RED HAT

SUMMIT

LAB GUIDE:

OPENSHIFT FOR OPERATORS
L100070

HANDS-ON
LABS

PRESENTERS:

N. Harrison Ripps, Manager, Software Engineering
Erik Jacobs, Technical Marketing Manager

Jim Minter, Principal Software Engineer

This series of exercises is designed to reflect some of the most common
tasks that an operator would need to perform in order to configure and
manage an OpenShift cluster. Each exercise should take about 15 minutes.
This will be an instructor-led lab, so feel free to follow along or fly solo and
take the exercises on at your own pace.

Red Hat Summit 2017 | Boston, MA | May 2-4, 2017
Copyright ©2017 Red Hat, Inc.

L100070 - OPENSHIFT FOR OPERATORS

Exercise 1: Meet the Lab Environment

Your lab environment consists of four hosts:

ose3-ldap.example.com - LDAP server

ose3-master.example.com - OpenShift master / infra node host and NFS
server

ose3-nodel.example.com - OpenShift node host
ose3-node2.example.com - OpenShift node host

You can SSH into each host from your lab machine using these credentials:

e username: root
e password: r3dh4tl!

But it's more convenient for us to set up a passphraseless SSH key, so let's walk
through that now:

1. From the menu bar on the lab system desktop, select:
Applications => Utilities => Terminal

2. Inthe terminal, generate a new, passwordless SSH key:
a. ssh-keygen
b. When prompted, accept all defaults and do not provide a passphrase.
Just hit [ENTER].

3. Now copy that key to each of the cluster hosts (accepting the new host key
for each host):
d. ssh-copy-id root@ose3-master.example.com
b. ssh-copy-id root@ose3-nodel.example.com
C. ssh-copy-id root@ose3-nodeZ2.example.com

4. You should now be able to log in to each host without a password. Type
exit once connected:
d. ssh rootlose3-master.example.com
b. ssh rootRose3-nodel.example.com
C. ssh root@ose3-node2.example.com

L100070 - OPENSHIFT FOR OPERATORS

Note that you can open multiple terminals. You may want to open one to use for
each host, but that's up to you.

You should also be able to view the OpenShift web console in the web browser, but
first you will need to make a security exception for the OpenShift master’s

self-signed certificate:

1. From the menu bar on the lab system desktop, select:
Applications => Internet => Firefox Web Browser

2. Inthe browser search bar, enter: https://ose3-master.example.com:8443/

3. You will be warned about the OpenShift server’s self-signed certificate. Below
the warning, click the button titled “Advanced”.

4. In the section that appears, click the button titled “Add Exception...”

5. An “Add Security Exception” window will appear. In the bottom left corner of
that window, click the “Confirm Security Exception” button.

6. You should now see the login page for the OpenShift web console.

You're all set with setting up the environment! Now, here's a quick rundown of
concepts that we'll be working with:

Pods:
When Kubernetes launches a container or a set of connected containers on a host
in the cluster, this assembly is called a Pod.

Projects:

Individual workspaces in the cluster are called Projects. Users will typically have
access to one or more projects and may also have the ability to create new ones. All
of the pods associated with a given project have access to each other, but
communication from one project to another has to be specifically granted by users
with the right permissions.

https://ose3-master.example.com:8443/

L100070 - OPENSHIFT FOR OPERATORS

By default, the cluster will have a number of automatically deployed projects:

e default - this is a catch-all project that is visible to users with cluster
administrative rights. In our lab environment, this project where we are
running the internal registry and router.

e openshift - this project contains all of the container images for use in any
other projects in the cluster. By default, its assets are readably by every
cluster user.

e kube-system, logging, management-infra, openshift-infra - depending on how
you configure your deployment, these projects may be used for various
cluster subsystems. In our lab environment, they are unused.

L100070 - OPENSHIFT FOR OPERATORS

Exercise 2:
Mapping and Syncing LDAP Groups to OpenShift

The LDAP server has users organized into the following groups:

Group Description
ocp-users All users with access to the OpenShift Container Platform cluster
portalapp Developer users involved with the Portal App project
paymentapp Developer users involved with the Payment App project
ocp-production Admin / Ops team with privileges to modify production projects
ocp-platform Operators with full cluster administration privileges

Your first job is to configure OpenShift to associate certain permissions in the

cluster with these user groups. In order to map users into these groups, we'll use
the groups-sync function of the OpenShift command line utility.

ssh root@Rose3-master.example.com (if you didn't set up passwordless
SSH, the password is r3dh4t1!)

cd Exercise 02

cat groupsync.yaml
a. This is the file that describes the relationship between the LDAP
groups (above) and the groups we'd like to create in the OpenShift
cluster.
b. Note in particular the groupsQuery and usersQuery blocks, which
will be specific to each LDAP implementation.

cp groupsync.yaml /etc/origin/master

oadm groups sync
--sync-config=/etc/origin/master/groupsync.yaml
a. Thisis a test run, it prints to the terminal the group objects that the
command would create in the cluster.

L100070 - OPENSHIFT FOR OPERATORS

b. You should see five group definitions, as listed above.

6. oadm groups sync
--sync-config=/etc/origin/master/groupsync.yaml --confirm
a. Adding the —--confirm flag to the previous command causes the
system to apply the changes.

7. oc get groups
i. Run this to confirm the mapping by checking the groups that
have been created in the cluster.
b. You should see five groups, each with three or more users:

i. ocp-platform: david, admin1, admin2

ii. ocp-production: karla, prod1, prod2

iii. ocp-users: the entire list of users from the other groups

iv. paymentapp: marina, payment1, payment2

v. portalapp: andrew, portal1, portal2

With this mapping in place, you can now assign specific OpenShift privileges to
match these groups to their responsibilities in the cluster. Let's start by associating
one of LDAP groups with cluster-wide administrative privileges.

8. oadm policy add-cluster-role-to-group cluster-admin
ocp-platform

a. This applies the ‘cluster-admin’ role to the ‘ocp-platform’ group.
Anyone in this group now has the same capabilities as the default
‘system:admin’ account.

b. Be careful here! This mapping is convenient for our lab, but the
‘cluster-admin’ role should be tightly controlled in a real OpenShift
environment.

9. oc login -u adminl -p r3dh4tl!
a. The admin1 user belongs to the ose-platform group
b. On login you should see a list of projects that are visible to this user

NOTE: Our lab doesn't cover the configuration of the LDAP server for authentication
in the first place. You can see how we have connected our OpenShift system to the
LDAP server by looking at /etc/origin/master/master-config.yaml under
the cauthConfig section.

L100070 - OPENSHIFT FOR OPERATORS

There are various pre-defined roles with certain permissions that come with
OpenShift. You can see more about roles in the OpenShift documentation.

Now we're ready to set up the development, test and production environments for
our app components and our users.

Here's the overall mapping plan:

Project Group with Access

Portal App Development portalapp (marina, payment1,
payment2)

Portal App Test portalapp (marina, paymentf,
payment2)

Portal App Production ocp-production (karla, prod1, prod2)

Payment App Development paymentapp (andrew, portal1, portal2)

Payment App Test paymentapp (andrew, portal1, portal2)

Payment App Production ocp-production (karla, prod1, prod2)

And here’s what we need to do to set this up:

1. cat create projects.sh
a. This script calls cadm new-project several times to set up projects
that we'll be using.
b. Access rights can be set on a project-by-project basis.

2. ./create projects.sh
a. You should see several lines of confirmation like “Created project
<project_name>"

3. cat add group roles.sh
a. This script provides the cadm policy commands that will add ‘admin’

privileges to the right user groups.

4. ./add group roles.sh

https://docs.openshift.com/container-platform/latest/admin_solutions/user_role_mgmt.html#control-user-roles

L100070 - OPENSHIFT FOR OPERATORS

a. You should see output like “Mapping group <group> to <projects>"

5. oc login -u paymentl -p r3dh4tl!
a. You should see that the payment1 user has access to two projects:
paymentapp-dev and paymentapp-test

L100070 - OPENSHIFT FOR OPERATORS

Exercise 3: Setting up Storage Classes

Storage Classes are a way of setting up persistent storage that offers more
flexibility and control than the simple PV / PVC options that have always been a part
of the OpenShift platform. Support for Storage Classes was introduced with
OpenShift 3.4.

Dynamic Provisioning and Lab Limitations

One of the primary features of Storage Classes is that they can be used to provide
storage that is dynamically provisioned. This is explained in detail in our docs, and
dynamic provisioning is supported for:

OpenStack Cinder
AWS EBS

GCE PersistentDisk
GlusterFS

Ceph RBD

Unfortunately, we can't demonstrate dynamic provisioning against these storage
platforms in our lab environment. Instead we'll walk through a workflow that
exposes NFS-backed storage as Storage Classes, and highlight the differences
between our configuration and a fully dynamic configuration.

Storage Scenario
We've defined two NFS shares to simulate two different types of storage:

e “nfs-fast” will be our placeholder for a high I/0 speed storage option
(SSD-based, for instance)

e “nfs-slow” will be our placeholder for a slower I/0 speed storage option (like
rotational-media old school hard drive storage)

We are going to deploy two applications into a new namespace. We will provision
the fast storage to one of the apps and slow storage to the other.

So, let's get down to business:

1. ssh rootRose3-master.example.com

https://docs.openshift.com/container-platform/latest/install_config/persistent_storage/dynamically_provisioning_pvs.html#install-config-persistent-storage-dynamically-provisioning-pvs

L100070 - OPENSHIFT FOR OPERATORS

a. You can skip this if you are already connected to the master host.
2. cd ~/Exercise 03

3. showmount -e
a. This command will display all of the NFS shares that are available on
ose3-master.
b. You should see two shares in the list with the names
“/exports/nfs_fast” and “/exports/nfs_slow”. For our purposes, we're
using these to represent our different storage classes.

4, cat fast-nfs-storageclass.yaml
a. Thisfile is pretty minimal. Note that the ‘provisioner:’ key is set to
‘no-provisioning’, and the ‘parameters:’ list is empty.

The lack of provisioning capabilities is one of the main ways that an NFS-backed
storage class differs from other storage classes. For comparison, here is a Storage
Class definition for a GlusterFS-backed store:

kind: StorageClass
apiVersion: storage.k8s.io/vlbetal
metadata:

name: gluster-fast

provisioner: kubernetes.io/glusterfs

parameters:
resturl: "http://127.0.0.1:8081"
restuser: "admin"

secretName: "heketi-secret"
secretNamespace: "default"
gidMin: "40000"
gidMax: "50000"

The ‘provisioner:” here specifies the GlusterFS provisioner, and the ‘parameters:’
map provides all of the info necessary for OpenShift to communicate with the
Gluster service. With these in place, any requests against this “gluster-fast” Storage
Class can cause new storage to be automatically provisioned.

Getting back to our exercise, let's walk through the process of linking a Storage
Class to a Persistent Volume:

10

L100070 - OPENSHIFT FOR OPERATORS

1. oc login -u adminl -p r3dh4tl!
2. oc create -f fast-nfs-storageclass.yaml

3. cat fast-nfs-pv.yaml
a. Notice the ‘annotations:” map. The
‘volume.beta.kubernetes.io/storage-class:’ key specifies ‘nfs-fast’, which
is the name that we assigned to our fast NFS Storage Class.

4, oc create -f fast-nfs-pv.yaml

5. oc describe pv/pv-nfs-fast
a. The StorageClass should match ‘nfs-fast’, and the ‘Source:” map should
reflect the details of the NFS mount on ose3-master.example.com

6. Repeat this for the ‘nfs-slow’ Storage Class:
a. oc create -f slow-nfs-storageclass.yaml
b. oc create -f slow-nfs-pv.yaml
C. oc describe pv/pv-nfs-slow

Now that these Persistent Volumes have been defined, let's create a new project
and see how developers can map them into their app containers:

1. cat deploy storage project.sh
a. This script creates a new project, launches an application in the
project, and creates some PersistentVolumeClaims against our
StorageClass-back PersistentVolumes.

2. ./deploy storage project.sh

3. Jump to the web console - in a web browser navigate to
https://ose3-master.example.com:8443/

4. Login using username adminl and password r3dh4t1!

5. You can see all of the projects visible to the admin1 user. Find and click on
“Storage Classes”

11

https://ose3-master.example.com:8443/

L100070 - OPENSHIFT FOR OPERATORS

6. You should see a summary view which shows Deployment Config ‘fast-app’ in
which there is a running container based on an image called
‘nhripps/sleeper”

Openshift Web Console - Mozilla Firefox []

| [EICPeREREwEB o +

@' @ £, https://ose3-master.example.com:8443/console/project/storage-classes/overview c ‘ v B

#1

= Image:

nhripps/sleeper

pod

Now that we've set everything up, we can walk through the user process for linking
an app with a persistent volume:

1. In the left-hand navigation panel, click the Storage tab. Here you should see
some PersistentVolumeClaims that were created by our deploy script. One is
bound to the ‘fast’ PersistentVolume, and the other to the ‘slow’
PersistentVolume.

2. Now use the left-hand navigation panel to go to: Applications =>

Deployments. You should see the ‘fast-app’ Deployment. Click into ‘fast-app’
to see a summary of the Deployment configuration.

12

L100070 - OPENSHIFT FOR OPERATORS

3. In the Template section of this Deployment summary page, find the Volumes
heading and the ‘Add storage’ link below it. Click this link to move to the ‘Add
Storage’ view.

4. In the ‘Add Storage’ view:

a. You should see that you can choose which PersistentVolumeClaim to

use for this deployment. Let's use ‘pvc-nfs-fast'.

b. Under the 'Volume’ heading, set the value of ‘Mount Path’ to
/mountpoint. This is an existing directory path inside of the container
that will become a mount point for our volume.

Leave the 'Volume Name' field blank
d. Press the ‘Add’ button to apply this change.

o

5. You should be looking at the Deployment summary page again. Under the
‘Volumes' heading, you should see an entry for the volume that you just
added.

To check our work and confirm that we were mounted through to the right storage
class, we can put a file in the mounted volume and see where it ended up on the
NFS back end.

1. Using the left-hand navigation panel, now go to Applications => Pods. You
should see at least one pod with a name like ‘fast-app-2-..... . Click on this
pod to switch into the Pod summary view.

2. Click on the terminal tab. You will be connected to the running pod and
presented with a shell.

3. Inthe shell, type:
a. echo fast >/mountpoint/fast.txt

4. Now leave the web browser and go back to the terminal where you have
been working through this exercise.

5. From the terminal, type:
a. cat /export/nfs fast/fast.txt
b. You should see that ‘fast.txt’ was created and contains the string that
you echoed into it from the pod environment.

13

L100070 - OPENSHIFT FOR OPERATORS

StorageClasses become really powerful as the basis for auto-provisioning data
stores. But, even in this simple example you can see that using named storage
classes gives you.

14

Exercise 4: Quotas and Limits

L100070 - OPENSHIFT FOR OPERATORS

Quotas describe how much of a resource is available across an entire project (or
group of projects), while Limits describe the minimums and maximums for

individual pods and containers within a project. Here is a rundown of the resources
that can be controlled using these concepts:

Quotas

Limits

e cpu (how is it measured?)

o total requests

o total cpu
e memory

o total requests

o total memory
e storage

o #requests

o total storage
e cluster object totals:

o pods
replicationcontrollers
resourcequotas
services
secrets
configmaps

O O O O O O O

imagestreams

persistentvolumeclaims

containers

o cpu (min/max/ratio)

o memory (min/max/ratio)
pods

o cpu (min/max/ratio)

o memory (min/max/ratio)
images

o storage (max)
image streams

o tags (max)

o images (max)
persistent volume claims

o storage (min/max)

If you want to set default quotas on limits for every new project on the cluster, you
can modify the template for new projects following the instructions in our
documentation. For this exercise, we're going to focus on applying them to a few

projects that we created in Exercise 2.

In order to apply these quotas and limits, we'll need to create quota and limit
definition files, and then apply them to relevant projects.

1. oc login -u adminl -p r3dh4tl!

2. cd ~/Exercise 04

15

https://docs.openshift.com/container-platform/3.4/admin_guide/managing_projects.html#modifying-the-template-for-new-projects
https://docs.openshift.com/container-platform/3.4/admin_guide/managing_projects.html#modifying-the-template-for-new-projects
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-ram-container/#understanding-cpu-and-ram-units

L100070 - OPENSHIFT FOR OPERATORS

3. cat resource-quotas—-non-prod.yaml
a. We're going to set some hard limits on the non-production projects.
b. In areal system these limits would probably be too low to be useful.

4. cat apply non prod gquotas.sh
a. This script applies the quota definition to the four non-production
projects.

5. ./apply non prod quotas.sh

6. cat resource-limits-non-prod.yaml
a. These limits conform to the rules established in our quota definition.

7. cat apply non prod limits.sh
a. Similar to the other ‘apply’ script, this runs through and creates limits
for each non-production project.

8. ./apply non prod limits.sh

9. oc get resourcequota/quota -o yaml -n portalapp-dev
a. This lists out the quota that we applied against one of the
non-production projects

10.0c get limitrange/limits -o yaml -n portalapp-dev
a. This lists out the limitrange as applied to the same project.

11.cat deploy apps.sh
a. These instructions will deploy a basic “Hello World” app to our
non-production projects

12../deploy apps.sh

That's the admin work. Now let's take a look at one of these apps in the web
browser.

1. Navigate to
https://ose3-master.example.com:8443/console/project/paymentapp-dev/qu
ota

16

https://ose3-master.example.com:8443/console/project/paymentapp-dev/quota
https://ose3-master.example.com:8443/console/project/paymentapp-dev/quota

L100070 - OPENSHIFT FOR OPERATORS

a. This takes you to the Quota page for the Payment App Development
project.

. Now jump to Overview tab (left-hand navigation), and use the up-arrow
button next to the Pods counter to raise the count to 4.

. Head back to Resources => Quotas. You can see that with four instances of
the app running, we've maxed out our allotment of CPU, memory, and pods.

17

L100070 - OPENSHIFT FOR OPERATORS

Exercise 5: Multi-Tenant Networking

The OpenShift Multitenant SDN plug-in enables a true isolated multi-tenant
network infrastructure inside OpenShift's software defined network. While we have
seen projects isolate resources through OpenShift's RBAC, the multitenant SDN
plugin isolates projects using separate virtual network IDs within Open vSwitch.

The multitenant network plugin was introduced in OpenShift 3.1, and more
information about it and its configuration can be found in the networking
documentation. Additionally, other vendors are working with the upstream
kubernetes community to implement their own SDN plugins, and several of these
are supported by the vendors for use with OpenShift. These plugin
implementations make use of appc/CNI, which is outside the scope of this lab.

Exercise Scenario
The default behavior of the multitenant SDN is to isolate projects from one another,
but they are all joined to the “default” project (where, typically, the registry and
router live). We will now create two projects, verify that they are network isolated,
and then use various “oc” commands in order to manipulate the project networks
and observe the subsequent behavior.
Let's create two projects, each running a single pod:

1. oc login -u adminl -p r3dh4tl!

2. cd ~/Exercise 05

3. cat net-proj.sh
a. This script will create two projects and load the pods

4., ./net-proj.sh

Now that you have some networks and pods, you will need to find the IP address of
the pod in the “networkb”. The following command will show you the IP address:

5. ./podbip.sh

18

https://docs.openshift.com/container-platform/3.4/architecture/additional_concepts/sdn.html#architecture-additional-concepts-sdn
https://docs.openshift.com/container-platform/3.4/architecture/additional_concepts/sdn.html#architecture-additional-concepts-sdn

L100070 - OPENSHIFT FOR OPERATORS

The output will simply be the IP address of the pod in the “networkb” project. The
everyday way to do this would be with a combination of the “get” and “describe”
verbs. Feel free to do the following to verify what the script did:

6. oc get pod -n networkb

7. oc describe pod oc-1-f0deb
a. Make sure to substitute the correct pod name in the describe
command.

“describe” will show you a lot of information about the pod, including its IP address
on the software defined network. Either way, make note of the IP address you
found above. It will look something like 10.1.4.12. The CIDR for pod IPs is
configurable at the time the cluster is installed.

Export the IP address of your pod:

8. export POD B IP=10.1.4.12
a. Make sure you use the IP address you found earlier

The OpenShift command-line tool (and the web console) provide mechanisms to
execute commands inside containers. This is a useful feature for both developers
as well as for cluster and application operators/administrators. We will use that
feature in order to test network connectivity between the two pods you created.

To test connectivity from the pod in networka to networkb, execute the following,
taking careful note of where you need to change the commands:

9. oc get pod -n networka
a. This will show you the singular pod in the project “networka”. Note the
name

10.export POD A NAME=oc-1-zr3bn
a. Make sure you use the pod name you found in #1

11.0c exec -n networka $POD A NAME -- ping -cl -Wl $POD B IP

You will see 100% packet loss (your ping command sends 1 packet, waits 1 second,
and gets no response). This is because the networks are not connected to one

19

L100070 - OPENSHIFT FOR OPERATORS

another. Now simply execute the following:

12.ping -cl -Wl1 $POD B IP
You will see a successful ping. This is because the master (the system you are on) is
also a node attached to the SDN. At the host level you are able to reach across all
networks, virtual or otherwise. This is important to keep in mind when you consider
the overall network-level security of your cluster. Now it's time to join the networks.
Execute the following:

13.0c adm pod-network

a. You will see a bunch of options. We are going to work with

“join-projects”.

14.0c get netnamespaces
a. You will see the networka / networkb projects have separate net ids.

Joining the two projects will collapse them onto a single network namespace
(network id). Execute the following:

15.0c adm pod-network join-projects --to=networka networkb
16.0c get netnamespaces

You will note that the network ID for networkb was changed to match that for
networka. Now, execute your ping again:

17.0c exec -n networka $POD A NAME -- ping -cl -Wl $POD B IP
You should see your ping now works! This is a demonstration of manipulating the
software defined network with a few simple OpenShift CLI commands. If you like,
isolate the projects again and re-test with the following:

1. oc adm pod-network isolate-projects networkb

2. oc get netnamespaces

3. oc exec -n networka $POD A NAME -- ping -cl -Wl $POD B IP

20

L100070 - OPENSHIFT FOR OPERATORS

Your ping should now fail again.
The “make-projects-global” option effectively makes a project’'s network accessible

from all other projects. If you wish, you can try using it. Just don't make any changes
to the “default”, “openshift”, “openshift-infra”, or “management-infra” projects.

21

L100070 - OPENSHIFT FOR OPERATORS

Exercise 6: Pruning Old Data

Over time as OpenShift users build and deploy applications, it is likely that old
builds, deployments, and unused container images will build up. On the one hand,
this can be a good thing, because among other things it enables users to
immediately rollback their applications to any previous version. On the other hand,
especially in a large production cluster, too many of these objects can take up
excessive disk space, both in etcd and in the OpenShift registry.

Administrators can use the oadm prune command, potentially from a cron job, to
keep control over old builds, deployments, and unused container images across an
entire cluster. See the documentation at
https://docs.openshift.com/container-platform/3.4/admin_guide/pruning_resources
.html for full details.

Log in to the “cleanme” project to see a project in need of a clean-up. In a large
production cluster, there could be a lot of projects just like this!

1. oc login -u adminl -p r3dh4tl!
2. oc project cleanme

3. oc get bc,builds, pods
a. Although all the build pods are marked completed, their logs will be
taking up disk space on the OpenShift nodes. Each build object also
takes up a small amount of space in etcd.

4, oc describe imagestream sampleapp
a. The sampleapp imagestream references every sampleapp container
image successfully built. Each container image will be taking up disk
space in the OpenShift registry.

5. oc get dc, rc
a. Each previous application deployment holds on to a replication
controller, in case a rollback is required later. Each rc object takes up a
small amount of space in etcd.

22

https://docs.openshift.com/container-platform/3.4/admin_guide/pruning_resources.html
https://docs.openshift.com/container-platform/3.4/admin_guide/pruning_resources.html

L100070 - OPENSHIFT FOR OPERATORS
Let's start by trying to prune unused images from the registry. To do this, we need
our admin user to be a member of the system:image-pruner group.

6. oadm policy add-cluster-role-to-group system:image-pruner
ocp-platform

7. oadm prune images
a. Running oadm prune without --confirm will do a dry run to show
what would be removed.
b. Right now, no images will be removed, because all the old images are
still referenced by the replication controllers.
So let's remove the old deployments. Note that on all calls to oadm prune, the
admin user can define policy around how many old items to keep (e.g. using

--keep-younger—-than= 0r --keep-complete=). See oadm prune -h for more
details.

8. oadm prune deployments --keep-complete=3 --confirm
9. oc get dc, rc
a. All the old replication controllers should have been removed, except
the currently running deployment and the 3 previous ones.
Now we should be able to prune those images.
10.0adm prune images --confirm
11.0c describe imagestream sampleapp
a. Just like the replication controllers, just the image for the currently
running deployment and the 3 previous ones should be left.
Finally, let's also prune the old builds, leaving the (default) 5 previous builds.

12.0adm prune builds --confirm

13.0c get bc,builds, pods

23

L100070 - OPENSHIFT FOR OPERATORS

Exercise 7: Node Evacuation

So far we've focused almost entirely on a number of user- and project-level
operations. In this lab, we move our focus to managing the cluster itself.
Specifically, we're going to evacuate one of the nodes and move the applications
that were running there to the remaining node in the cluster.

1. oc get pods --all-namespaces -o wide
a. The 'hello-world’ applications that were previously deployed should be
distributed evenly between ose3-node1 and ose3-node2

2. oc get nodes
a. currently all nodes should have the ‘Ready’ status

3. cadm manage-node ose3-node2.example.com --schedulable=false
a. This command will change ose3-node2’s status to
Ready,SchedulingDisabled
b. In this state, the node continues to run existing pods, but will not take
on new pods

4. oadm manage-node ose3-node2.example.com —--list-pods
a. This command specifically lists out the pods running on ose3-node2

5. cadm manage-node ose3-node2.example.com —--evacuate
-—-dry-run
a. The —--evacuate flag will force pods on ose3-node2 to be moved to
other nodes
b. The --dry-run flag prevents the utility from actually evacuating but
shows you what actions would occur during an evacuation.

6. oadm manage-node ose3-node2.example.com —--evacuate
a. This will cause the system to evacuate ose3-node2

7. oc get pods --all-namespaces -o wide

a. After a few moments, all of the pods should have been terminated on
ose3-node2 and new copies restarted elsewhere.

24

L100070 - OPENSHIFT FOR OPERATORS

b. Note that In a production environment, grace periods can and may be
set on container termination; this may translate to longer wait times
before the node is evacuated.

To add a net-new node to the cluster, we could add information about the new
node to the inventory file for our ansible playbook and re-run the playbook.
However, in situations such as this one, where we have a node that is currently
unschedulable but otherwise configured for cluster use, we can simply change the
scheduling status to make it available again.

1. oadm manage-node ose3-node2.example.com --schedulable=true
a. This changes the state of ose3-node2 in the cluster.

2. oc get nodes
a. Confirm that the status of ose3-node2 is now ‘ready’

3. oc get pods --all-namespaces -o wide
a. Even though ose3-node2 is schedulable, existing pods are not
automatically migrated.

4. oc get pods -n portalapp-dev -o wide
a. Let's try deleting the hello-world app running in the portalapp-dev
project.

5. Copy the pod name that is printed in the output of this command (something
like “hello-openshift-1-abc12")

6. oc delete pod/<paste pod name here> -n portalapp-dev
a. This will delete the running portalapp-dev copy of hello-world

7. oc get pods -n portalapp-dev -o wide
a. Inshort order you should see another running copy of the hello-world
app.
b. Itis not guaranteed that this pod will be running on ose3-node2, but it
is very likely.

In any OpenShift cluster, the node where a pod lands is dependent on the cluster
scheduler. In our lab environment, the scheduler’s configuration (in
/etc/origin/master/scheduler.json, using the out of the box defaults) includes the

25

L100070 - OPENSHIFT FOR OPERATORS

LeastRequestedPriority and BalancedResourceAllocation priorities, both of which
will favor balancing the pod across ose3-node1 and ose3-node2.

26

L100070 - OPENSHIFT FOR OPERATORS

Exercise 8: Readiness and Liveness Probes
As we have seen before in the Ul via warnings, there is a concept of application

health checks in OpenShift. These come in two flavors:

e Readiness probe
e Liveness probe

From the Application Health section of the documentation, we see these
definitions:

Liveness Probe

A liveness probe checks if the container in which it is configured is still running. If
the liveness probe fails, the kubelet kills the container, which will be subjected to its
restart policy. Set a liveness check by configuring the
template.spec.containers.livenessprobe stanza of a pod configuration.

Readiness Probe

A readiness probe determines if a container is ready to service requests. If the
readiness probe fails a container, the endpoints controller ensures the container
has its IP address removed from the endpoints of all services. A readiness probe
can be used to signal to the endpoints controller that even though a container is
running, it should not receive any traffic from a proxy. Set a readiness check by
configuring the template.spec.containers.readinessprobe stanza of a pod
configuration.

We will use the web console to add these probes to our portalapp-dev application.
1. Log into the web console at https://ose3-master.example.com:8443/ as the

adminl user, password r3dh4t1! After logging in, you will see a list of
projects that are visible to the admin1 user.

2. Select ‘'Portal App Development’ from the project list. You will be presented
with a summary view of the project.

3. From the left-hand navigation panel, select Applications => Deployments.
You will see a list of deployments defined for this project.

27

https://ose3-master.example.com:8443/
https://docs.openshift.com/container-platform/latest/dev_guide/application_health.html

L100070 - OPENSHIFT FOR OPERATORS

4. Select the hello-openshift deployment from the deployments list. The
browser will display a summary of the deployment definition. Under the
Template heading, note the warning about missing health checks:

Timeout: 600 sec
Max Unavailable: 25%
Max Surge: 25%
Template

@ This container has no health checks to ensure your application is running

correctly. Add health checks

CONTAINER: HELLO-QPENSHIFT
2 Image: openshift/hello-openshift d48d77+¢

-~ Ports: 8080/TCP , 8888/TCP

5. In the warning note about missing health checks, click on the ‘Add health
checks' link. You will see the ‘Health Checks: hello-openshift’ page with
headings for Readiness Probe and Liveness Probe. Click both of the links -
‘Add Liveness Probe’ and ‘Add Readiness Probe’ - to expand the forms on this

page.

6. Use the following values for the Readiness and Liveness probes:

Type: HTTP

Path: /healthz

Port: 8080

Initial Delay: 20 for the Readiness probe, 120 for the Liveness probe
Timeout: 1

Pop oo

7. At the bottom of the form, click the ‘Save’ button. The deployment summary
is updated to reflect the new probe definitions.

8. From the left-hand navigation panel, select Overview.

By updating the deployment object with liveness and readiness probes, we've
indirectly triggered a redeployment of the hello-openshift app. On the Overview
page you can watch as a new pod is deployed and the old one is taken down.

Readiness and liveness settings can also be set from the command line:

28

L100070 - OPENSHIFT FOR OPERATORS

. From a terminal, log in to ose3-master.example.com.

. oc login -u adminl -p r3dh4tl!

. oCc project portalapp-dev

a. This switches the oc client to the project of interest.

. oc set probe dc/hello-openshift --liveness

-—-initial-delay-seconds=60 -n portalapp-dev
a. This command updates the existing deployment configuration for our
app, which also triggers another deployment.

29

