
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.10 1.9

Table	of	Contents
Introduction

Acknowledgements

Introduction

Setup

Lab	1	-	Docker	Refresh	(optional)

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

Lab	3	-	Analyzing	a	microservices	application

Lab	4	-	Changing	the	microservices	application	using	data	services

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

Resources

1

L104372	-	Exposing	data	as	services	in	a
microservices	architecture	on	OpenShift
documentation
In	this	hands-on	lab,	you’ll	learn	how	to	expose	data	as	services	in	a	Microservices
Architecture	running	on	Red	Hat	OpenShift	Container	Platform	(OCP).	See	how	to	transform
a	microservices	application	to	use	data	services	instead	of	connecting	directly	to	the
underlying	datasource.	In	this	lab,	you’ll	learn	how	to	use	to:

Quickly	develop	a	basic	container-based	application

Reuse	container	images	from	the	Red	Hat	container	registry

Migrate	a	simple	microservices	application	to	a	containerized	version	using	data
services	to	connect	to	the	underlying	data	sources

Get	a	feel	for	Red	Hat	OpenShift	Container	Platform	(OCP)

You’ll	also	learn	what	tools	to	consider	when	implementing	a	containerized,	microservices
architecture.

Audience/Intro/Prerequisites:
This	lab	is	geared	towards	developers	who	are	interested	in	learning	how	to	containerize
their	data	applications.	Attendees,	during	this	session,	will	explore	Microservice	architecture,
Red	Hat	OpenShift	Container	Platform,	Red	Hat	JBoss	Data	Virtualization	and	Red	Hat
JBoss	Data	Grid.	To	accomplish	this,	one	need	a	little	background	or	experience	in	Linux.

Here	you	can	find	the	L104372	-	Exposing	data	as	services	in	a	microservices	architecture
on	OpenShift	book.

Labs

Introduction

2

https://cvanball.gitbooks.io/L104372/content/

Lab	1 Docker	refresh	(optional)

Lab	2 OpenShift	Command	Line	Interface	(CLI)

Lab	3 Analyzing	a	Microservices	Application

Lab	4 Changing	the	microservices	application
using	data	services

Lab	4	part	II Changing	the	microservices	application
using	data	services	with	security

Generate	html/pdf/epub/mobi
You	may	locally	create	rendered	forms	of	the	documentation.	To	do	this	install	gitbook	and
ebook-convert,	then	execute	the	following	commands	from	the	checkout	location:

$	gitbook	build	./	L104372

$	gitbook	pdf	./L104372	L104372.pdf

$	gitbook	epub	./L104372	L104372.epub

$	gitbook	mobi	./L104372	L104372.mobi

Once	above	commands	executes	successfully,	the		L104372		folder,		L104372.pdf	,
	L104372.epub	,	and		L104372.mobi		will	be	generated.

Introduction

3

https://github.com/GitbookIO/gitbook
https://help.gitbook.com/build/ebookconvert.html

Acknowlegdement

Red	Hat	Summit 2017

Version	Number 1.0

Final	as	of May	5th,	2017

Author(s)

Bill	Kemp

Cojan	van	Ballegooijen

Madou	Coulibaly

Tariq	Islam

Acknowledgements

4

Introduction
Before	we	jump	into	the	demo	and	see	how	OpenShift	can	support	a	polyglot	microservice
system	based	on	many	different	services,	let’s	spend	some	time	talking	about	the
architecture	of	the	demo	application	and	the	components	the	demo	is	using.

Red	Hat	OpenShift	Container	Platform

Red	Hat	OpenShift	Container	Platform	(OCP)	v3	is	a	layered	system	designed	to	expose
underlying	Docker-formatted	container	image	and	Kubernetes	concepts	as	accurately	as
possible,	with	a	focus	on	easy	composition	of	applications	by	a	developer.	For	example,
install	Ruby,	push	code,	and	add	MySQL.

The	concept	of	an	application	as	a	separate	object	is	removed	in	favor	of	more	flexible
composition	of	"services",	allowing	two	web	containers	to	reuse	a	database	or	expose	a
database	directly	to	the	edge	of	the	network.

The	Docker	service	provides	the	abstraction	for	packaging	and	creating	Linux-based,
lightweight	container	images.	Kubernetes	provides	the	cluster	management	and
orchestrates	containers	on	multiple	hosts.	OCP	adds:

Source	code	management,	builds,	and	deployments	for	developers

Managing	and	promoting	images	at	scale	as	they	flow	through	your	system

Application	management	at	scale

Team	and	user	tracking	for	organizing	a	large	developer	organization

The	following	topics	provide	high-level,	architectural	information	on	core	concepts	and
objects	you	will	encounter	when	using	OCP.	Many	of	these	objects	come	from	Kubernetes,
which	is	extended	by	OCP	to	provide	a	more	feature-rich	development	lifecycle	platform.

Containers	and	images	are	the	building	blocks	for	deploying	your	applications.

Pods	and	services	allow	for	containers	to	communicate	with	each	other	and	proxy
connections.

Introduction

5

https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/containers_and_images.html#architecture-core-concepts-containers-and-images
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/pods_and_services.html#architecture-core-concepts-pods-and-services

Projects	and	users	provide	the	space	and	means	for	communities	to	organize	and
manage	their	content	together.

Builds	and	image	streams	allow	you	to	build	working	images	and	react	to	new	images.

Deployments	add	expanded	support	for	the	software	development	and	deployment
lifecycle.

Routes	announce	your	service	to	the	world.

Templates	allow	for	many	objects	to	be	created	at	once	based	on	customized
parameters.

What	Is	the	Red	Hat	OpenShift	Container	Platform	(OCP)	Architecture?

OCP	has	a	microservices-based	architecture	of	smaller,	decoupled	units	that	work	together.
It	can	run	on	top	of	(or	alongside)	a	Kubernetes	cluster,	with	data	about	the	objects	stored	in
etcd,	a	reliable	clustered	key-value	store.

The	figure	below	depicts	the	architectural	overview	of	Red	Hat	OpenShift	Container
Platform:

Those	services	are	broken	down	by	function:

REST	APIs,	which	expose	each	of	the	core	objects.

Controllers,	which	read	those	APIs,	apply	changes	to	other	objects,	and	report	status	or
write	back	to	the	object.

Introduction

6

https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/projects_and_users.html#architecture-core-concepts-projects-and-users
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/builds_and_image_streams.html#architecture-core-concepts-builds-and-image-streams
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/deployments.html#architecture-core-concepts-deployments
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/routes.html#architecture-core-concepts-routes
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/templates.html#architecture-core-concepts-templates
https://docs.openshift.com/container-platform/3.5/architecture/infrastructure_components/kubernetes_infrastructure.html#architecture-infrastructure-components-kubernetes-infrastructure
https://docs.openshift.com/container-platform/3.5/architecture/infrastructure_components/kubernetes_infrastructure.html#master
https://docs.openshift.com/container-platform/3.5/rest_api/index.html#rest-api-index
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/index.html#architecture-core-concepts-index

Users	make	calls	to	the	REST	API	to	change	the	state	of	the	system.	Controllers	use	the
REST	API	to	read	the	user’s	desired	state,	and	then	try	to	bring	the	other	parts	of	the	system
into	sync.	For	example,	when	a	user	requests	a	build	they	create	a	"build"	object.	The	build
controller	sees	that	a	new	build	has	been	created,	and	runs	a	process	on	the	cluster	to
perform	that	build.	When	the	build	completes,	the	controller	updates	the	build	object	via	the
REST	API	and	the	user	sees	that	their	build	is	complete.

The	controller	pattern	means	that	much	of	the	functionality	in	OCP	is	extensible.	The	way
that	builds	are	run	and	launched	can	be	customized	independently	of	how	images	are
managed,	or	how	deployments	happen.	The	controllers	are	performing	the	"business	logic"
of	the	system,	taking	user	actions	and	transforming	them	into	reality.	By	customizing	those
controllers	or	replacing	them	with	your	own	logic,	different	behaviors	can	be	implemented.
From	a	system	administration	perspective,	this	also	means	the	API	can	be	used	to	script
common	administrative	actions	on	a	repeating	schedule.	Those	scripts	are	also	controllers
that	watch	for	changes	and	take	action.	OCP	makes	the	ability	to	customize	the	cluster	in
this	way	a	first-class	behavior.

To	make	this	possible,	controllers	leverage	a	reliable	stream	of	changes	to	the	system	to
sync	their	view	of	the	system	with	what	users	are	doing.	This	event	stream	pushes	changes
from	etcd	to	the	REST	API	and	then	to	the	controllers	as	soon	as	changes	occur,	so
changes	can	ripple	out	through	the	system	very	quickly	and	efficiently.	However,	since
failures	can	occur	at	any	time,	the	controllers	must	also	be	able	to	get	the	latest	state	of	the
system	at	startup,	and	confirm	that	everything	is	in	the	right	state.	This	resynchronization	is
important,	because	it	means	that	even	if	something	goes	wrong,	then	the	operator	can
restart	the	affected	components,	and	the	system	double	checks	everything	before
continuing.	The	system	should	eventually	converge	to	the	user’s	intent,	since	the	controllers
can	always	bring	the	system	into	sync.

Red	Hat	JBoss	Data	Virtualization

Red	Hat	JBoss	Data	Virtualization	(JDV)	is	a	complete	data	provisioning,	federation,
integration	and	management	solution	that	enables	organizations	to	gain	actionable	and
unified	information.	Red	Hat	JBoss	Data	Virtualization	enables	agile	data	utilization	in	three
steps:

1.	 Connect:	Access	data	from	multiple,	heterogeneous	data	sources.

2.	 Compose:	Create	reusable,	business-friendly	logical	data	models	and	views	by
combining	and	transforming	data.

Introduction

7

https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/builds_and_image_streams.html#builds
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/deployments.html#architecture-core-concepts-deployments

3.	 Consume:	Make	unified	data	easily	consumable	through	open	standard	interfaces.

JDV	includes:

Tools	for	creating	data	views	that	are	accessible	through	standard	protocols.	For	those
who	are	already	familiar	with	JDV	one	of	the	tools	is	the	Teiid	Designer	plug-in	for	Red
Hat	JBoss	Developer	Studio	(JBDS).

A	robust	runtime	environment	that	provides	enterprise-class	performance,	data	integrity,
and	security	(the	JDV	Server,	which	executes	as	a	process	within	the	Red	Hat	JBoss
Enterprise	Application	Platform	(EAP)).

A	repository	for	storing	metadata	(ModeShape)

JDV	is	based	on	the	following	community	projects:

Teiid	(http://www.jboss.org/teiid)

Teiid	Designer	(http://www.jboss.org/teiiddesigner)

ModeShape	(http://www.jboss.org/modeshape)

Introduction

8

http://www.jboss.org/teiid
http://www.jboss.org/teiiddesigner
http://www.jboss.org/modeshape

The	figure	below	depicts	the	architectural	overview	of	JDV:

Introduction

9

JDV	Components Description

Query	Engine

The	heart	of	JDV	Server	is	a	high-
performance	query	engine	that	processes
relational,	XML,	XQuery	and	procedural
queries	from	federated	data	sources.
Features	include	support	for
homogeneous	schemas,	heterogeneous
schemas,	transactions,	and	user	defined

Embedded
An	easy-to-use	JDBC	Driver	that	can
embed	the	Query	Engine	in	any	Java
application.

Server

An	enterprise	ready,	scalable,
manageable,	runtime	for	the	Query
Engine	that	runs	inside	JBoss	EAP	that
provides	additional	security,	fault-
tolerance,	and	administrative	features.

Connectors

JDV	Server	includes	a	rich	set	of
Translators	and	Resource	Adapters	that
enable	access	to	a	variety	of	sources,
including	most	relational	databases,	web
services,	text	files,	and	ldap.	Need	data
from	a	different	source?	Custom
translators	and	resource	adaptors	can
easily	be	developed.

Tools

JDV	Server	includes	development	and
administration	tools	to	*	Create	-	Use	Teiid
Designer	to	define	virtual	databases
containing	views,	procedures	or	even
dynamic	XML	documents.	*	Monitor	&
Manage	-	Use	the	Management	Console
with	JBoss	EAP	or	use	the	JDV	JBoss
Operations	Network	(JON)	plugin	to
control	any	number	of	servers.	*	Script	-
Use	the	AdminShell	to	automate
administrative	and	testing	tasks.

The	Red	Hat	JBoss	Data	Virtualization	for	OpenShift	image	is	based	on	Red	Hat	JBoss	Data
Virtualization	6.3.	In	addition,	the	JDV	for	OpenShift	image	is	built	on	the	EAP	for	OpenShift
image.	As	a	result,	the	same	differences	exist	for	the	JDV	for	OpenShift	image.	To	get
started	with	the	JDV	for	OpenShift	image	please	check	out
https://access.redhat.com/documentation/en/red-hat-xpaas/0/paged/red-hat-xpaas-jdv-for-
openshift-image/chapter-3-get-started

Introduction

10

Introduction

11

https://access.redhat.com/documentation/en/red-hat-xpaas/0/paged/red-hat-xpaas-jdv-for-openshift-image/chapter-3-get-started

Setup

Demo	Context

The	demo	application	we	have	here	is	a	microservices	application	built	using	various
technologies	like	Spring,	AngularJS	and	PostgreSQL	providing	information	of	food	and	wine.
The	food	and	wine	data	is	served	through	the	food-service	and	wine-service	respectively.
The	data	connection	from	both	the	food-	and	wine-service	are	tightly	coupled	to	the
PostgreSQL	database.	We	would	like	to	decouple	the	food-	and	wine-service	using	data
services	provided	by	Red	Hat	JBoss	Data	Virtualization.

Get	Lab	Materials

For	the	convenience	of	users	of	the	lab,	we	created	a	script	and	installed	it	on	the	machine
in	front	of	you.	If	you	are	in	the	lab	environment	please	check	if	/home/student/summit-2017-
dataservices	exits:

[student@localhost	~]$	cd	~/summit-2017-dataservices

if	not	please	run	the	following:

[student@localhost	~]$	getlab

Cloning	into	'summit-2017-dataservices'...

For	those	of	you	following	along	at	home	or	own	pc,	just	git	clone	the	github	repo	from
https://github.com/cvanball/summit-2017-dataservices.git.

Lab	structure	explained

The	lab	structure	we	are	going	to	use	during	this	lab	is	depicted	and	described	below.

Setup

12

https://github.com/cvanball/summit-2017-dataservices.git

[student@localhost	summit-2017-dataservices]$	tree	-d	-L	3

└──	labs

	 ├──	lab1

	 ├──	lab3

	 │			└──	projects

	 ├──	lab3_ocp

	 │			└──	templates

	 ├──	lab4

	 │			└──	projects

	 ├──	lab4_ocp

	 │			├──	extensions

	 │			├──	templates

	 │			└──	vdb

	 └──	lab4_secure_ocp

	 │			├──	extensions

	 │			├──	templates

	 │			└──	vdb

Directory Description

lab1 Sample	Dockerfile

lab3 Food/wine	microservice	app	project
artifacts	like	sources	and	binaries

lab3_ocp Artifacts	for	lab3,	like	OCP	template

lab4
Food/wine	microservice	app	project
artifacts	like	sources,	binaries	and	use	of
JDV

lab4_ocp Artifacts	for	lab4	with	JDV,	like	OCP
template,	JDV	extensions,	sql	script

lab4_secure_ocp
Artifacts	for	lab4	with	JDV,	like	OCP
template,	JDV	extensions,	sql	script	to
showcase	security	capabilities	of	JDV

Setup

13

Lab	1	-	Docker	Refresh	(optional)

In	this	lab	we	will	explore	the	docker	environment	within	Red	Hat	OpenShift	Container
Platform.	If	you	are	familiar	with	docker	this	may	function	as	a	brief	refresher	or	proceed	with
Lab	2.	If	you	are	new	to	docker	this	will	serve	as	an	introduction	to	docker	basics.	Don’t
worry,	we	will	progress	rapidly.	To	get	through	this	lab,	we	are	going	to	focus	on	the
environment	itself	as	well	as	walk	through	some	exercises	with	a	couple	of	Docker	images	/
containers	to	tell	a	complete	story	and	point	out	some	things	that	you	might	have	to	consider
when	containerizing	your	application.

This	lab	should	be	performed	on	the	machine	in	front	of	you	unless	otherwise	instructed.

The	machine	should	have	been	brought	up	in	lab.	You	can	access	that	machine	using
username	student	and	password	student

Expected	completion:	15	minutes

Topics:

Review	Docker	and	systemd

Review	Docker	help

Explore	a	Dockerfile

Build	an	image

Launch	a	container

Inspect	a	container

Docker	and	systemd

Check	out	the	systemd	unit	file	that	starts	Docker	on	Red	Hat	OpenShift	Container	Platform
and	notice	that	it	includes	3	Environment	Files.	These	files	tell	Docker	how	the	Docker
daemon,	storage	and	networking	should	be	set	up	and	configured.	Take	a	look	at	those	files

Lab	1	-	Docker	Refresh	(optional)

14

too.	Specifically,	in	the	/etc/sysconfig/docker	file	check	out	the	registry	settings.	You	may	find
it	interesting	that	you	can	ADD_REGISTRY	and	BLOCK_REGISTRY.	Think	about	the
different	use	cases	for	that.

Perform	the	following	commands	as	root	unless	instructed	otherwise.

[student@localhost	~]$	cat	/usr/lib/systemd/system/docker.service

[student@localhost	~]$	cat	/usr/lib/systemd/system/docker-storage-setup.service

[student@localhost	~]$	cat	/etc/sysconfig/docker

[student@localhost	~]$	cat	/etc/sysconfig/docker-storage

[student@localhost	~]$	cat	/etc/sysconfig/docker-network

Now	check	the	status	of	docker	and	make	sure	it	is	running	before	moving	forward.	It	should
have	been	brought	up	automatically	for	us	by	the	OCP	environment.

[student@localhost	~]$	sudo	systemctl	status	docker

docker.service	-	Docker	Application	Container	Engine

			Loaded:	loaded	(/usr/lib/systemd/system/docker.service;	enabled;	vendor	preset:	dis

abled)

			Active:	active	(running)	since	Wed	2017-04-12	04:00:12	EDT;	49min	ago

		 Docs:	http://docs.docker.com

	Main	PID:	1155	(dockerd-current)

			Memory:	53.1M

			CGroup:	/system.slice/docker.service

								├─	1155	/usr/bin/dockerd-current	--add-runtime	docker-runc=/usr/li...

								├─	1208	/usr/bin/docker-containerd-current	-l	unix:///var/run/dock...

								├─12583	/usr/bin/docker-containerd-shim-current	333a60f20aa4656a83...

								├─12872	/usr/bin/docker-containerd-shim-current	7db3ba876d6b184019...

								├─12932	/usr/bin/docker-containerd-shim-current	04672958b1e3c86d47...

								├─13043	/usr/bin/docker-containerd-shim-current	5e1c65898c640522f6...

								└─13109	/usr/bin/docker-containerd-shim-current	ee864ca54c2c2e7d9d...

Apr	12	04:46:12	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:12	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:12	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:15	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:16	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:16	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:18	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:18	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:19	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Apr	12	04:46:20	localhost.localdomain	dockerd-current[1155]:	time="2017-04-12...

Hint:	Some	lines	were	ellipsized,	use	-l	to	show	in	full.

Docker	Help

Lab	1	-	Docker	Refresh	(optional)

15

Now	that	we	see	how	the	Docker	startup	process	works,	we	should	make	sure	we	know	how
to	get	help	when	we	need	it.	Run	the	following	commands	to	get	familiar	with	what	is
included	in	the	Docker	package	as	well	as	what	is	provided	in	the	man	pages.	Spend	some
time	exploring	here.	When	you	run	docker	info	check	out	the	storage	configuration.	The	CDK
automatically	sets	up	storage	for	us	by	creating	an	LVM	thin	pool	for	use	as	a	device	mapper
direct	docker	storage	backend.

Check	out	the	executables	provided:

[student@localhost	~]$	rpm	-ql	docker	|	grep	bin

/usr/bin/docker-containerd-current

/usr/bin/docker-containerd-shim-current

/usr/bin/docker-ctr-current

/usr/bin/docker-storage-setup

/usr/bin/dockerd-current

Check	out	the	configuration	files	that	are	provided:

[student@localhost	~]$	rpm	-qc	docker

/etc/sysconfig/docker-network

/etc/sysconfig/docker-storage

/etc/sysconfig/docker-storage-setup

Check	out	the	documentation	that	is	provided:

Lab	1	-	Docker	Refresh	(optional)

16

[student@localhost	~]$	rpm	-qd	docker

/usr/share/doc/docker-1.12.6/AUTHORS

/usr/share/doc/docker-1.12.6/CHANGELOG.md

[student@localhost	~]$	docker	--help

Usage:	docker	[OPTIONS]	COMMAND	[arg...]

				 docker	[--help	|	-v	|	--version]

A	self-sufficient	runtime	for	containers……

[student@localhost	~]$	docker	info

Containers:	6

	Running:	5

	Paused:	0

	Stopped:	1

Images:	20

Server	Version:	1.12.6

OSType:	linux

Architecture:	x86_64

Number	of	Docker	Hooks:	2

CPUs:	2

Total	Memory:	11.3	GiB

Name:	localhost.localdomain

ID:	LCWG:G2DM:GTYE:XQXP:TGFH:KEZA:BAXC:YASG:3PJ2:AJ4D:QSLD:OOUM

Docker	Root	Dir:	/var/lib/docker

Debug	Mode	(client):	false

Debug	Mode	(server):	false

Registry:	https://registry.access.redhat.com/v1/

Insecure	Registries:

	172.30.0.0/16

	127.0.0.0/8

Registries:	registry.access.redhat.com	(secure),	docker.io	(secure)

Take	a	look	at	the	Docker	images	on	the	system.	You	should	see	some	Openshift	images
that	are	cached	in	the	OCP	environment	so	you	can	build	the	containers	without	having	to
wait	for	the	container	images	to	download	from	the	internet.

Lab	1	-	Docker	Refresh	(optional)

17

[student@localhost	~]$	docker	images

REPOSITORY																																																																 TAG			

											 IMAGE	ID									 CREATED										 SIZE

registry.access.redhat.com/openshift3/ose-sti-builder																					 v3.4.1

.12								 06af71a951dd					 13	days	ago						 726.6	MB

registry.access.redhat.com/openshift3/ose-haproxy-router																		 v3.4.1

.12								 0e5da1bc1bd6					 13	days	ago						 745.3	MB

registry.access.redhat.com/openshift3/ose-deployer																								 v3.4.1

.12								 77323ab89f5c					 13	days	ago						 726.6	MB

registry.access.redhat.com/openshift3/ose-docker-registry																	 v3.4.1

.12								 08aaa1c313ef					 13	days	ago						 806.5	MB

registry.access.redhat.com/openshift3/ose																																	 v3.4.1

.12								 14a5d3344278					 13	days	ago						 726.6	MB

registry.access.redhat.com/openshift3/ose-pod																													 v3.4.1

.12								 310eda5cf7fd					 13	days	ago						 205	MB

registry.access.redhat.com/jboss-eap-7/eap70-openshift																				 latest

											 f6ca7f01844e					 3	weeks	ago						 1.042	GB

registry.access.redhat.com/jboss-datavirt-6/datavirt63-openshift										 latest

											 837aa4172c2c					 4	weeks	ago						 972.6	MB

Lets	explore	a	Dockerfile

As	a	part	of	the	Red	Hat	Software	Collections	offering,	Red	Hat	provides	a	number	of
container	images,	which	are	based	on	the	corresponding	Software	Collections.	These
include	application,	daemon,	and	database	images.	Here	you	can	see	in	the	FROM
command	that	we	are	pulling	a	Apache	Web	Server	base	image	based	on	RHEL	7.3	that	we
are	going	to	use	in	this	example.	Containers	that	are	being	built	inherit	the	subscriptions	of
the	host	they	are	running	on,	so	you	only	need	to	register	the	host	system.	Here	we	are	just
going	to	explore	a	simple	Dockerfile.	The	purpose	for	this	is	to	have	a	look	at	some	of	the
basic	commands	that	are	used	to	construct	a	Docker	image.	For	this	lab,	we	will	explore	a
basic	Apache	Dockerfile	and	then	confirm	functionality.

As	the	student	user,	change	directory	to	~/summit-2017-dataservices/labs/lab1/	and	cat	out
the	Dockerfile

[student@localhost	~]$	cd	~/summit-2017-dataservices/labs/lab1

[student@localhost	lab1]$	cat	Dockerfile

#	Pull	the	rhel	image	from	the	local	repository

FROM	registry.access.redhat.com/rhscl/httpd-24-rhel7

MAINTAINER	Student	<student@foo.io>

USER	root

EXPOSE	80

Lab	1	-	Docker	Refresh	(optional)

18

After	gaining	access	to	a	repository,	we	EXPOSE	port	80,	which	allows	traffic	into	the
container,	and	then	set	the	container	to	start.

Build	an	Image

Now	that	we	have	taken	a	look	at	the	Dockerfile,	lets	build	this	image.	Since	it	was	already
built	previously	the	image	is	retrieved	from	the	cache.

[student@localhost	lab1]$	docker	build	-t	redhat/apache	.

Sending	build	context	to	Docker	daemon	2.048	kB

Step	1	:	FROM	registry.access.redhat.com/rhscl/httpd-24-rhel7

	--->	533e496998ca

Step	2	:	MAINTAINER	Student	<student@foo.io>

	--->	Using	cache

	--->	2421ced729fb

Step	3	:	USER	root

	--->	Using	cache

	--->	0fd493ddbb4a

Step	4	:	EXPOSE	80

	--->	Using	cache

	--->	3ce031e2bbc5

Successfully	built	3ce031e2bbc5

Run	the	Container

Next,	lets	run	the	image	and	make	sure	it	started.

Lab	1	-	Docker	Refresh	(optional)

19

[student@localhost	lab1]$	docker	run	-dt	-p	81:80	--name	apache	redhat/apache

e9e06e014a73c7250f3c3c23d8be902fbf47db2e110d4d531c8fcadaa51a771c

[student@localhost	lab1]$	docker	ps

CONTAINER	ID					 IMAGE																																																									

					 COMMAND															 CREATED										 STATUS											 PORTS	

																																									 NAMES

e9e06e014a73					 redhat/apache																																																	

					 "/usr/local/bin/run-h"			21	seconds	ago			 Up	18	seconds				 443/tc

p,	8080/tcp,	8443/tcp,	0.0.0.0:81->80/tcp			apache

ee864ca54c2c					 registry.access.redhat.com/openshift3/ose-docker-registry:v3.4

.1.12	"/bin/sh	-c	DOCKER_R"			19	minutes	ago			 Up	19	minutes																									

																													 k8s_registry.8a800f10_docker-registry-1-j6jhx_default_

49d05df7-1ef3-11e7-90e8-5254006bc4cb_65305227

5e1c65898c64					 registry.access.redhat.com/openshift3/ose-haproxy-router:v3.4.

1.12	 "/usr/bin/openshift-r"			19	minutes	ago			 Up	19	minutes																	

																																					 k8s_router.6a91aafa_router-1-qcf69_default_49d

f9473-1ef3-11e7-90e8-5254006bc4cb_d29bf1f4

04672958b1e3					 registry.access.redhat.com/openshift3/ose-pod:v3.4.1.12							

					 "/pod"																 19	minutes	ago			 Up	19	minutes																	

																																					 k8s_POD.b6fc0873_docker-registry-1-j6jhx_defau

lt_49d05df7-1ef3-11e7-90e8-5254006bc4cb_f5a20da2

7db3ba876d6b					 registry.access.redhat.com/openshift3/ose-pod:v3.4.1.12							

					 "/pod"																 19	minutes	ago			 Up	19	minutes																	

																																					 k8s_POD.8f3ae681_router-1-qcf69_default_49df94

73-1ef3-11e7-90e8-5254006bc4cb_7697cd22

333a60f20aa4					 registry.access.redhat.com/openshift3/ose:v3.4.1.12											

					 "/usr/bin/openshift	s"			20	minutes	ago			 Up	20	minutes

Here	we	are	using	a	few	switches	to	configure	the	running	container	the	way	we	want	it.	We
are	running	a	-dt	to	run	in	detached	mode	with	a	pseudo	TTY.	Next	we	are	mapping	a	port
from	the	host	to	the	container.	We	are	being	explicit	here.	We	have	told	Docker	to	map	port
81	on	the	host	to	port	80	in	the	container.	Now,	we	could	have	let	Docker	handle	the	host
side	port	mapping	dynamically	by	passing	a	-P	or	-p	80,	in	which	case	Docker	would	have
randomly	assigned	a	port	to	the	container.	Finally,	we	passed	in	the	name	of	the	image	that
we	built	earlier.

Okay,	lets	make	sure	we	can	access	the	web	server.

[student@localhost	lab1]$	curl	http://localhost:81

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.1//EN"	"http://www.w3.org/TR/xhtml11/DTD/xh

tml11.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en">

	 <head>

	 	 <title>Test	Page	for	the	Apache	HTTP	Server	on	Red	Hat	Enterprise	Linu

x</title>

.....

Lab	1	-	Docker	Refresh	(optional)

20

Start	Firefox	Web	Browser	using	Applications→Favorites→Firefox	Web	Browser	and	point
the	URL	to	http://localhost:81	and	should	see	a	similar	screen	as	depicted	below

Now	that	we	have	built	an	image,	launched	a	container	and	confirmed	that	it	is	running,	let's
do	some	further	inspection	of	the	container.	We	should	take	a	look	at	the	container	IP
address.	Let's	use	docker	inspect	to	do	that.

Time	to	Inspect

[student@localhost	lab1]$	docker	inspect	apache

We	can	see	that	this	gives	us	quite	a	bit	of	information	in	json	format.	We	can	scroll	around
and	find	the	IP	address,	it	will	be	towards	the	bottom.

Lab	1	-	Docker	Refresh	(optional)

21

http://localhost:81

	 "Networks":	{

													 "bridge":	{

																	 "IPAMConfig":	null,

																	 "Links":	null,

																	 "Aliases":	null,

																	 "NetworkID":	"4c6c77ea7038a36ca39f11d4cfb80cb0e502d975f87d33ba

47bccccd0c6c168d",

																	 "EndpointID":	"251efeefa42411516842d8d4ca230759d8a63ef6c670a15

bc4f4e0ef3faa95ce",

																	 "Gateway":	"172.17.0.1",

																	 "IPAddress":	"172.17.0.3",

																	 "IPPrefixLen":	16,

																	 "IPv6Gateway":	"",

																	 "GlobalIPv6Address":	"",

																	 "GlobalIPv6PrefixLen":	0,

																	 "MacAddress":	"02:42:ac:11:00:03"

													 }

									 }

Let's	be	more	explicit	with	our	docker	inspect

[student@localhost	lab1]$	docker	inspect	--format	'\{\{	.NetworkSettings.IPAddress	\}\

}'	apache

172.17.0.3

You	should	see	the	IP	address	that	was	assigned	to	the	container.

We	can	apply	the	same	filter	to	any	value	in	the	json	output.	Try	a	few	different	ones.

Now	lets	look	inside	the	container	and	see	what	that	environment	looks	like.	We	first	need	to
get	the	PID	of	the	container	so	we	can	attach	to	the	PID	namespace	with	nsenter.	After	we
have	the	PID,	go	ahead	and	enter	the	namespaces	of	the	container	substituting	the	PID	on
your	container	for	the	one	listed	below.	Take	a	look	at	the	man	page	to	understand	all	the
flags	we	are	passing	to	nsenter.

[student@localhost	lab1]$	docker	inspect	--format	'\{\{	.State.Pid	\}\}'	apache

15860

[student@localhost	lab1]$	man	nsenter

NAME

				 nsenter	-	run	program	with	namespaces	of	other	processes

…...

[student@localhost	lab1]$	sudo	nsenter	-m	-u	-n	-i	-p	-t	15860

[sudo]	password	for	student:

[root@e9e06e014a73	/]#

Lab	1	-	Docker	Refresh	(optional)

22

Now	run	some	commands	and	explore	the	environment.	Remember,	we	are	in	a	slimmed
down	container	at	this	point	-	this	is	by	design.	You	may	find	yourself	restricted.

[root@e9e06e014a73	/]#	ps	aux

USER				PID	%CPU	%MEM	 VSZ			RSS	TTY			STAT	START			TIME	COMMAND

root						 1		0.0		0.0	258144		7508	?					 Ss+		09:05			0:00	httpd	-DFOREGROUND

apache			 20		0.0		0.0	266472		4712	?					Sl+		09:05			0:00	httpd	-DFOREGROUND

apache			 21		0.0		0.0	266472		4196	?					Sl+		09:05			0:00	httpd	-DFOREGROUND

apache			 22		0.0		0.0	266472		4200	?					Sl+		09:05			0:00	httpd	-DFOREGROUND

apache			 23		0.0		0.0	266472		4712	?					Sl+		09:05			0:00	httpd	-DFOREGROUND

apache			 26		0.0		0.0	266472		4196	?					Sl+		09:05			0:00	httpd	-DFOREGROUND

apache			 30		0.0		0.0	266472		4196	?					Sl+		09:10			0:00	httpd	-DFOREGROUND

root					 32		0.0		0.0		13368		2020	?					S	 09:18			0:00	-bash

root					 46		0.0		0.0		49040		1836	?					R+			09:18			0:00	ps	aux

[root@e9e06e014a73	/]#	ls	/bin

[findmnt													 msgconv											 sim_client

a2p																 find-repos-of-install		msgen													 size

aclocal												 fipscheck											 msgexec											 skill

[root@e9e06e014a73	/]#	cat	/etc/hosts

127.0.0.1				localhost

::1				localhost	ip6-localhost	ip6-loopback

fe00::0				ip6-localnet

ff00::0				ip6-mcastprefix

ff02::1				ip6-allnodes

ff02::2				ip6-allrouters

172.17.0.3				e9e06e014a73

[root@e9e06e014a73	/]#	ip	addr

-bash:	ip:	command	not	found

Well,	what	can	we	do?	You	can	install	software	into	this	container.

[root@e9e06e014a73	/]#	yum	-y	install	iproute

[root@e9e06e014a73	/]#	ip	addr

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN	qlen	1

	 link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

	 inet	127.0.0.1/8	scope	host	lo

				 valid_lft	forever	preferred_lft	forever

	 inet6	::1/128	scope	host

				 valid_lft	forever	preferred_lft	forever

16:	eth0@if17:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	noqueue	state	UP

	 link/ether	02:42:ac:11:00:03	brd	ff:ff:ff:ff:ff:ff	link-netnsid	0

	 inet	172.17.0.3/16	scope	global	eth0

				 valid_lft	forever	preferred_lft	forever

	 inet6	fe80::42:acff:fe11:3/64	scope	link

				 valid_lft	forever	preferred_lft	forever

Lab	1	-	Docker	Refresh	(optional)

23

Exit	the	container	namespace	with	CTRL+d	or	exit.

In	addition	to	using	nsenter	to	enter	the	namespace	of	your	container,	you	can	also	execute
commands	in	that	namespace	with	docker	exec.

$	docker	exec	<container-name	OR	container-id>	<cmd>

[student@localhost	lab1]$	docker	exec	apache	pwd

/opt/app-root/src

Whew,	so	we	do	have	some	options.	Now,	remember	that	this	lab	is	all	about	containerizing
your	existing	apps.	You	will	need	some	of	the	tools	listed	above	to	go	through	the	process	of
containerizing	your	apps.	Troubleshooting	problems	when	you	are	in	a	container	is	going	to
be	something	that	you	get	very	familiar	with.

Before	we	move	on	to	the	next	section	let's	clean	up	the	apache	container	so	we	don't	have
it	hanging	around.

[student@localhost	lab1]$	docker	rm	-f	apache

Apache

[student@localhost	lab1]$	cd	$HOME

[student@localhost	~]$

Congratulations!!!!!	You	have	completed	this	lab.

Lab	1	-	Docker	Refresh	(optional)

24

Lab	2	-	OpenShift	Command	Line	Interface
(CLI)

OpenShift	Container	Platform	ships	with	a	feature	rich	web	console	as	well	as	a	command
line	interface	tool	(CLI)	to	provide	users	with	a	nice	interface	to	work	with	applications
deployed	to	the	platform.	The	OpenShift	CLI	is	a	single	executable	written	in	the	Go
programming	language	and	is	available	for	the	following	operating	systems:

Microsoft	Windows

macOS

Linux

This	lab	should	be	performed	on	the	machine	in	front	of	you	unless	otherwise	instructed.

Expected	completion:	15	minutes

Topics:

Downloading	OpenShift	CLI

Extracting	the	OpenShift	CLI

Verify	OpenShift	CLI	installation

Useful	OpenShift	CLI	commands

Tip
First	three	topics	are	already	performed	on	the	machine	in	front	of	you.	If	you
are	using	this	machine	you	can	proceed	with	paragraph	Useful	OpenShift	CLI
commands.

Downloading	OpenShift	CLI

During	this	lab,	we	are	going	describe	how	to	setup	the	OpenShift	CLI	tool	and	add	them	to
our	operating	system	PATH	environment	variables	so	the	executable	is	accessible	from	any
directory	on	the	command	line.	For	your	convenience	this	is	explained	and	for	your
reference	but	OpenShift	CLI	tool	is	already	installed	in	the	OCP	environment	in	front	of	you.

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

25

Tip This	is	for	your	reference.	The	environment	in	front	of	you	is	already	setup	with
the	oc	command.	You	can	proceed	with	paragraph	Useful	CLI	commands

The	first	thing	we	want	to	do	is	download	the	correct	executable	for	your	operating	system
as	linked	below:	OpenShift	CLI	can	be	downloaded	here	from	the	Red	Hat’s	Customer
Portal:	https://access.redhat.com/downloads/content/290

Once	the	file	has	been	downloaded,	you	will	need	to	extract	the	contents	as	it	is	a
compressed	archive.	I	would	suggest	saving	this	file	to	the	following	directories:

Windows

C:\>	cd	C:\OpenShift

macOS

$	cd	~/bin

Linux

$	cd	~/bin

Extracting	the	OpenShift	CLI

Once	you	have	the	tools	downloaded,	you	will	need	to	extract	the	contents:

Windows

In	order	to	extract	a	zip	archive	on	windows,	you	will	need	a	zip	utility	installed	on	your
system.	With	newer	versions	of	windows	(greater	than	XP),	this	is	provided	by	the	operating
system.	Just	right	click	on	the	downloaded	file	using	file	explorer	and	select	to	extract	the
contents.

macOS

Open	up	a	terminal	window	and	change	to	the	directory	where	you	downloaded	the	file.
Once	you	are	in	the	directory,	enter	in	the	following	command:

$	tar	zxvf	oc-3.4.1.12-macosx.tar.gz

Linux

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

26

https://access.redhat.com/downloads/content/290

Open	up	a	terminal	window	and	change	to	the	directory	where	you	downloaded	the	file.
Once	you	are	in	the	directory,	enter	in	the	following	command:

$	tar	zxvf	oc-3.4.1.12-linux.tar.gz

Adding	oc	to	your	PATH

Windows

Because	changing	your	PATH	on	windows	varies	by	version	of	the	operating	system,	we	will
not	list	each	operating	system	here.	However,	the	general	workflow	is	right	click	on	your
computer	name	inside	of	the	file	explorer.	Select	Advanced	system	settings.	I	guess
changing	your	PATH	is	considered	an	advanced	task?	:)	Click	on	the	advanced	tab,	and
then	finally	click	on	Environment	variables.	Once	the	new	dialog	opens,	select	the	Path
variable	and	add	";C:\OpenShift"	at	the	end.	For	an	easy	way	out,	you	could	always	just
copy	it	to	C:\Windows	or	a	directory	you	know	is	already	on	your	path.

macOS

$	export	PATH=$PATH:~/bin

Linux

$	export	PATH=$PATH:~/bin

Verify

At	this	point,	we	should	have	the	oc	tool	available	for	use.	Let’s	test	this	out	by	printing	the
version	of	the	oc	command:

[student@localhost	~]$	whereis	oc

oc:	/usr/bin/oc	/usr/share/man/man1/oc.1.gz

[student@localhost	~]$	oc	version

oc	v3.4.1.12

kubernetes	v1.4.0+776c994

features:	Basic-Auth	GSSAPI	Kerberos	SPNEGO

Server	https://192.168.122.45:8443

openshift	v3.4.1.12

kubernetes	v1.4.0+776c994

If	you	get	an	error	message,	the	PATH	is	not	updated	correctly.	If	you	need	help,	raise	your
hand	and	the	instructor	will	assist.

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

27

Tip
The	OCP	environment	is	automatically	started	as	a	system	daemon	service
called	oc-cluster.	In	other	words	no	need	to	stop	or	start	the	OCP	environment.
this	is	for	your	reference.

You	can	start	the	OCP	environment	using	the	following	command:

[student@localhost	~]$	sudo	systemctl	start	oc-cluster

You	can	stop	the	OCP	environment	using	the	following	command:

[student@localhost	~]$	sudo	systemctl	stop	oc-cluster

Check	the	status	of	the	OCP	environment	using	the	following	command:

[student@localhost	~]$	sudo	systemctl	status	oc-cluster

oc-cluster.service	-	OpenShift	Cluster	Service

			Loaded:	loaded	(/etc/systemd/system/oc-cluster.service;	enabled;	vendor	preset:	dis

abled)

			Active:	active	(exited)	since	Wed	2017-04-12	04:01:12	EDT;	39min	ago

		Process:	2558	ExecStart=/usr/local/bin/oc-cluster-up.sh	(code=exited,	status=0/SUCCE

SS)

	Main	PID:	2558	(code=exited,	status=0/SUCCESS)

			Memory:	0B

			CGroup:	/system.slice/oc-cluster.service

Apr	12	04:01:11	localhost.localdomain	oc-cluster-up.sh[2558]:	Waiting	for	API...

Apr	12	04:01:11	localhost.localdomain	oc-cluster-up.sh[2558]:	OpenShift	serve...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	--	Removing	tem...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	--	Server	Infor...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	OpenShift	serve...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	The	server	is	a...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	https://192.168...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	To	login	as	adm...

Apr	12	04:01:12	localhost.localdomain	oc-cluster-up.sh[2558]:	oc	login	-u	sys...

Apr	12	04:01:12	localhost.localdomain	systemd[1]:	Started	OpenShift	Cluster	S...

Hint:	Some	lines	were	ellipsized,	use	-l	to	show	in	full.

Useful	OpenShift	CLI	commands

The	Openshift	CLI	allows	interaction	with	the	various	objects	that	are	managed	by	OpenShift
Container	Platform.	Many	common	oc	operations	are	invoked	using	the	following	syntax:

[student@localhost	~]$	oc	<action>	<object_type>	<object_name>

Where

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

28

An	<action>	to	perform,	such	as	get	or	describe.

The	<object_type>	to	perform	the	action	on,	such	as	service	or	the	abbreviated	svc.

The	<object_name>	of	the	specified	<object_type>.

The	student	user	is	sudoer.	They	can	execute	commands	with	'--as=system:admin'.

Now,	lets	work	with	the	OCP	environment	to	showcase	some	useful	CLI	commands:

Openshift	client	help:

[student@localhost	~]$	oc	help

Log	in	to	the	OCP	server	as	admin	user:

[student@localhost	~]$	oc	login	-u	system:admin

Logged	into	"https://192.168.122.45:8443"	as	"system:admin"	using	existing	credentials

.

You	have	access	to	the	following	projects	and	can	switch	between	them	with	'oc	project

	<projectname>':

	 default

	 kube-system

			 *	myproject

	 openshift

	 openshift-infra

Using	project	"myproject".

Check	who	is	logged	in:

[student@localhost	~]$	oc	whoami

system:admin

Display	one	or	many	resources	using:

[student@localhost	~]$	oc	get

[(-o|--output=)json|yaml|wide|custom-columns=...|custom-columns-file=...|go-template=.

..|go-template-file=...|jsonpath=...|jsonpath-file=...]

(TYPE	[NAME	|	-l	label]	|	TYPE/NAME	...)	[flags]	[options]

Possible	resources	include	builds,	buildConfigs,	services,	pods,	etc.	To	see	a	list	of	common
resources,	use	'oc	get'.	Some	resources	may	omit	advanced	details	that	you	can	see	with	'-o
wide'.	If	you	want	an	even	more	detailed	view,	use	'oc	describe'.

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

29

List	all	pods	in	ps	output	format

[student@localhost	~]$	oc	get	pods

List	all	pods	and	show	more	details	about	them

[student@localhost	~]$	oc	get	-o	wide	pods

List	a	single	pod	in	JSON	output	format.

[student@localhost	~]$	oc	get	-o	json	pod	apache

List	a	single	replication	controller	with	specified	ID	in	ps	output	format.

[student@localhost	~]$	oc	get	rc	apache

List	build	config	with	specified	ID	in	ps	output	format.

[student@localhost	~]$	oc	get	bc	apache

List	deployment	config	with	specified	ID	in	ps	output	format.

[student@localhost	~]$	oc	get	dc	apache

End	the	current	session.

[student@localhost	~]$	oc	logout

Log	in	in	OCP	as	developer	user.

[student@localhost	~]$	oc	login	-u	developer	-p	developer

Login	successful.

You	have	one	project	on	this	server:	"myproject"

Using	project	"myproject".

[student@localhost	~]$	oc	get	projects

NAME					 DISPLAY	NAME			STATUS

myproject			My	Project		Active

Check	who	is	logged	in.

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

30

[student@localhost	~]$	oc	whoami

Developer

Create	new	project.

[student@localhost	~]$	oc	new-project	<project-name>

Switch	to	another	project.

[student@localhost	~]$	oc	project	<project-name>

Get	current	status	of	OCP	environment.

[student@localhost	~]$	sudo	systemctl	status	oc-cluster

Start	the	OCP	environment.

[student@localhost	~]$	sudo	systemctl	start	oc-cluster

Stop	the	OCP	environment.

[student@localhost	~]$	sudo	systemctl	stop	oc-cluster

Congratulations!!!!!	You	have	completed	this	lab.

Lab	2	-	OpenShift	Command	Line	Interface	(CLI)

31

Lab	3	-	Analyzing	a	microservices	application

Typically,	it	is	best	to	break	down	services	into	the	simplest	components	and	then
containerize	each	of	them	independently.	However,	when	initially	migrating	an	application	it
is	not	always	easy	to	break	it	up	into	little	pieces	but	you	can	start	with	big	containers	and
work	towards	breaking	them	into	smaller	pieces.

In	this	lab	we	will	create	a	project	which	contains	multiple	container	images	comprised	of
multiple	services	since	our	application	is	already	a	microservices	application.	In	lab	3	we	will
describe	and	run	the	microservices	application	which	is	already	split	up	into	more
manageable	pieces.

This	lab	should	be	performed	on	the	machine	in	front	of	you	unless	otherwise	instructed.

Expected	completion:	20-30	minutes

Topics:

Prerequisites

Overview	microservices	application

Exploring	OpenShift	template

Setup	OCP	environment	based	on	pre-built	OpenShift	template

Exploring	the	running	containers

Connecting	to	the	application

Prerequisites

To	check	if	OpenShift	Container	Platform	(OCP)	is	running	execute:

source,bash]

[student@localhost	~]$	sudo	systemctl	status	oc-cluster

Lab	3	-	Analyzing	a	microservices	application

32

If	you	get	no	cluster	running	start	ODP	with

[student@localhost	~]$	sudo	systemctl	start	oc-cluster

Now	log	in	to	OpenShift	with	username	developer	and	password	developer	:

[student@localhost	~]$	oc	login	-u	developer	-p	developer

Login	successful.

You	have	one	project	on	this	server:	"myproject"

Using	project	"myproject".

You	are	now	logged	in	to	OpenShift	and	are	using	the	myproject	project.	You	can	also	view
the	OpenShift	web	console	by	using	the	same	credentials	to	log	in	using	Firefox	Web
Browser	as	depicted	below.

First	we	are	going	to	create	a	new	project	called	lab3.

Lab	3	-	Analyzing	a	microservices	application

33

[student@localhost	~]$	oc	new-project	lab3

Now	using	project	"lab3"	on	server	"https://192.168.122.45:8443".

You	can	add	applications	to	this	project	with	the	'new-app'	command.	For	example,	try:

oc	new-app	centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to	build	a	new	example	application	in	Ruby.

Overview	microservices	application

The	microservices	application	we	are	going	to	use	in	lab	3	is	a	simple	AngularJS
(https://angularjs.org/)	and	Spring	(http://spring.io/)	application	using	food	and	wine	datas.

Our	initial	OpenShift	template	will	be	using	the	following	four	services:

ui-service:	AngularJS	and	Spring	application

food-service:	Backend	service	providing	food	data

wine-service:	Backend	service	providing	wine	data

PostgreSQL	service	serving	the	food	and	wine	data

The	food-	and	wine-service	are	connecting	directly	to	the	PostgreSQL	environment.	The
illustration	below	depicts	the	starting	point	of	our	microservices	application.

Lab	3	-	Analyzing	a	microservices	application

34

https://angularjs.org/
http://spring.io/

In	the	next	steps,	we	are	going	to	setup	and	run	the	above	environment	in	OCP.	Exploring
Microservices	Application	Familiarize	yourself	with	the	initial	Microservices	Application	by
opening	a	code	editor	using	the	following	steps:

[student@localhost	~]$	cd	~/summit-2017-dataservices/labs/lab3/projects

[student@localhost	~]	code	.

Dive	into	the	code

Caution

In	the	ui-service,	food-services	and	wine-services	directory	you’ll	find	all
maven	based	java	projects.	To	limit	the	use	of	wifi	during	this	Summit	lab	all
the	projects	are	prebuilt	and	the	WAR	files	containing	the	ui	and	business
logic	are	already	available	for	your	convenience,	see	target	directory.	I.e.
/home/student/summit-2017-dataservices/labs/lab3/projects/ui-
service/target/ROOT.war	/home/student/summit-2017-
dataservices/labs/lab3/projects/food-service/target/ROOT.war
/home/student/summit-2017-dataservices/labs/lab3/projects/wine-
service/target/ROOT.war	Same	applies	for	the	projects	used	in	lab	4.

Lab	3	-	Analyzing	a	microservices	application

35

Exploring	OpenShift	template

An	OpenShift	template	describes	a	set	of	objects	that	can	be	parameterized	and	processed
to	produce	a	list	of	objects	for	creation	by	OpenShift	Container	Platform.	The	objects	to
create	can	include	anything	that	users	have	permission	to	create	within	a	project,	for
example	services,	build	configurations,	and	deployment	configurations.	A	template	may	also
define	a	set	of	labels	to	apply	to	every	object	defined	in	the	template.	See	the	template	guide
for	details	about	creating	and	using	templates.	Check	out	directory	~/summit-2017-
dataservices/labs/lab3_ocp/templates.

[student@localhost	~]$	cd	~/summit-2017-dataservices/labs/lab3_ocp

In	this	directory	you	will	find	the	OpenShift	template	containing	the	configuration	needed	to
setup	a	complete	OCP	environment	for	lab3.	Take	a	look	at	lab3-template.json	using	a	pre-
installed	code	editor.

[student@localhost	lab3_ocp]$	code	templates/lab3-template.json

Setup	OCP	environment	based	on	pre-built	OpenShift
template

If	you	have	a	JSON	or	YAML	file	that	defines	a	template,	for	example	in	our	case	we	are
using	lab3-template.json,	you	can	upload	the	template	to	projects	using	the	CLI.	This	saves
the	template	to	the	project	for	repeated	use	by	any	user	with	appropriate	access	to	that
project.	See	for	more	instructions	on	writing	your	own	templates.	Furthermore	you	can	use
the	CLI	to	process	templates	and	use	the	configuration	that	is	generated	to	create	objects	as
shown	below.

Lab	3	-	Analyzing	a	microservices	application

36

https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/index.html#architecture-core-concepts-index
https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/pods_and_services.html#services
https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/builds_and_image_streams.html#builds
https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/deployments.html#deployments-and-deployment-configurations
https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/pods_and_services.html#labels
https://docs.openshift.com/container-platform/3.4/dev_guide/templates.html#dev-guide-templates
https://docs.openshift.com/container-platform/3.4/dev_guide/templates.html#writing-templates

[student@localhost	lab3_ocp]$	oc	process	-f	templates/lab3-template.json	|	oc	create	-f

	-

service	"wineapp-wine-service"	created

service	"wineapp-food-service"	created

service	"wineapp-postgresql"	created

service	"wineapp-ui"	created

route	"wineapp-route"	created

imagestream	"wineapp-ui"	created

imagestream	"wineapp-food-service"	created

imagestream	"wineapp-wine-service"	created

buildconfig	"wineapp-food-service"	created

buildconfig	"wineapp-ui"	created

buildconfig	"wineapp-wine-service"	created

deploymentconfig	"wineapp-food-service"	created

deploymentconfig	"wineapp-postgresql"	created

deploymentconfig	"wineapp-ui"	created

deploymentconfig	"wineapp-wine-service"	created

As	mentioned	earlier	we	would	like	to	minimize	the	use	of	wifi	during	this	Summit	lab.
Typically	the	template	will	build	the	pod	downloading	the	source	code	from	a	github
repository.	Since	we	have	already	built	our	projects	using	maven	(mvn	clean	package	-
DskipTests),	we	can	use	binary	deployment	with	following	command:

[student@localhost	lab3_ocp]$	cd	~/summit-2017-dataservices/labs/lab3

[student@localhost	lab3]$	oc	start-build	<build	config>	<options>

For	more	information	How	Builds	works,	see	the	OpenShift	Cotainer	Platform
documentation:	https://docs.openshift.com/container-
platform/3.4/dev_guide/builds/index.html

Get	all	available	build	configs

[student@localhost	lab3_ocp]$	oc	get	bc

NAME	TYPE	FROM	LATEST

wineapp-food-service	Source	 Binary	 0

wineapp-ui	Source	 Binary	 0

wineapp-wine-service	Source	 Binary	 0

Now	start	the	binary	builds	using	the	following	commands:

Lab	3	-	Analyzing	a	microservices	application

37

https://docs.openshift.com/container-platform/3.4/dev_guide/builds/index.html

[student@localhost	lab3]$	cd	~/summit-2017-dataservices/labs/lab3/projects

[student@localhost	projects]$	oc	start-build	wineapp-food-service	--from-dir=food-serv

ice/deployments

Uploading	directory	"food-service/deployments"	as	binary	input	for	the	build	...

build	"wineapp-food-service-1"	started

[student@localhost	projects]$	oc	start-build	wineapp-wine-service	--from-dir=wine-serv

ice/deployments

Uploading	directory	"wine-service/deployments"	as	binary	input	for	the	build	...

build	"wineapp-wine-service-1"	started

[student@localhost	projects]$	oc	start-build	wineapp-ui	--from-dir=ui-service/deployme

nts

Uploading	directory	"ui-service/deployments"	as	binary	input	for	the	build	...

build	"wineapp-ui-1"	started

Now	the	containers	will	be	built	and	deployed.	Let’s	see	how	it	looks	like	in	the	OpenShift
Web	Console.

Exploring	the	running	the	containers

Login	into	the	OpenShift	Web	Console	and	login	with	username	developer

Click	on	project	lab3	and	the	lab3	overview	page	should	appear	as	depicted	below.

Lab	3	-	Analyzing	a	microservices	application

38

Scroll	down	and	use	the	menu	options	to	familiarize	with	the	OpenShift	lab3	containers.

Connecting	to	the	application

An	OpenShift	Container	Platform	route	exposes	a	service	at	a	host	name,	like
www.example.com,	so	that	external	clients	can	reach	it	by	name.

In	the	example	depicted	in	screenshots	before	we	can	see	a	route	defined	in	lab3	project
which	expose	the	webui	of	our	food	and	wine	microservices	application	at	url:
http://wineapp-route-lab3.192.168.122.45.xip.io

Another	way	to	get	the	routes	is	to	navigate	to	the	Browse	→	Routes	page.	Click	on	the	URL
of	the	route	and	you	should	be	redirected	to	the	food	and	wine	microservices	application	as
depicted	below.

Lab	3	-	Analyzing	a	microservices	application

39

https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/routes.html#architecture-core-concepts-routes
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/pods_and_services.html#services
http://wineapp-route-lab3.192.168.122.45.xip.io

The	wineapp	microservices	application	showcases	a	web	application	providing	create	and
read	functionality.	Click	on	Wine	and/or	Food	and	see	if	existing	data	is	retrieved	from	the
PostgreSQL	database.	Furthermore	try	to	add	your	favorite	wine	and	food	using	the
application.

Cleanup	lab	3

Delete	project	using	OpenShift	CLI

[student@localhost	projects]$	oc	delete	project	lab3

Remove	the	docker	images	To	remove	the	created	docker	images	during	this	lab	you	can	do

[student@localhost	projects]$	docker	images	|	grep	wineapp

REPOSITORY	TAG	IMAGE	ID	CREATED	SIZE

172.30.1.1:5000/lab3/wineapp-food-service	latest	1af952bac3a7	About	an	hour	ago	877.8	

MB

172.30.1.1:5000/lab3/wineapp-wine-service	latest	d934bcff78c4	About	an	hour	ago	873	MB

172.30.1.1:5000/lab3/wineapp-ui	latest	3db40e59a493	About	an	hour	ago	775.9	MB

You	can	remove	the	image	one	by	one	using:

Lab	3	-	Analyzing	a	microservices	application

40

[student@localhost	projects]$	docker	rmi	<image	id>

For	you	convenience	we	have	a	script	called	rmlab3	available	which	removes	all	images
with	wineapp	in	the	name:

[student@localhost	projects]$	rmlab3

Congratulations!!!!!	You	have	completed	this	lab.

Lab	3	-	Analyzing	a	microservices	application

41

Lab	4	-	Changing	the	microservices	application
using	data	services

In	this	lab	you	will	change	the	microservices	application	to	use	data	services	provided	by
Red	Hat	JBoss	Data	Virtualization.	In	this	process	we	explore	the	changes	we	need	to	make
in	order	to	utilize	the	capabilities	of	Red	Hat	JBoss	Data	Virtualization.

This	lab	should	be	performed	on	the	machine	in	front	of	you	unless	otherwise	instructed.

Expected	completion:	20-30	minutes

Topics:

Prerequisites

Overview	Microservices	Application	using	data	services

Exploring	OpenShift	template

Setup	environment	based	on	pre-built	OpenShift	template

Exploring	the	running	containers

Connecting	to	the	application

Prerequisites

Log	in	to	OpenShift	with	username	developer	and	password	developer	:

[student@localhost	~]$	oc	login	-u	developer	-p	developer

Login	successful.

You	have	one	project	on	this	server:	"myproject"

You	are	now	logged	in	to	OpenShift	and	are	using	the	myproject	project.	First	we	are	going
to	create	a	new	project	called	lab4.

Lab	4	-	Changing	the	microservices	application	using	data	services

42

[student@localhost	~]$	oc	new-project	lab4

Now	using	project	"lab4"	on	server	"https://192.168.122.45:8443".

You	can	add	applications	to	this	project	with	the	'new-app'	command.	For	example,	try:

oc	new-app	centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to	build	a	new	example	application	in	Ruby.

Overview	Microservices	Application	using	data	services

The	microservices	application	we	are	going	to	use	in	this	lab	is	a	simple	AngularJS
(https://angularjs.org/)	and	Spring	(http://spring.io/)	application.

The	OpenShift	template	will	be	using	the	following	five	services:

ui-service:	AngularJS	and	Spring	application

food-service:	Backend	service	providing	food	data

wine-service:	Backend	service	providing	wine	data

jdv-service:	Red	Hat	JBoss	Data	Virtualization	(JDV)	providing	an	abstraction	layer
between	the	food-service,	wine-service	and	the	underlying	PostgreSQL	database

PostgreSQL	service	serving	the	food	and	wine	data

The	food-	and	wine-service	are	connecting	to	the	JDV	environment	and	the	JDV
environment	will	connect	to	the	PostgreSQL	service.	The	illustration	below	depicts	the	end
result	of	our	microservices	application	using	JDV	running	on	OCP.

Lab	4	-	Changing	the	microservices	application	using	data	services

43

https://angularjs.org/
http://spring.io/

Exploring	OpenShift	template

Check	out	directory	~/summit-2017-dataservices/labs/lab4_ocp/templates.

[student@localhost	lab4_ocp]$	cd	~/summit-2017-dataservices/labs/lab4_ocp

In	this	directory	you	will	find	the	OpenShift	template	containing	the	configuration	needed	to
setup	the	complete	lab4	environment.	Take	a	look	at	lab4-template.json	using	a	pre-installed
code	editor.

[student@localhost	lab4_ocp]$	code	templates/lab4-template.json

Lab	4	-	Changing	the	microservices	application	using	data	services

44

Compare	lab4-template.json	against	lab3-template.json	and	see	the	differences.

[student@localhost	lab4_ocp]$	code	-d	templates/lab4-template.json	~/summit-2017-datas

ervices/labs/lab3_ocp/templates/lab3-template.json

There	might	be	more	changes	than	your	initial	thoughts,	take	a	look	at	the	Route,	Services,
BuildConfig	and	DeploymentConfig	sections	especially	the	sections	with	jdv	and	jdv-ext	in
there.

Setup	environment	based	on	pre-built	OpenShift	template

Files	for	runtime	artifacts	are	passed	to	the	JDV	for	OpenShift	image	using	the	OpenShift
secret	mechanism.	This	includes	the	environment	files	for	the	data	sources	and	resource
adapters,	as	well	as	any	additional	data	files.	These	files	need	to	be	present	locally	so	we
have	to	create	secrets	for	them.

[student@localhost	lab4_ocp]$	oc	create	-f	extensions/datavirt-app-secret.yaml

[student@localhost	lab4_ocp]$	oc	secrets	new	datavirt-app-config	extensions/datasource

s.properties

[student@localhost	lab4_ocp]$	oc	adm	policy	add-role-to-user	view	system:serviceaccoun

t:lab4:datavirt-service-account

If	you	have	a	JSON	or	YAML	file	that	defines	a	template,	for	example	in	our	case	we	are
using	lab4-template.json,	you	can	upload	the	template	to	projects	using	the	CLI.	This	saves
the	template	to	the	project	for	repeated	use	by	any	user	with	appropriate	access	to	that
project.	See	for	more	instructions	on	writing	your	own	templates.	Furthermore	you	can	use
the	CLI	to	process	templates	and	use	the	configuration	that	is	generated	to	create	objects	as
shown	below.

Lab	4	-	Changing	the	microservices	application	using	data	services

45

https://docs.openshift.com/container-platform/3.4/dev_guide/templates.html#writing-templates

[student@localhost	lab4_ocp]$	oc	process	-f	templates/lab4-template.json	|	oc	create	-f

	-

buildconfig	"rhapp-food-service"	created

buildconfig	"rhapp-jdv"	created

buildconfig	"rhapp-jdv-ext"	created

buildconfig	"rhapp-ui"	created

buildconfig	"rhapp-wine-service"	created

imagestream	"rhapp-food-service"	created

imagestream	"rhapp-jdv"	created

imagestream	"rhapp-jdv-ext"	created

imagestream	"rhapp-ui"	created

imagestream	"rhapp-wine-service"	created

deploymentconfig	"rhapp-food-service"	created

deploymentconfig	"rhapp-jdv"	created

deploymentconfig	"rhapp-postgresql"	created

deploymentconfig	"rhapp-ui"	created

deploymentconfig	"rhapp-wine-service"	created

route	"jdbc-rhapp-jdv"	created

route	"secure-rhapp-jdv"	created

route	"rhapp-jdv"	created

route	"rhapp-ui"	created

service	"rhapp-food-service"	created

service	"rhapp-jdv"	created

service	"rhapp-postgresql"	created

service	"rhapp-ui"	created

service	"rhapp-wine-service"	created

As	mentioned	earlier	we	would	like	to	minimize	the	use	of	wifi	during	this	Summit	lab.
Typically	the	template	will	be	built	the	pod	downloading	the	source	code	from	a	github
repository.	Since	we	already	have	built	our	projects	using	maven	(mvn	clean	package	-
DskipTests)	we	can	do	binary	deployment	with	following	command:

[student@localhost	projects]$	oc	start-build	<build	config>

For	more	information	on	How	OpenShift	Builds	works,	see	the	OpenShift	Cotainer	Platform
documentation:	https://docs.openshift.com/container-
platform/3.4/dev_guide/builds/index.html

Get	all	available	build	configs.

Lab	4	-	Changing	the	microservices	application	using	data	services

46

https://docs.openshift.com/container-platform/3.4/dev_guide/builds/index.html

[student@localhost	lab4_ocp]$	oc	get	bc

NAME	TYPE	FROM	LATEST

rhapp-food-service	Source	Binary	0

rhapp-jdv	Source	Binary	0

rhapp-jdv-ext	Docker	Binary	1

rhapp-ui	Source	Binary	0

rhapp-wine-service	Source	Binary	0

Now	start	the	binary	builds	using	the	following	commands:

[student@localhost	lab4_ocp]$	oc	start-build	rhapp-jdv-ext	--from-dir=extensions

Uploading	directory	"extensions"	as	binary	input	for	the	build	...

build	"rhapp-jdv-ext-2"	started

Before	going	to	the	next	step	make	sure	the	rhapp-jdv-ext	build	is	completed.

[student@localhost	lab4_ocp]$	oc	start-build	rhapp-jdv	--from-dir=vdb

Uploading	directory	"vdb"	as	binary	input	for	the	build	...

build	"rhapp-jdv-1"	started

[student@localhost	lab4_ocp]$	cd	~/summit-2017-dataservices/labs/lab4/projects

[student@localhost	projects]$	oc	start-build	rhapp-food-service	--from-dir=food-servic

e/deployments

Uploading	directory	"food-service/deployments"	as	binary	input	for	the	build	...

build	"rhapp-food-service-1"	started

[student@localhost	projects]$	oc	start-build	rhapp-wine-service	--from-dir=wine-servic

e/deployments

Uploading	directory	"wine-service/deployments"	as	binary	input	for	the	build	...

build	"rhapp-wine-service-1"	started

[student@localhost	projects]$	oc	start-build	rhapp-ui	--from-dir=ui-service/deployment

s

Uploading	directory	"ui-service/deployments"	as	binary	input	for	the	build	...

build	"rhapp-ui-1"	started

Now	the	containers	will	be	built	and	deployed.	Let’s	see	how	it	looks	like	in	the	OpenShift
Web	Console.	Login	into	the	OpenShift	Web	Console	and	login	with	username	developer

Exploring	the	Running	Containers

Lab	4	-	Changing	the	microservices	application	using	data	services

47

Click	project	lab4	and	the	lab4	overview	page	should	appear	as	depicted	below.

Scroll	down	and	use	the	menu	options	to	familiarize	with	the	OpenShift	lab4	project.

Lab	4	-	Changing	the	microservices	application	using	data	services

48

Connecting	to	the	application

An	OpenShift	Container	Platform	route	exposes	a	service	at	a	host	name,	like
www.example.com,	so	that	external	clients	can	reach	it	by	name.

In	the	example	depicted	in	screenshots	before	we	can	see	routes	defined	in	lab4	project
which	expose	the	webui	of	our	food	and	wine	microservices	application	at	url:	http://rhapp-ui-
lab4.192.168.122.45.xip.io

Another	way	to	get	the	routes	is	to	navigate	to	the	Applications→Routes	page.	Click	on	the
URL	of	the	ui	route	and	you	should	be	redirected	to	the	food	and	wine	microservices
application	as	depicted	below.

Lab	4	-	Changing	the	microservices	application	using	data	services

49

https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/routes.html#architecture-core-concepts-routes
https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/pods_and_services.html#services
http://rhapp-ui-lab4.192.168.122.45.xip.io

Click	on	menu	option	wine	and	you	should	see	similar	data	as	depicted	below

Click	on	menu	option	food	and	you	should	see	similar	data	as	depicted	below

Lab	4	-	Changing	the	microservices	application	using	data	services

50

Cleanup	lab	4

Delete	project	using	OpenShift	CLI

[student@localhost	projects]$	oc	delete	project	lab4

Remove	the	docker	images	To	remove	the	created	docker	images	during	this	lab	you	can	do

[student@localhost	projects]$	docker	images	|	grep	rhapp

REPOSITORY	TAG	IMAGE	ID	CREATED	SIZE

172.30.1.1:5000/lab3/rhapp-ui	latest	e4b265ec1c0a	42	minutes	ago	727.1	MB

172.30.1.1:5000/lab3/rhapp-wine-service	latest	eaba6f6ce6d9	42	minutes	ago	796.3	MB

172.30.1.1:5000/lab3/rhapp-food-service	latest	0e9a01a2f132	43	minutes	ago	799.2	MB

172.30.1.1:5000/lab4/rhapp-jdv	latest	5b3603a285c6	46	minutes	ago	972.6	MB

You	can	remove	the	image	one	by	one	using:

[student@localhost	projects]$	docker	rmi	<image	id>

For	you	convenience	we	have	a	script	called	rmlab4	available	which	removes	all	images
with	rhapp	in	the	name:

Lab	4	-	Changing	the	microservices	application	using	data	services

51

[student@localhost	projects]$	rmlab4

Congratulations!!!!!	You	have	completed	this	lab.

Lab	4	-	Changing	the	microservices	application	using	data	services

52

Lab	4	part	II	-	Changing	the	microservices
application	using	data	services	with	security
Data	roles,	also	called	entitlements,	are	sets	of	permissions	defined	per	VDB	that	dictate
data	access	(create,	read,	update,	delete).	Data	roles	use	a	fine-grained	permission	system
that	JDV	will	enforce	at	runtime	and	provide	audit	log	entries	for	access	violations.

Before	applying	Role	Based	Access	Control	(RBAC),	note/consider	the	following:	A	VDB
deployed	without	any	defined	data	roles	is	open	for	access	to	any	authenticated	user
Restrict	source	system	access	by	modeling	the	VDB	such	that	Imported	metadata	is
narrowed	to	what	will	be	used	(directly	or	indirectly)	by	the	view	models	At	a	more	granular
level,	source	table	columns	that	will	not	be	used	or	required	are	removed	or	the	source	table
marked	as	non-updatable.

Let’s	see	this	in	action.

First	we	are	going	to	create	a	new	project	called	lab4-secure.

[student@localhost	~]$	oc	new-project	lab4-secure

Now	using	project	"lab4-secure"	on	server	"https://192.168.122.45:8443".

You	can	add	applications	to	this	project	with	the	'new-app'	command.	For	example,	try:

	 oc	new-app	centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to	build	a	new	example	application	in	Ruby.

Check	out	directory	~/summit-2017-dataservices/labs/lab4_secure_ocp/templates.

[student@localhost	~]$	cd	~/summit-2017-dataservices/labs/lab4_secure_ocp

In	this	directory	you	will	find	the	OpenShift	template	containing	the	configuration	needed	to
setup	the	complete	lab4-secure	environment.	The	template	is	exactly	the	same	as	in	the
lab4	environment.	Take	a	look	at	food-vdb.xml	and	win-vdb.xml	using	a	pre-installed	code
editor.

[student@localhost	lab4_secure_ocp]$	code	vdb/secure-food-vdb.xml

[student@localhost	lab4_secure_ocp]$	code	vdb/secure-wine-vdb.xml

Compare	secure-food-vdb.xml	and	secure-wine-vdb.xml	against	the	ones	we	were	using
during	lab4	and	see	the	differences.	In	example:

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

53

[student@localhost	lab4_secure_ocp]$	code	-d	vdb/secure-wine-vdb.xml	~/summit-2017-dat

aservices/labs/lab4_ocp/vdb/wine-vdb.xml

[student@localhost	lab4_secure_ocp]$	code	-d	vdb/secure-food-vdb.xml	~/summit-2017-dat

aservices/labs/lab4_ocp/vdb/food-vdb.xml

Note	the	differences,	especially	in	the	data-role	section.	;)	Setup	environment	based	on	pre-
built	OpenShift	template	Files	for	runtime	artifacts	are	passed	to	the	JDV	for	OpenShift
image	using	the	OpenShift	secret	mechanism.	This	includes	the	environment	files	for	the
data	sources	and	resource	adapters,	as	well	as	any	additional	data	files.	These	files	need	to
be	present	locally	so	we	have	to	create	secrets	for	them.

[student@localhost	lab4_secure_ocp]$	oc	create	-f	extensions/datavirt-app-secret.yaml

[student@localhost	lab4_secure_ocp]$	oc	secrets	new	datavirt-app-config	extensions/dat

asources.properties

[student@localhost	lab4_ocp]$	oc	adm	policy	add-role-to-user	view	system:serviceaccoun

t:lab4-secure:datavirt-service-account

If	you	have	a	JSON	or	YAML	file	that	defines	a	template,	for	example	in	our	case	we	are
using	lab4-secure-template.json,	you	can	upload	the	template	to	projects	using	the	CLI.	This
saves	the	template	to	the	project	for	repeated	use	by	any	user	with	appropriate	access	to
that	project.	See	for	more	instructions	on	writing	your	own	templates.	Furthermore	you	can
use	the	CLI	to	process	templates	and	use	the	configuration	that	is	generated	to	create
objects	as	shown	below.

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

54

[student@localhost	lab4_ocp]$	oc	process	-f	templates/lab4-secure-template.json	|	oc	c

reate	-f	-

buildconfig	"rhapp-sec-food-service"	created

buildconfig	"rhapp-sec-jdv"	created

buildconfig	"rhapp-sec-jdv-ext"	created

buildconfig	"rhapp-sec-ui"	created

buildconfig	"rhapp-sec-wine-service"	created

imagestream	"rhapp-sec-food-service"	created

imagestream	"rhapp-sec-jdv"	created

imagestream	"rhapp-sec-jdv-ext"	created

imagestream	"rhapp-sec-ui"	created

imagestream	"rhapp-sec-wine-service"	created

deploymentconfig	"rhapp-sec-food-service"	created

deploymentconfig	"rhapp-sec-jdv"	created

deploymentconfig	"rhapp-sec-postgresql"	created

deploymentconfig	"rhapp-sec-ui"	created

deploymentconfig	"rhapp-sec-wine-service"	created

route	"jdbc-rhapp-sec-jdv"	created

route	"secure-rhapp-sec-jdv"	created

route	"rhapp-sec-jdv"	created

route	"rhapp-sec-ui"	created

service	"rhapp-sec-food-service"	created

service	"rhapp-sec-jdv"	created

service	"rhapp-sec-postgresql"	created

service	"rhapp-sec-ui"	created

service	"rhapp-sec-wine-service"	created

Get	all	available	build	configs

[student@localhost	lab4_ocp]$	oc	get	bc

NAME																					TYPE						FROM						LATEST

rhapp-sec-food-service			Source				Binary				0

rhapp-sec-jdv												Source				Binary				0

rhapp-sec-jdv-ext								Docker				Binary				1

rhapp-sec-ui													Source				Binary				0

rhapp-sec-wine-service			Source				Binary				0

Now	start	the	binary	builds	using	the	following	commands:

[student@localhost	lab4_secure_ocp]$	oc	start-build	rhapp-sec-jdv-ext	--from-dir=exten

sions

Uploading	directory	"extensions"	as	binary	input	for	the	build	...

build	"rhapp-sec-jdv-ext-2"	started

Go	to	the	OpenShift	Web	console	and	navigate	to	the	Builds→Builds	page.	Make	sure	the
build	rhapp-secure-jdv-ext	is	completed	and	proceed	with	the	next	step.

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

55

[student@localhost	lab4_secure_ocp]$	oc	start-build	rhapp-sec-jdv	--from-dir=vdb

Uploading	directory	"vdb"	as	binary	input	for	the	build	...

build	"rhapp-sec-jdv-2"	started

[student@localhost	lab4_secure_ocp]$	cd	~/summit-2017-dataservices/labs/lab4/projects

[student@localhost	projects]$	oc	start-build	rhapp-sec-food-service	--from-dir=food-se

rvice/deployments

Uploading	directory	"food-service/deployments"	as	binary	input	for	the	build	...

build	"rhapp-sec-food-service-1"	started

[student@localhost	projects]$	oc	start-build	rhapp-sec-wine-service	--from-dir=wine-se

rvice/deployments

Uploading	directory	"wine-service/deployments"	as	binary	input	for	the	build	...

build	"rhapp-sec-wine-service-1"	started

[student@localhost	projects]$	oc	start-build	rhapp-sec-ui	--from-dir=ui-service/deploy

ments

Uploading	directory	"ui-service/deployments"	as	binary	input	for	the	build	...

build	"rhapp-sec-ui-1"	started

Now	the	containers	will	be	built	and	deployed.	Let’s	see	how	our	web	application	and	in
particular	the	wine	and	food	data	looks	like	when	clicking	on	Wine	and	Food	menu	options.

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

56

Do	you	see	any	difference	in	the	wine/food	data	compared	to	the	previous	lab	4	without
security?	Explain	why….

Tip check	secure-wine-vdb.xml	and	secure-food-vdb.xml	again.

Cleanup	lab4_secure

Delete	project	using	OpenShift	CLI

[student@localhost	projects]$	oc	delete	project	lab4-secure

Remove	the	docker	images	To	remove	the	created	docker	images	during	this	lab	you	can	do

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

57

[student@localhost	projects]$	docker	images	|	grep	rhapp-sec

REPOSITORY																																																																		 TAG			

											 IMAGE	ID									 CREATED										 SIZE

172.30.1.1:5000/lab4-secure/rhapp-sec-wine-service																											latest			

											6b3908837766								About	an	hour	ago			884.7	MB

172.30.1.1:5000/lab4-secure/rhapp-sec-food-service																											latest			

											0a774c1c21ed								About	an	hour	ago			889.6	MB

172.30.1.1:5000/lab4-secure/rhapp-sec-ui																																					latest			

											09ec00b02d1c								About	an	hour	ago			775.6	MB

172.30.1.1:5000/lab4-secure/rhapp-sec-jdv																																				latest			

											d0c414c5c4cf								About	an	hour	ago			972.7	MB

172.30.1.1:5000/lab4-secure/rhapp-sec-jdv																																				<none>			

											1f9933bb9eb8								About	an	hour	ago			972.7	MB

172.30.1.1:5000/lab4-secure/rhapp-sec-jdv-ext																																latest			

											ff5776835b2b								About	an	hour	ago			972.7	MB

You	can	remove	the	image	one	by	one	using:

[student@localhost	projects]$	docker	rmi	<image	id>

For	you	convenience	we	have	a	script	called	rmlab4secure	available	which	removes	all
images	with	rhapp	in	the	name:

[student@localhost	projects]$	rmlab4secure

Congratulations,	you’ve	finished	all	labs!!!!!

In	this	year’s	Summit	lab	you	have	learnt	how	to	expose	data	as	services	in	a	microservice
architecture	using	Red	Hat	JBoss	Data	Virtualization	running	on	Red	Hat	OpenShift
Container	Platform.	Got	exited,	see	below	for	a	list	of	useful	resource	to	get	even	more
excited.	Enjoy	your	further	stay	at	Red	Hat	Summit	2017.

Lab	4	part	II	-	Changing	the	microservices	application	using	data	services	with	security

58

Resources

Description Website

OpenShift http://www.openshift.com	and
https://developers.redhat.com/products/openshift/

OpenShift	CLI	tool	download https://access.redhat.com/downloads/content/290

Red	Hat	Container	Catalog https://access.redhat.com/containers

OpenShift	Container	Tested
Integrations https://access.redhat.com/articles/2176281

Red	Hat	JBoss	Data	Virtualization
(JDV) http://developers.redhat.com/products/datavirt

Red	Hat	JDV	6.x	Supported
Configurations https://access.redhat.com/articles/703663

Red	Hat	JBoss	Data	Grid	(JDG) http://developers.redhat.com/products/datagrid

Red	Hat	JDG	6.x	Supported
Configurations https://access.redhat.com/articles/115883

Red	Hat	JDG	7.x	Supported
Configurations https://access.redhat.com/articles/2435931

Red	Hat	Middleware	images	for
OpenShift	Documentation

https://access.redhat.com/documentation/en/red-
hat-xpaas/0/paged/red-hat-xpaas-jdv-for-
openshift-image/

Resources

59

http://www.openshift.com
https://developers.redhat.com/products/openshift/
https://access.redhat.com/downloads/content/290
https://access.redhat.com/containers
https://access.redhat.com/articles/2176281
http://developers.redhat.com/products/datavirt
https://access.redhat.com/articles/703663
http://developers.redhat.com/products/datagrid
https://access.redhat.com/articles/115883
https://access.redhat.com/articles/2435931
https://access.redhat.com/documentation/en/red-hat-xpaas/0/paged/red-hat-xpaas-jdv-for-openshift-image/

	Introduction
	Acknowledgements
	Introduction
	Setup
	Lab 1 - Docker Refresh (optional)
	Lab 2 - OpenShift Command Line Interface (CLI)
	Lab 3 - Analyzing a microservices application
	Lab 4 - Changing the microservices application using data services
	Lab 4 part II - Changing the microservices application using data services with security
	Resources

