


2

Introducing a New Linux 

Management API: OpenLMI

Russell Doty & Stephen Gallagher
Red Hat
June 13, 2013 



Linux System Management Today

Big Bag
'O

Scripts
& ssh

Powered byIs this you?



Storage
●Done with local commands:

●parted
●pvcreate, lvcreate, vgcreate
●mdraid
●vgextend, resize2fs



Networking
●Edited /etc/sysconfig/networking 
scripts



Notice anything?
●Both methods require a local 
shell

●The methods had an entirely 
unrelated user experience



The list goes on...
●System services
● Installing software and patches
●Firewall
●Performance tuning
● ...



Training Costs
●There is a completely isolated 
path to learning administration 
of either approach

●Learning either task does not 
help you learn the other



Research
●“The difficulty of managing 
these components is directly 
impacting our customers' ability 
to consume more Linux” -- 2011 
Red Hat Customer Survey 
Results (paraphrased)



Big Problem.

What are you going 
to do about it?





Demo
●Create a 3-disk RAID array on a 
remote system

●Demo script:
http://tinyurl.com/openlmi-demo





# Identify “primordial” drives
drives = ns.wql("SELECT * FROM CIM_StorageExtent "
                "WHERE Primordial=True")

# Find partitions on the drives
dependent =
  extent.associators(AssocClass="CIM_BasedOn",
                     ResultRole="Dependent")

# Check for filesystem
filesystems = extent.associators(
                AssocClass="LMI_ResidesOnExtent",
                ResultClass="LMI_LocalFileSystem")

# Check for swap partition
swaps = extent.associators(
          AssocClass="LMI_ResidesOnExtent",
          ResultClass="LMI_DataFormat")



# Prep the first three drives
for drive in avail_drives:
  physical_device =
    ns.LMI_StorageExtent.first_instance(
      Key="Name", Value=drive)

  # Create a new GPT partition table on this disk
  job = LMISyncJob(ns,
          partitioning_service.SetPartitionStyle(
            Extent=physical_device,
            PartitionStyle=gpt_caps))
  job.process()

  # Create a single partition covering the whole
  # disk
  job = LMISyncJob(ns,
                   partitioning_service.
                     LMI_CreateOrModifyPartition(
                       extent=physical_device))
  job.process()



# Create the RAID set
job = LMISyncJob(ns,
        storage_service.CreateOrModifyMDRAID(
          ElementName = "myRAID",
          InExtents = [vdb1.path, vdc1.path,
                       vdd1.path],
          Level=5))
job.process()

# Create the EXT4 filesystem
raid = ns.LMI_StorageExtent.first_instance(
         Key="Name",
         Value="/dev/md/myRAID")
job = LMISyncJob(ns,
       filesystem_service.LMI_CreateFileSystem(
          FileSystemType = 32769,
          InExtents= [raid.path]))
job.process()



                     
● Low level functions to remotely configure and 

manage bare metal production servers (and 
virtual machine guests)

● Monitoring infrastructure
● Standards based
● Open and extensible
● Open, upstream project: www.openlmi.org
● Delivered as part of RHEL; maintained and 

supported by Red Hat in RHEL

A platform for manageability



OpenLMI System Manageability Infrastructure

● Local agents installed on
  managed systems
● Agents and Object Broker
  supplied as part of OS

● Support for future 
versions of RHEL 

● subsets for current 
versions of RHEL

● Remote API
● Can also be used locally

● Agents and tools can be
  developed  by Red Hat,
  3rd parties, customers



Agents ● Agents are Functional Modules
● Get/Put attributes
● Methods & relations

● Standard Interfaces
● Introspection
● Agents do all the work
● Toolchain for developing Agents

● UML schema compile to produce 
skeleton

● Agents can be written in C/C++ 
or Python 

● Agents can be call/response or 
asynchronous event driven



OpenLMI
Interfaces

● LMI Shell
● Enhanced CLI & scripting 

environment
● Admin Friendly

● Python API
● Use from Python modules
● Good interface for OpenLMI 

Apps
● C/C++ API

● Powerful interface for 
writing Apps or integrating 
with existing Apps

● Java
● Write Java Apps
● Easy interface with JBoss

● CLI
Can be used directly or from 

shell script



OpenLMI in Fedora 19
● Implementation:

● DMTF/CIM technology stack
● Https transport (no general 

Web server)

● Included Agents:
● Storage
● Network
● System Services
● Power Management
● Local User Management (basic)
● Software Management
● System Monitoring (basic)
● System Information & 

Configuration



What can you do with OpenLMI?

● Storage

● Networks

● Users

● Software

● Power

● System Services

● System configuration 
information

● Active Directory

● Firewall

● JBoss JON

● SCAP

● Monitoring & Alerts

More to come!



Benefits

● More Productive Sysadmins
● Familiar environment
● Standard API
● Scripting friendly environment
● Manage remote systems without logging in locally

● Shorter learning curve for Linux System Administration
● Common framework across disparate subsystems

● Foundation for Automation

● Can be used by management platforms



Your Opportunity

● Give us requirements and feedback

● Evaluate OpenLMI in Fedora 19

● Get involved at OpenLMI.org
● Testing
● Use cases
● Scripts
● Agents
● Tools



Key Information

● Russell Doty: rdoty@redhat.com

● Stephen Gallagher: sgallagh@redhat.com

● www.openlmi.org

● lists.fedorahosted.org/mailman/listinfo/openlmi-devel

● #openlmi on freenode

http://www.openlmi.org/
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