.4 . Deact ivat ing KSM

Chapt er 7 . Memory

33

7.3.4 . Deact ivat ing KSM

KSM has a performance overhead which may be too large for certain environments or host systems.
KSM may also introduce side channels that could be potentially used to leak information across
guests. In the case that is a concern, KSM can be disabled on per-guest basis.

KSM can be deactivated by stopping the ksmtuned and the ksm service. Stopping the services
deactivates KSM, but this action does not persist after restarting. It should also be noted that when
KSM is disabled, any memory pages that were shared prior to deactivating KSM are still shared. To
deactivate KSM, run the following in a terminal as root:

systemctl stop ksmtuned
Stopping ksmtuned: [OK]
systemctl stop ksm
Stopping ksm: [OK]

Persistently deactivate KSM with the systemctl command. To disable the services, run the following
commands:

systemctl disable ksm
systemctl disable ksmtuned

To delete all of the PageKSM in the system, run the following command in a terminal as root:

echo 2 >/sys/kernel/mm/ksm/run

After this runs, the khugepaged daemon can rebuild transparent hugepages on the KVM guest
physical memory, whereas running # echo 0 >/sys/kernel/mm/ksm/run stops KSM, but does
not unshare all the previously created KSM pages (this is the same as the # systemctl stop
ksmtuned command).

Virt ualizat ion T uning and Opt imizat ion Guide

34

Chapter 8. NUMA

Historically, all memory on x86 systems is equally accessible by all CPUs. Known as Uniform Memory
Access (UMA), access times are the same no matter which CPU performs the operation.

This behavior is no longer the case with recent x86 processors. In Non-Uniform Memory Access
(NUMA), system memory is divided across NUMA nodes, which correspond to sockets or to a
particular set of CPUs that have identical access latency to the local subset of system memory.

This chapter describes memory allocation and NUMA tuning configurations in virtualized
environments.

8.1. NUMA Memory Allocat ion Policies

Three policy types define how memory is allocated from the nodes in a system:

Strict

The default operation is for allocation to fall back to other nodes if the memory can not be
allocated on the target node. Strict policy means that the allocation will fail if the memory
can not be allocated on the target node.

Interleave

Memory pages are allocated across nodes specified by a nodemask, but are allocated in a
round-robin fashion.

Preferred

Memory is allocated from a single preferred memory node. If sufficient memory is not
available, memory can be allocated from other nodes.

XML configuration enables the desired policy:

<numatune>
 <memory mode='preferred' nodeset='0'>
</numatune>

8.2. Automat ic NUMA Balancing

Automatic NUMA balancing improves the performance of applications running on NUMA hardware
systems. It is enabled by default on Red Hat Enterprise Linux 7 systems.

An application will generally perform best when the threads of its processes are accessing memory
on the same NUMA node as the threads are scheduled. Automatic NUMA balancing moves tasks
(which can be threads or processes) closer to the memory they are accessing. It also moves
application data to memory closer to the tasks that reference it. This is all done automatically by the
kernel when automatic NUMA balancing is active.

Automatic NUMA balancing uses a number of algorithms and data structures, which are only active
and allocated if automatic NUMA balancing is active on the system:

Periodic NUMA unmapping of process memory

NUMA hinting fault

Chapt er 8 . NUMA

35

Migrate-on-Fault (MoF) - moves memory to where the program using it runs

task_numa_placement - moves running programs closer to their memory

8.2.1. Configuring Automat ic NUMA Balancing

Automatic NUMA balancing is enabled by default in Red Hat Enterprise Linux 7, and will
automatically activate when booted on hardware with NUMA properties.

Automatic NUMA balancing is enabled when both of the following conditions are met:

numactl --hardware shows multiple nodes, and

cat /sys/kernel/debug/sched_features shows NUMA in the flags.

Manual NUMA tuning of applications will override automatic NUMA balancing, disabling periodic
unmapping of memory, NUMA faults, migration, and automatic NUMA placement of those
applications.

In some cases, system-wide manual NUMA tuning is preferred.

To disable automatic NUMA balancing, use the following command:

echo 0 > /proc/sys/kernel/numa_balancing

To enable automatic NUMA balancing, use the following command:

echo 1 > /proc/sys/kernel/numa_balancing

8.3. libvirt NUMA Tuning

Generally, best performance on NUMA systems is achieved by limiting guest size to the amount of
resources on a single NUMA node. Avoid unnecessarily splitting resources across NUMA nodes.

Use the numastat tool to view per-NUMA-node memory statistics for processes and the operating
system.

In the following example, the numastat tool shows four virtual machines with suboptimal memory
alignment across NUMA nodes:

numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
Total
--------------- ------ ------ ------ ------ ------ ------ ------ ------

51722 (qemu-kvm) 68 16 357 6936 2 3 147 598
8128
51747 (qemu-kvm) 245 11 5 18 5172 2532 1 92
8076
53736 (qemu-kvm) 62 432 1661 506 4851 136 22 445
8116
53773 (qemu-kvm) 1393 3 1 2 12 0 0 6702
8114

Virt ualizat ion T uning and Opt imizat ion Guide

36

--------------- ------ ------ ------ ------ ------ ------ ------ ------

Total 1769 463 2024 7462 10037 2672 169 7837
32434

Run numad to align the guests' CPUs and memory resources automatically.

Then run numastat -c qemu-kvm again to view the results of running numad . The following output
shows that resources have been aligned:

numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
Total
--------------- ------ ------ ------ ------ ------ ------ ------ ------

51747 (qemu-kvm) 0 0 7 0 8072 0 1 0
8080
53736 (qemu-kvm) 0 0 7 0 0 0 8113 0
8120
53773 (qemu-kvm) 0 0 7 0 0 0 1 8110
8118
59065 (qemu-kvm) 0 0 8050 0 0 0 0 0
8051
--------------- ------ ------ ------ ------ ------ ------ ------ ------

Total 0 0 8072 0 8072 0 8114 8110
32368

Note

Running numastat with -c provides compact output; adding the -m option adds system-wide
memory information on a per-node basis to the output. Refer to the numastat man page for
more information.

8.3.1. Monitoring memory per host NUMA node

You can use the nodestats.py script to report the total memory and free memory for each NUMA
node on a host. This script also reports how much memory is strictly bound to certain host nodes for
each running domain. For example:

./examples/nodestats.py
NUMA stats
NUMA nodes: 0 1 2 3
MemTotal: 3950 3967 3937 3943
MemFree: 66 56 42 41
Domain 'rhel7-0':
 Overall memory: 1536 MiB
Domain 'rhel7-1':
 Overall memory: 2048 MiB
Domain 'rhel6':
 Overall memory: 1024 MiB nodes 0-1

Chapt er 8 . NUMA

37

 Node 0: 1024 MiB nodes 0-1
Domain 'rhel7-2':
 Overall memory: 4096 MiB nodes 0-3
 Node 0: 1024 MiB nodes 0
 Node 1: 1024 MiB nodes 1
 Node 2: 1024 MiB nodes 2
 Node 3: 1024 MiB nodes 3

This example shows four host NUMA nodes, each containing approximately 4GB of RAM in total
(MemTotal). Nearly all memory is consumed on each domain (MemFree). There are four domains
(virtual machines) running: domain 'rhel7-0' has 1.5GB memory which is not pinned onto any specific
host NUMA node. Domain 'rhel7-2' however, has 4GB memory and 4 NUMA nodes which are pinned
1:1 to host nodes.

To print host NUMA node statistics, create a nodestats.py script for your environment. An example
script can be found the libvirt-python package files in ./examples/nodestats.py.

8.3.2. NUMA vCPU Pinning

vCPU pinning provides similar advantages to task pinning on bare metal systems. Since vCPUs run
as userspace tasks on the host operating system, pinning increases cache efficiency. One example
of this is an environment where all vCPU threads are running on the same physical socket, therefore
sharing a L3 cache domain.

Combining vCPU pinning with numatune can avoid NUMA misses. The performance impacts of
NUMA misses are significant, generally starting at a 10% performance hit or higher. vCPU pinning
and numatune should be configured together.

If the virtual machine is performing storage or network I/O tasks, it can be beneficial to pin all vCPUs
and memory to the same physical socket that is physically connected to the I/O adapter.

Note

The lstopo tool can be used to visualize NUMA topology. It can also help verify that vCPUs
are binding to cores on the same physical socket. Refer to the following Knowledgebase article
for more information on lstopo : https://access.redhat.com/site/solutions/62879.

Important

Pinning causes increased complexity where there are many more vCPUs than physical cores.

The following example XML configuration has a domain process pinned to physical CPUs 0-7. The
vCPU thread is pinned to its own cpuset. For example, vCPU0 is pinned to physical CPU 0, vCPU1 is
pinned to physical CPU 1, and so on:

<vcpu cpuset='0-7'>8</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='1'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='3'/>
 <vcpupin vcpu='4' cpuset='4'/>

Virt ualizat ion T uning and Opt imizat ion Guide

38

https://access.redhat.com/site/solutions/62879

 <vcpupin vcpu='5' cpuset='5'/>
 <vcpupin vcpu='6' cpuset='6'/>
 <vcpupin vcpu='7' cpuset='7'/>
 </cputune>

There is a direct relationship between the vcpu and vcpupin tags. If a vcpupin option is not specified,
the value will be automatically determined and inherited from the parent vcpu tag option. The
following configuration shows <vcpupin> for vcpu 5 missing. Hence, vCPU5 would be pinned to
physical CPUs 0-7, as specified in the parent tag <vcpu>:

<vcpu cpuset='0-7'>8</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='1'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='3'/>
 <vcpupin vcpu='4' cpuset='4'/>
 <vcpupin vcpu='6' cpuset='6'/>
 <vcpupin vcpu='7' cpuset='7'/>
 </cputune>

Important

<vcpupin>, <numatune>, and <emulatorpin> should be configured together to achieve
optimal, deterministic performance. For more information on the <numatune> tag, see
Section 8.3.3, “Domain Processes” . For more information on the <emulatorpin> tag, see
Section 8.3.5, “Using emulatorpin” .

8.3.3. Domain Processes

As provided in Red Hat Enterprise Linux, libvirt uses libnuma to set memory binding policies for
domain processes. The nodeset for these policies can be configured either as static (specified in the
domain XML) or auto (configured by querying numad). Refer to the following XML configuration for
examples on how to configure these inside the <numatune> tag:

<numatune>
 <memory mode='strict' placement='auto'/>
</numatune>

<numatune>
 <memory mode='strict' nodeset='0,2-3'/>
</numatune>

libvirt uses sched_setaf f in ity(2) to set CPU binding policies for domain processes. The cpuset
option can either be static (specified in the domain XML) or auto (configured by querying numad).
Refer to the following XML configuration for examples on how to configure these inside the <vcpu>
tag:

<vcpu placement='auto'>8</vcpu>

<vcpu placement='static' cpuset='0-10,ˆ5'>8</vcpu>

Chapt er 8 . NUMA

39

There are implicit inheritance rules between the placement mode you use for <vcpu> and
<numatune>:

The placement mode for <numatune> defaults to the same placement mode of <vcpu>, or to static
if a <nodeset> is specified.

Similarly, the placement mode for <vcpu> defaults to the same placement mode of <numatune>,
or to static if <cpuset> is specified.

This means that CPU tuning and memory tuning for domain processes can be specified and defined
separately, but they can also be configured to be dependent on the other's placement mode.

It is also possible to configure your system with numad to boot a selected number of vCPUs without
pinning all vCPUs at startup.

For example, to enable only 8 vCPUs at boot on a system with 32 vCPUs, configure the XML similar
to the following:

<vcpu placement='auto' current='8'>32</vcpu>

Note

Refer to the following URLs for more information on vcpu and numatune:
http://libvirt.org/formatdomain.html#elementsCPUAllocation and
http://libvirt.org/formatdomain.html#elementsNUMATuning

8.3.4 . Domain vCPU T hreads

In addition to tuning domain processes, libvirt also permits the setting of the pinning policy for each
vcpu thread in the XML configuration. Set the pinning policy for each vcpu thread inside the
<cputune> tags:

<cputune>
 <vcpupin vcpu="0" cpuset="1-4,ˆ2"/>
 <vcpupin vcpu="1" cpuset="0,1"/>
 <vcpupin vcpu="2" cpuset="2,3"/>
 <vcpupin vcpu="3" cpuset="0,4"/>
</cputune>

In this tag, libvirt uses either cgroup or sched_setaf f in ity(2) to pin the vcpu thread to the specified
cpuset.

Note

For more details on <cputune>, refer to the following URL:
http://libvirt.org/formatdomain.html#elementsCPUTuning

8.3.5. Using emulatorpin

Virt ualizat ion T uning and Opt imizat ion Guide

4 0

http://libvirt.org/formatdomain.html#elementsCPUAllocation
http://libvirt.org/formatdomain.html#elementsNUMATuning
http://libvirt.org/formatdomain.html#elementsCPUTuning

Another way of tuning the domain process pinning policy is to use the <emulatorpin> tag inside of
<cputune>.

The <emulatorpin> tag specifies which host physical CPUs the emulator (a subset of a domain, not
including vCPUs) will be pinned to. The <emulatorpin> tag provides a method of setting a precise
affinity to emulator thread processes. As a result, vhost threads run on the same subset of physical
CPUs and memory, and therefore benefit from cache locality. For example:

<cputune>
 <emulatorpin cpuset="1-3"/>
</cputune>

Note

In Red Hat Enterprise Linux 7, automatic NUMA balancing is enabled by default. Automatic
NUMA balancing reduces the need for manually tuning <emulatorpin>, since the vhost-net
emulator thread follows the vCPU tasks more reliably. For more information about automatic
NUMA balancing, see Section 8.2, “Automatic NUMA Balancing” .

8.3.6. T uning vcpu CPU Pinning with virsh

Important

These are example commands only. You will need to substitute values according to your
environment.

The following example virsh command will pin the vcpu thread (rhel7) which has an ID of 1 to the
physical CPU 2:

% virsh vcpupin rhel7 1 2

You can also obtain the current vcpu pinning configuration with the virsh command. For example:

% virsh vcpupin rhel7

8.3.7. T uning Domain Process CPU Pinning with virsh

Important

These are example commands only. You will need to substitute values according to your
environment.

The emulatorpin option applies CPU affinity settings to threads that are associated with each
domain process. For complete pinning, you must use both virsh vcpupin (as shown previously)
and virsh emulatorpin for each guest. For example:

% virsh emulatorpin rhel7 3-4

Chapt er 8 . NUMA

4 1

8.3.8. T uning Domain Process Memory Policy with virsh

Domain process memory can be dynamically tuned. Refer to the following example command:

% virsh numatune rhel7 --nodeset 0-10

More examples of these commands can be found in the virsh man page.

8.3.9. Guest NUMA T opology

Guest NUMA topology can be specified using the <numa> tag inside the <cpu> tag in the guest
virtual machine's XML. Refer to the following example, and replace values accordingly:

<cpu>
 ...
 <numa>
 <cell cpus='0-3' memory='512000'/>
 <cell cpus='4-7' memory='512000'/>
 </numa>
 ...
</cpu>

Each <cell> element specifies a NUMA cell or a NUMA node. cpus specifies the CPU or range of
CPUs that are part of the node, and memory specifies the node memory in kibibytes (blocks of 1024
bytes). Each cell or node is assigned a cellid or nodeid in increasing order starting from 0.

8.3.10. Assigning Host Huge Pages to Mult iple Guest NUMA Nodes

In Red Hat Enterprise Linux 7.1, huge pages from the host can be allocated to multiple guest NUMA
nodes. This can optimize memory performance, as guest NUMA nodes can be moved to host NUMA
nodes as required, while the guest can continue to use the huge pages allocated by the host.

After configuring the guest NUMA node topology (see Section 8.3.9, “Guest NUMA Topology” for
details), specify the huge page size and the guest NUMA nodeset in the <memoryBacking> element
in the guest XML. The page size and unit refer to the size of the huge pages from the host. The
nodeset specifies the guest NUMA node (or several nodes) to which huge pages will be assigned.

In the following example, guest NUMA nodes 0-5 (except for NUMA node 4) will use 1GB huge pages,
and guest NUMA node 4 will use 2MB huge pages, regardless of guest NUMA node placement on the
host. To use 1GB huge pages in guests, the host must be booted first with 1GB huge pages enabled;
see Section 7.2.3, “Huge Pages and Transparent Huge Pages (THP)” for instructions on enabling
1GB huge pages.

<memoryBacking>
 <hugepages/>
 <page size="1" unit="G" nodeset="0-3,5"/>
 <page size="2" unit="M" nodeset="4"/>
 </hugepages>
</memoryBacking>

Virt ualizat ion T uning and Opt imizat ion Guide

4 2

This allows for greater control over huge pages in a situation where it is useful to merge some guest
NUMA nodes onto a single host NUMA node, but continue to use different huge page sizes. For
example, even if guest NUMA nodes 4 and 5 are moved to the host's NUMA node 1, both continue to
use different sizes of huge pages.

Note

When using strict memory mode, the guest will fail to start when there are not enough huge
pages available on the NUMA node. See Section 8.3.3, “Domain Processes” for a
configuration example of the strict memory mode option within the <numatune> tag.

8.3.11. NUMA Node Locality for PCI Devices

When starting a new virtual machine, it is important to know both the host NUMA topology and the
PCI device affiliation to NUMA nodes, so that when PCI passthrough is requested, the guest is pinned
onto the correct NUMA nodes for optimal memory performance.

For example, if a guest is pinned to NUMA nodes 0-1, but one of its PCI devices is affiliated with node
2, data transfer between nodes will take some time.

In Red Hat Enterprise Linux 7.1, libvirt reports the NUMA node locality for PCI devices in the guest
XML, enabling management applications to make better performance decisions.

This information is visible in the sysfs files in /sys/devices/pci*/*/numa_node. One way to
verify these settings is to use the lstopo tool to report sysfs data:

lstopo-no-graphics
Machine (126GB)
 NUMANode L#0 (P#0 63GB)
 Socket L#0 + L3 L#0 (20MB)
 L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU
L#0 (P#0)
 L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1
(P#2)
 L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU
L#2 (P#4)
 L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU
L#3 (P#6)
 L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4 + PU
L#4 (P#8)
 L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5 + PU
L#5 (P#10)
 L2 L#6 (256KB) + L1d L#6 (32KB) + L1i L#6 (32KB) + Core L#6 + PU
L#6 (P#12)
 L2 L#7 (256KB) + L1d L#7 (32KB) + L1i L#7 (32KB) + Core L#7 + PU L#7
(P#14)
 HostBridge L#0
 PCIBridge
 PCI 8086:1521
 Net L#0 "em1"
 PCI 8086:1521
 Net L#1 "em2"
 PCI 8086:1521
 Net L#2 "em3"

Chapt er 8 . NUMA

4 3

 PCI 8086:1521
 Net L#3 "em4"
 PCIBridge
 PCI 1000:005b
 Block L#4 "sda"
 Block L#5 "sdb"
 Block L#6 "sdc"
 Block L#7 "sdd"
 PCIBridge
 PCI 8086:154d
 Net L#8 "p3p1"
 PCI 8086:154d
 Net L#9 "p3p2"
 PCIBridge
 PCIBridge
 PCIBridge
 PCIBridge
 PCI 102b:0534
 GPU L#10 "card0"
 GPU L#11 "controlD64"
 PCI 8086:1d02
 NUMANode L#1 (P#1 63GB)
 Socket L#1 + L3 L#1 (20MB)
 L2 L#8 (256KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8 + PU
L#8 (P#1)
 L2 L#9 (256KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9 + PU
L#9 (P#3)
 L2 L#10 (256KB) + L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10 + PU
L#10 (P#5)
 L2 L#11 (256KB) + L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11 + PU
L#11 (P#7)
 L2 L#12 (256KB) + L1d L#12 (32KB) + L1i L#12 (32KB) + Core L#12 + PU
L#12 (P#9)
 L2 L#13 (256KB) + L1d L#13 (32KB) + L1i L#13 (32KB) + Core L#13 + PU
L#13 (P#11)
 L2 L#14 (256KB) + L1d L#14 (32KB) + L1i L#14 (32KB) + Core L#14 + PU
L#14 (P#13)
 L2 L#15 (256KB) + L1d L#15 (32KB) + L1i L#15 (32KB) + Core L#15 + PU
L#15 (P#15)
 HostBridge L#8
 PCIBridge
 PCI 1924:0903
 Net L#12 "p1p1"
 PCI 1924:0903
 Net L#13 "p1p2"
 PCIBridge
 PCI 15b3:1003
 Net L#14 "ib0"
 Net L#15 "ib1"
 OpenFabrics L#16 "mlx4_0"

This output shows:

NICs em* and disks sd* are connected to NUMA node 0 and cores 0,2,4,6,8,10,12,14.

Virt ualizat ion T uning and Opt imizat ion Guide

4 4

NICs p1* and ib* are connected to NUMA node 1 and cores 1,3,5,7,9,11,13,15.

8.4 . NUMA-Aware Kernel SamePage Merging (KSM)

Kernel SamePage Merging (KSM) allows virtual machines to share identical memory pages. KSM can
detect that a system is using NUMA memory and control merging pages across different NUMA nodes.

Use the sysfs /sys/kernel/mm/ksm/merge_across_nodes parameter to control merging of
pages across different NUMA nodes. By default, pages from all nodes can be merged together. When
this parameter is set to zero, only pages from the same node are merged.

Generally, unless you are oversubscribing the system memory, you will get better runtime
performance by disabling KSM sharing.

Important

When KSM merges across nodes on a NUMA host with multiple guest virtual machines, guests
and CPUs from more distant nodes can suffer a significant increase of access latency to the
merged KSM page.

To instruct the hypervisor to disable share pages for a guest, add the following to the guest's XML:

<memoryBacking>
 <nosharepages/>
</memoryBacking>

For more information about tuning memory settings with the <memoryBacking> element, see
Section 7.2.2, “Memory Tuning with virsh” .

Chapt er 8 . NUMA

4 5

Appendix A. Revision History

Revision 1.0-22 Mon Dec 21 2015 Laura Novich
Republished Guide
Fixed issues in guide(BZ#1286552)

Revision 1.0-19 Thu Oct 08 2015 Jiri Herrmann
Cleaned up Revision History

Virt ualizat ion T uning and Opt imizat ion Guide

4 6

	Table of Contents
	Chapter 1. Introduction
	1.1. KVM Overview
	1.2. KVM Performance Architecture Overview
	1.3. Virtualization Performance Features and Improvements

	Chapter 2. Performance Monitoring Tools
	2.1. perf kvm
	2.2. Virtual Performance Monitoring Unit (vPMU)

	Chapter 3. Optimizing virtualization performance with virt-manager
	3.1. Operating System Details and Devices
	3.1.1. Specifying Guest Virtual Machine Details
	3.1.2. Remove Unused Devices

	3.2. CPU Performance Options
	3.2.1. Option: Available CPUs
	3.2.2. Option: CPU Configuration
	3.2.3. Option: CPU Topology
	3.2.4. Option: CPU Pinning

	3.3. Virtual Disk Performance Options

	Chapter 4. tuned and tuned-adm
	Chapter 5. Networking
	5.1. Networking Tuning Tips
	5.2. Virtio and vhost_net
	5.3. Device Assignment and SR-IOV
	5.4. Network Tuning Techniques
	5.4.1. Bridge Zero Copy Transmit
	5.4.2. Multi-Queue virtio-net
	5.4.2.1. Configuring Multi-Queue virtio-net

	Chapter 6. Block I/O
	6.1. Block I/O Tuning
	6.2. Caching
	6.3. I/O Mode
	6.4. Block I/O Tuning Techniques
	6.4.1. Disk I/O Throttling
	6.4.2. Multi-Queue virtio-scsi
	6.4.2.1. Configuring Multi-Queue virtio-scsi

	Chapter 7. Memory
	7.1. Memory Tuning Tips
	7.2. Memory Tuning on Virtual Machines
	7.2.1. Memory Monitoring Tools
	7.2.2. Memory Tuning with virsh
	7.2.3. Huge Pages and Transparent Huge Pages (THP)
	7.2.3.1. Configuring Transparent Huge Pages
	7.2.3.2. Configuring Static Huge Pages
	7.2.3.3. Enabling 1 GB huge pages for guests at boot or runtime

	7.3. Kernel Same-page Merging (KSM)
	7.3.1. The KSM service
	7.3.2. The KSM tuning service
	7.3.3. KSM variables and monitoring
	7.3.4. Deactivating KSM

	Chapter 8. NUMA
	8.1. NUMA Memory Allocation Policies
	8.2. Automatic NUMA Balancing
	8.2.1. Configuring Automatic NUMA Balancing

	8.3. libvirt NUMA Tuning
	8.3.1. Monitoring memory per host NUMA node
	8.3.2. NUMA vCPU Pinning
	8.3.3. Domain Processes
	8.3.4. Domain vCPU Threads
	8.3.5. Using emulatorpin
	8.3.6. Tuning vcpu CPU Pinning with virsh
	8.3.7. Tuning Domain Process CPU Pinning with virsh
	8.3.8. Tuning Domain Process Memory Policy with virsh
	8.3.9. Guest NUMA Topology
	8.3.10. Assigning Host Huge Pages to Multiple Guest NUMA Nodes
	8.3.11. NUMA Node Locality for PCI Devices

	8.4. NUMA-Aware Kernel SamePage Merging (KSM)

	Appendix A. Revision History

