

2

Introducing a New Linux

Management API: OpenLMI

Russell Doty & Stephen Gallagher
Red Hat
June 13, 2013

Linux System Management Today

Big Bag
'O

Scripts
& ssh

Powered byIs this you?

Storage
●Done with local commands:

●parted
●pvcreate, lvcreate, vgcreate
●mdraid
●vgextend, resize2fs

Networking
●Edited /etc/sysconfig/networking
scripts

Notice anything?
●Both methods require a local
shell

●The methods had an entirely
unrelated user experience

The list goes on...
●System services
● Installing software and patches
●Firewall
●Performance tuning
● ...

Training Costs
●There is a completely isolated
path to learning administration
of either approach

●Learning either task does not
help you learn the other

Research
●“The difficulty of managing
these components is directly
impacting our customers' ability
to consume more Linux” -- 2011
Red Hat Customer Survey
Results (paraphrased)

Big Problem.

What are you going
to do about it?

Demo
●Create a 3-disk RAID array on a
remote system

●Demo script:
http://tinyurl.com/openlmi-demo

Identify “primordial” drives
drives = ns.wql("SELECT * FROM CIM_StorageExtent "
 "WHERE Primordial=True")

Find partitions on the drives
dependent =
 extent.associators(AssocClass="CIM_BasedOn",
 ResultRole="Dependent")

Check for filesystem
filesystems = extent.associators(
 AssocClass="LMI_ResidesOnExtent",
 ResultClass="LMI_LocalFileSystem")

Check for swap partition
swaps = extent.associators(
 AssocClass="LMI_ResidesOnExtent",
 ResultClass="LMI_DataFormat")

Prep the first three drives
for drive in avail_drives:
 physical_device =
 ns.LMI_StorageExtent.first_instance(
 Key="Name", Value=drive)

 # Create a new GPT partition table on this disk
 job = LMISyncJob(ns,
 partitioning_service.SetPartitionStyle(
 Extent=physical_device,
 PartitionStyle=gpt_caps))
 job.process()

 # Create a single partition covering the whole
 # disk
 job = LMISyncJob(ns,
 partitioning_service.
 LMI_CreateOrModifyPartition(
 extent=physical_device))
 job.process()

Create the RAID set
job = LMISyncJob(ns,
 storage_service.CreateOrModifyMDRAID(
 ElementName = "myRAID",
 InExtents = [vdb1.path, vdc1.path,
 vdd1.path],
 Level=5))
job.process()

Create the EXT4 filesystem
raid = ns.LMI_StorageExtent.first_instance(
 Key="Name",
 Value="/dev/md/myRAID")
job = LMISyncJob(ns,
 filesystem_service.LMI_CreateFileSystem(
 FileSystemType = 32769,
 InExtents= [raid.path]))
job.process()

● Low level functions to remotely configure and

manage bare metal production servers (and
virtual machine guests)

● Monitoring infrastructure
● Standards based
● Open and extensible
● Open, upstream project: www.openlmi.org
● Delivered as part of RHEL; maintained and

supported by Red Hat in RHEL

A platform for manageability

OpenLMI System Manageability Infrastructure

● Local agents installed on
 managed systems
● Agents and Object Broker
 supplied as part of OS

● Support for future
versions of RHEL

● subsets for current
versions of RHEL

● Remote API
● Can also be used locally

● Agents and tools can be
 developed by Red Hat,
 3rd parties, customers

Agents ● Agents are Functional Modules
● Get/Put attributes
● Methods & relations

● Standard Interfaces
● Introspection
● Agents do all the work
● Toolchain for developing Agents

● UML schema compile to produce
skeleton

● Agents can be written in C/C++
or Python

● Agents can be call/response or
asynchronous event driven

OpenLMI
Interfaces

● LMI Shell
● Enhanced CLI & scripting

environment
● Admin Friendly

● Python API
● Use from Python modules
● Good interface for OpenLMI

Apps
● C/C++ API

● Powerful interface for
writing Apps or integrating
with existing Apps

● Java
● Write Java Apps
● Easy interface with JBoss

● CLI
Can be used directly or from

shell script

OpenLMI in Fedora 19
● Implementation:

● DMTF/CIM technology stack
● Https transport (no general

Web server)

● Included Agents:
● Storage
● Network
● System Services
● Power Management
● Local User Management (basic)
● Software Management
● System Monitoring (basic)
● System Information &

Configuration

What can you do with OpenLMI?

● Storage

● Networks

● Users

● Software

● Power

● System Services

● System configuration
information

● Active Directory

● Firewall

● JBoss JON

● SCAP

● Monitoring & Alerts

More to come!

Benefits

● More Productive Sysadmins
● Familiar environment
● Standard API
● Scripting friendly environment
● Manage remote systems without logging in locally

● Shorter learning curve for Linux System Administration
● Common framework across disparate subsystems

● Foundation for Automation

● Can be used by management platforms

Your Opportunity

● Give us requirements and feedback

● Evaluate OpenLMI in Fedora 19

● Get involved at OpenLMI.org
● Testing
● Use cases
● Scripts
● Agents
● Tools

Key Information

● Russell Doty: rdoty@redhat.com

● Stephen Gallagher: sgallagh@redhat.com

● www.openlmi.org

● lists.fedorahosted.org/mailman/listinfo/openlmi-devel

● #openlmi on freenode

http://www.openlmi.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

