
A PRACTICAL INTRODUCTION TO
CONTAINER SECURITY

Bob Kozdemba
Principal Domain Architect

Dan Walsh
Senior Consulting Engineer

May 2017

A Practical Introduction to Container Security

ABSTRACT

Linux containers provide convenient application packing and run-time isolation in multi-tenant
environments. However, the security implications of running containerized applications is
often taken for granted. For example, today it is very easy to pull Docker images from the
internet and run them in the enterprise without examining their content and authenticity. In
this lab, you'll complete a series of hands on exercises aimed at understanding the concepts,
challenges and best practices associated with deploying containers in a secure fashion.

A Practical Introduction to Container Security

OVERVIEW/PREREQUISITES

This lab session is a low-level, hands-on introduction to container security using Red Hat
Enterprise Linux 7. It can be delivered by an instructor or consumed as a series of self paced
exercises.

The prerequisites include:
● Fundamental user and administrative Red Hat Enterprise Linux concepts
● Basic text editing skills using vim or nano
● An introductory knowledge of Docker is helpful.

A Practical Introduction to Container Security

COURSE OUTLINE

● Lab 0: Environment
● Lab 1: Configuration
● Lab 2: Authorization
● Lab 3: Isolation
● Lab 4: SELinux and Containers
● Lab 5: Inspecting Content
● Lab 5a: Trust and Signing
● Lab 6: The Atomic Scanner
● Lab 7: Custom Scanners

A Practical Introduction to Container Security

LAB 0: ENVIRONMENT

Your workstation is configured with the following virtual machines running RHEL7.3 Server
connected via a private libvirt network. Login is root. Password is redhat.

● rhserver0.example.com (Container host)
● rhserver1.example.com (Docker registry)
● rhserver2.example.com (Docker registry)
● dist.example.com (repo server)
● Virtual Machine Commands

○ Start, stop and reset

Open a terminal window and use ssh to login into the rhserver[0-2] servers.

ssh root@rhserver0.example.com

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Overview

During this lab you will configure rhserver1 and rhserver2 as docker registries. Most of the
remaining lab exercises will be performed on the rhserver0 server.

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Docker registry and firewall

Login to rhserver1.example.com. Start and enable the Docker registry service then open tcp
firewall port 5000. Finally, use curl to test connectivity to the registry services.

systemctl enable docker-distribution
systemctl start docker-distribution
systemctl status docker-distribution
firewall-cmd --add-port 5000/tcp --permanent
firewall-cmd --reload
curl localhost:5000/v2/
Output:
{}

Now repeat the above for rhserver2.example.com.

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Docker service

Login to rhserver0 and configure the docker service to use the rhserver1 and rhserver2
registries.

Edit the following variables in the /etc/sysconfig/docker file as such.

ADD_REGISTRY='--add-registry rhserver1.example.com:5000 --add-registry
rhserver2.example.com:5000'

INSECURE_REGISTRY=’--insecure-registry rhserver1.example.com:5000 --insecure-registry
rhserver2.example.com:5000’

Now restart the docker service.
systemctl restart docker

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Testing the registry

From rhserver0, use curl to test that each registry server is running.

curl http://rhserver1.example.com:5000/v2/

Expected output:
{}

curl http://rhserver2.example.com:5000/v2/

Expected output:
{}

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Tagging and pushing images to a remote registry

First examine the local docker image storage.

docker images

Expected output:
REPOSITORY TAG IMAGE ID CREATED SIZE
mystery latest 0ef2e08ed3fa 10 days ago 130 MB

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Tagging and pushing images to a remote registry

Tag the mystery image and push it to rhserver1.

docker tag mystery:latest rhserver1.example.com:5000/mystery
docker push rhserver1.example.com:5000/mystery:latest

Expected output:
The push refers to a repository [rhserver1.example.com:5000/mystery]
56827159aa8b: Pushed
440e02c3dcde: Pushed
29660d0e5bb2: Pushed
85782553e37a: Pushed
745f5be9952c: Pushed
latest: digest: sha256:6b079ae764a6affcb632231349d4a5e1b084bece8c46883c099863ee2aeb5cf8 size: 1357
#

A Practical Introduction to Container Security

LAB 1: CONFIGURATION
Pulling images from a remote registry

If the push was successful, make a backup copy of the mystery image, delete the local cached
image and pull a new image from the remote registry on rhserver1.

docker save rhserver1.example.com:5000/mystery:latest > mystery.tar
docker rmi rhserver1.example.com:5000/mystery:latest
docker pull rhserver1.example.com:5000/mystery:latest

Using default tag: latest
Trying to pull repository rhserver1.example.com:5000/mystery ...
sha256:6b079ae764a6affcb632231349d4a5e1b084bece8c46883c099863ee2aeb5cf8: Pulling from triad.koz.laptop:5000/mystery
Digest: sha256:6b079ae764a6affcb632231349d4a5e1b084bece8c46883c099863ee2aeb5cf8
Status: Downloaded newer image for rhserver1.example.com:5000/mystery

A Practical Introduction to Container Security

LAB 2: AUTHORIZATION
Overview

The Docker software that ships with RHEL has the ability to block remote registries. For
example, in a production environment you might want to prevent users from pulling random
containers from the public internet by blocking Docker Hub (docker.io). During this lab you will
configure docker on rhserver0 to block the registry on rhserver2, then try to pull or run the
image from the blocked registry.

A Practical Introduction to Container Security

LAB 2: AUTHORIZATION
Configuration

This lab builds on skills you learned in lab 1. On rhserver0, perform the following:
● Confirm that rhserver2 is configured as an insecure registry.
● Tag and verify you can push an image to rhserver2.
● If the push succeeds, remove the local image that was tagged and pushed.
● Configure docker to block rhserver2 (see BLOCK_REGISTRY=) and restart docker.
● Try to pull or run the image that was pushed to the registry on rhserver2. It should fail.

Expected output:
docker pull rhserver2.example.com:5000/mystery
Using default tag: latest
Trying to pull repository rhserver2.example.com:5000/mystery ...
All endpoints blocked.

A Practical Introduction to Container Security

LAB 3: ISOLATION
Overview

Containers provide a certain degree of process isolation via kernel namespaces. In this lab,
we’ll examine the capabilities of a process running in a containerized namespace. We’ll begin
by running a container and looking at it’s capabilities.

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities

We’ll begin with looking at Linux capabilities as it relates to containers. Capabilities are distinct
units of privilege that can be independently enabled or disabled. Start by examining the
kernel header file [1] and the effective capabilities of a root process on a RHEL host
(rhserver0) by looking its status. Notice that all 37 capability bits are set indicating this process
has a full set of capabilities. For more info, check out Dan’s blog post [2].

less /usr/include/linux/capability.h
grep CapEff /proc/self/status

CapEff: 0000001fffffffff

References
[1] /usr/include/linux/capability.h
[2] http://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/

http://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities

The capsh and pscap commands provide a human readable output of the capabilities bitmask.
Try it out!

capsh --decode=01fffffffff

0x0000001fffffffff=cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fset
id,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_servic
e,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_modu
le,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_bo
ot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,
cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_sysl
og,35,36

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities

Now run the same container as a non-root user and compare the results to the previous
exercises.

docker run --rm -it --user 32767 rhel7 grep CapEff /proc/self/status

CapEff: 0000000000000000

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities

Now run the same container as privileged and compare the results to the previous exercises.
What conclusions can you draw?

docker run --rm -it --privileged rhel7 grep CapEff /proc/self/status

CapEff: 0000001fffffffff

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities

Next, run the container as root but drop all capabilities.

docker run --rm -ti --name temp --cap-drop=all rhel7 grep CapEff /proc/self/status

CapEff: 0000000000000000

Now, run the container as root but add all capabilities.

docker run --rm -ti --name temp --cap-add=all rhel7 grep CapEff /proc/self/status

CapEff: 0000001fffffffff

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities

Now run a container and look at it’s capabilities. Run the rhel7 image and examine it’s
capabilities. A non-null CapEff value indicates the process has capabilities. Take note the
capabilities are less than what a root process has running on the host.

docker run --rm -it rhel7 grep CapEff /proc/self/status

CapEff: 00000000a80425fb

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #1

How could you determine which capabilities docker drops from a process running in a
container? One solution is presented on the next slide.

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #1

One solution would be to use your favorite hex calculator and find the CapEff difference
between a host process (0x1fffffffff) and a containerized process (0xa80425fb) then use
capsh to decode it .

echo 'obase=16;ibase=16;1FFFFFFFFF-A80425FB' | bc
1F57FBDA04

capsh --decode=1F57FBDA04
0x0000001f57fbda04=cap_dac_read_search,cap_linux_immutable,cap_net_broadcast,cap_net_
admin,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_ptrace,cap_sys_
pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_t
ty_config,cap_lease,cap_audit_control,cap_mac_override,cap_mac_admin,cap_syslog,35,36

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #2

Let’s say you're working with a time/date sensitive application that gathers, logs and locks
political election results. The application provider, Kernel Good Boys (KGB), tells you this
container requires full privileges because it needs to set a file as immutable (via the chattr
command). You remember that in compliance with your company’s security policy, this
container should not be able to ping any host. Your challenge is to run the application safely
yet produce the GOOD test results shown below.

Installing Application...
Fri Apr 7 21:41:49 UTC 2017
ping test fails: GOOD
chattr test: GOOD
----i--------e-- /var/tmp/timestamp
file immutable test: GOOD

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #2

To get started, run the container and observe it produces several NOT GOOD messages. Use
what you have learned so far about capabilities to pass the proper arguments to docker run to
solve the challenge.

docker run --rm mystery
Installing Application...
Fri Apr 7 21:22:47 UTC 2017
ping works: NOT GOOD
chattr: Operation not permitted while setting flags on /var/tmp/timestamp
chattr failed: NOT GOOD
-------------e-- /var/tmp/timestamp
file is not immutable: NOT GOOD

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #2

Recall the risks of running a privileged container? In order to complete your investigation of
this container, you may need to run it as privileged. If you do so, observe the output carefully
and run tail -f /var/log/messages and look for clues of an exploitation. You’ll need to
perform a minor repair to your container host (rhserver0) when you do this.

docker run --rm --privileged mystery

The solution for the challenge is on the next slide.

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #2

One solution is to add the linux_immutable and drop the net_raw capabilities.

docker run --rm --cap-add=linux_immutable --cap-drop=net_raw mystery

An even better approach is to drop all capabilities and add only what is required.

docker run --rm --cap-drop=all --cap-add=linux_immutable mystery

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #3

Suppose a container had a legitimate reason to change the date (ntpd, license testing, etc)
How would you allow a container to change the date on the host? What capabilities are
needed to allow this? One solution is on the next slide.

A Practical Introduction to Container Security

LAB 3: ISOLATION
Capabilities Challenge #3

To allow a container to set the system clock, the sys_time capability must be added. Also, at
the time of this writing, the seccomp security option must be set to unconfined . This will be
fixed in a future minor release of RHEL7. Refer to http://bugzilla.redhat.com for details.

docker run --rm --cap-drop=all --cap-add=sys_time --security-opt=seccomp=unconfined
<container-image>

http://bugzilla.redhat.com

A Practical Introduction to Container Security

LAB 4: SELINUX
Overview

In this section, we’ll cover the basics of SELinux and containers. SELinux policy prevents a lot
of break out situations where the other security mechanisms fail. By default, Docker processes
are labeled with svirt_lxc_net_t and they are prevented from doing (almost) all SELinux
operations. But processes within containers do not know that they are running within a
container. SELinux-aware applications are going to attempt to do SELinux operations,
especially if they are running as root. With SELinux on Docker, we write a policy that says that
the container process running as svirt_lxc_net_t can only read/write files with the
svirt_sandbox_file_t label.

A Practical Introduction to Container Security

LAB 4: SELINUX
!namespaced

Since we do not want these SELinux aware apps failing, it was decided to make libselinux lie
to the container processes. The libselinux library checks if /sys/fs/selinux is mounted
onto the system and whether it is mounted read/write. If /sys/fs/selinux is not mounted
read/write, libselinux will report to calling applications that SELinux is disabled.

To demonstrate this, run the following command on rhserver0 which attempts to execute an
selinux operation:

docker run --rm rhel7 id -Z

id: --context (-Z) works only on an SELinux-enabled kernel

A Practical Introduction to Container Security

LAB 4: SELINUX
!namespaced

With containers, we don't mount these filesystems by default or we mount them read/only
causing libselinux to report that it is disabled. Now run a container that mounts a host
directory in read-only mode.

docker run --rm -v /sys/fs/selinux:/sys/fs/selinux:ro rhel7 id -Z

id: --context (-Z) works only on an SELinux-enabled kernel

A Practical Introduction to Container Security

LAB 4: SELINUX
!namespaced

Finally, run a container that mounts the /sys/fs/selinux directory read/write. The expected
selinux label should be printed to standard output.

docker run --rm -v /sys/fs/selinux:/sys/fs/selinux rhel7 id -Z

system_u:system_r:svirt_lxc_net_t:s0:c374,c1019

A Practical Introduction to Container Security

LAB 4: SELINUX
Bind Mounts

Bind mounts alllow a container to mount a directory on the host for general application usage.
This lab will help you understand how selinux behaves on different scenarioes. On rhserver0,
create the following directories.

mkdir /data /shared /private

Run bash in a rhel7 container and volume mount the /data directory on rhserver0 to the /data
directory in the container’s file system. Once the container is running, verify the volume mount
and try to list the contents of /data and the files.

docker run --rm -it -v /data:/data rhel7 bash

A Practical Introduction to Container Security

LAB 4: SELINUX
Bind Mounts

[container_id /]# df
[container_id /]# ls /data

Now try to create a file in the /data directory? The command should fail even though the
container ran as root.
[container_id /]# date > /data/date.txt

Open a second terminal on rhserver0 and examine the selinux labels on the host.
ls -dZ /data

Find the selinux context of bash in the container.
ps -eZ | grep bash

Find the selinux file context associated with containers.

semanage fcontext --list | grep svirt

A Practical Introduction to Container Security

LAB 4: SELINUX
Bind Mounts

Notice the bash prompt changes when you enter the container’s namespace. Did the mount
succeed? How can you check?

Can you examine the /data directory? How would you troubleshoot this issue?

Try running sealert -a /var/log/audit/audit.log > /tmp/my-selinux-error-solutions.txt
on rhserver0 then enter the container and try creating a file in /data as did you before. The
sealert tool with analyze the audit.log and reveal some clues about the problem. Have a look
at the /tmp/my-selinux-error-solutions.txt to find out more.

A Practical Introduction to Container Security

LAB 4: SELINUX
Bind Mounts

Find the selinux file context associated with containers.

semanage fcontext --list | grep svirt

/var/lib/kubelet(/.*)? all files system_u:object_r:svirt_sandbox_file_t:s0
/var/lib/docker/vfs(/.*)? all files system_u:object_r:svirt_sandbox_file_t:s0

A Practical Introduction to Container Security

LAB 4: SELINUX
Bind Mounts

Change the context of /data/file2 to match the container’s context.

chcon -Rt svirt_sandbox_file_t /data

Now try to create a file again from the container shell. It should succeed.

[container_id /]# date > /data/date.txt

Exit the container.

[container_id /]# exit

A Practical Introduction to Container Security

LAB 4: SELINUX
Private Mounts

Now let Docker create the SELinux labels. Repeat the scenario above but instead add the :Z
option for the bind mount the /private directory then try to create a file in the /private
directory from the container’s namespace.

docker run -d --name sleepy -v /private:/private:Z rhel7 sleep 9999

Note the addition of a unique Multi-Category Security (MCS) label to the directory. SELinux
takes advantage of MCS separation to ensure that the processes running in the container can
only write to svirt_sandbox_file_t files with the same MCS Label s0.

ls -dZ /private

A Practical Introduction to Container Security

LAB 4: SELINUX
Shared Mounts

Repeat the scenario above but instead add the :z option for the bind mount then try to create
a file in the /shared directory from the container’s namespace.

docker run -d --name sleepy -v /shared:/shared:z rhel7 sleep 9999

On rhserver0, notice the SELinux label on the shared directory.

ls -dZ /shared

A Practical Introduction to Container Security

LAB 4: SELINUX
Read-Only Containers

Imagine a scenario where an application gets compromised. The first thing the bad guy wants
to do is to write an exploit into the application, so that the next time the application starts up, it
starts up with the exploit in place. If the container was read-only it would prevent leaving a
backdoor in place and be forced to start the cycle from the beginning.

Docker added a read-only feature but it presents challenges since many applications need to
write to temporary directories like /run or /tmp and when these directories are read-only, the
apps fail. Red Hat’s approach leverages tmpfs. It's a nice solution to this problem because it
eliminates data exposure on the host. As a best practice, run all applications in production
with this mode.

A Practical Introduction to Container Security

LAB 4: SELINUX
Read-Only Containers

Run a read-only container and specify a few writable file systems using the --tmpfs option.

docker run --rm -ti --name test --read-only --tmpfs /run --tmpfs /tmp
rhserver1.example.com:5000/rhel7 bash

Now, try to the following. What fails and what succeeds? Why?

[container_id /]# mkdir /newdir
[container_id /]# mkdir /run/newdir

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Overview

Docker images can easily be pulled from any public registry and run on a container host but is
this good practice? Do we trust this image and what are its contents? A better approach would
be to inspect and scan the image first. The atomic command that ships with RHEL7 Server
provides complete scanning functionality for images.

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Atomic diff

The atomic command can help understanding the difference between two images or an
image and a running container. Run the rhel7 image and connect to it's namespace with bash.
Then make some change like creating a file or something.

atomic diff --help
man atomic-diff

docker run --rm -it --name my_container rhel7 bash
[container_id /]# date > /usr/tmp/date.txt

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Atomic diff

Now, open a new terminal window, ssh into rhserver0 and run atomic diff to see the
differences between the rhel7 image and the running container.

atomic diff rhel7 my_container

Atomic will report a list of differences between the two file systems. The /usr/tmp/date.txt file
should appear in the report.

Exit the container namespace when you're finished.

[container_id /]# exit

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Atomic mount

Next we’ll use the atomic command to inspect a container’s filesystem by mounting it to the
host.

mkdir /mnt/image
atomic mount rhel7 /mnt/image
cat /mnt/image/etc/redhat-release

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Atomic mount

How might you search a container for all programs that are owned by root and have the
SETUID bit set? Sound like a good idea for a custom container scanner?

find /mnt/image -user root -perm -4000 -exec ls -ldb {} \;

Unmount when finished.

atomic umount /mnt/image

Now try mounting an image from a remote registry. Pretty cool!

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Live Shared mount

Use atomic to live mount a running a container. This option allows the user to modify the
container's contents as it runs or updates the container's software without rebuilding the
container.

docker run --rm --name sleepy rhel7 sleep 9999

Open a second window and mount the running container’s file system from the host.

mkdir /mnt/live
atomic mount --live sleepy /mnt/live
date > /mnt/live/usr/tmp/date.txt

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Live Shared mount

Now exec into the container’s namespace and examine the file that was created above.

docker exec -it sleepy bash

[container_id /] # cat /usr/tmp/date.txt

Before unmounting, open another terminal window on rhserver0 and take note of the SELinux
MCS label on the mount point. It should resemble
system_u:object_r:svirt_sandbox_file_t:c339,c759

ls -dZ /mnt/live
atomic umount /mnt/live

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Shared mount

This option mounts a container with a shared SELinux label.

atomic mount --shared sleepy /mnt/live
ls -dZ /mnt/live

Compare the SELinux label of the mount point to the live mount in the step above then
unmount the container. It should not have an SELInux MCS label.

atomic umount /mnt/live

Exit from the container namespace.

[container_id /] # exit

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
atomic images

Have a look at the atomic-images man page to read about it’s useful commands then
experiment by inspecting an image from a remote registry. Below is an example to get you
started.

atomic images version rhserver1.example.com:5000/mystery

A Practical Introduction to Container Security

LAB 5: INSPECTING CONTENT
Inspecting images with Skopeo

Skopeo is an additional tool that can perform image operations on remote registries. Run the
skopeo command from rhserver0 and inspect one of the images that you pushed to the
registry on rhserver1.

skopeo --tls-verify=false inspect docker://<remote-registry-host:port>/<image>

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Image signing configuration

Edit /etc/sysconfig/docker and set --signature-verification=true then restart the docker
service.

systemctl restart docker

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Image signing configuration

A pair of gpg keys have been created for you. However, if you’d like to create your own set of
gpg keys, perform the following on rhserver0. In case you're interested, the rngd program feeds
random numbers to the kernel’s entropy pool and will speed up the key generation process.

yum install rng-tools
rngd -r /dev/urandom --verbose
gpg --gen-key

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Image signing

Use the atomic command to sign an image on rhserver0 with your private key and push it to the
rhserver1 registry. Use the gpg-key name or email and don’t forget the image tag! Use
root/redhat for the login credentials. When prompted, the passphrase is redhat.

gpg --list-keys
atomic push --sign-by <gpg-key> <registry/image:tag>

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Image signing

Confirm the claim signature was created.

ls -R /var/lib/atomic/sigstore

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Pulling signed images

In this lab we’ll configure the host’s (rhserver0) trust policy that allows only signed images to be
pulled from a trusted registry (rhserver1). Start by examining the current trust policy then create a
default policy that rejects all image pulls.

atomic trust show
atomic trust default reject
atomic trust show

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Pulling signed images

First, test that image pulls are rejected by default.

docker pull rhserver1.example.com:5000/mystery:latest
...image:tag is rejected by policy

Next, create policy to trust signed images from the registry on rhserver1. Verify the trust you set
up requires a signed image.

gpg --list-keys
gpg --export <key> > /root/root.pub
atomic trust add rhserver1.example.com:5000 \
--sigstore=file:///var/lib/atomic/sigstore --pubkeys=/root/root.pub
atomic trust show

* (default) reject
rhserver1.example.com:5000 signed

A Practical Introduction to Container Security

LAB 5a: TRUST AND SIGNING
Pulling signed images

Now try the pull the signed image from rhserver1 again and it should succeed.

docker pull rhserver1.example.com:5000/mystery:latest

A Practical Introduction to Container Security

LAB 6: THE ATOMIC SCANNER
Overview

Before containers are run, it makes good sense to be able to scan container images for
known vulnerabilities and configuration problems before they are deployed in the enterprise.
RHEL’s atomic scan command can help with this. Additionally, a number of container scanning
tools that integrate with Red Hat products are available through third parties such as
BlackDuck and TwistLock.

A Practical Introduction to Container Security

LAB 6: THE ATOMIC SCANNER
OpenSCAP Scanner

Get started by running the built-in atomic scanner that ships with RHEL.

atomic scan --help
atomic scan --list

Scan the rhel7 image using the default scanner. This will use the default scan type (more
about that later). Also scan the mystery image and compare the outputs.

atomic scan rhel7

atomic scan mystery

A Practical Introduction to Container Security

LAB 6: THE ATOMIC SCANNER
OpenSCAP Scanner

In addition to container images, running containers can also be scanned. For example, scan
the sleepy container that maybe still running from the previous lab.

How would you scan all running containers on a given host?

Try running the scanner on an image in one of the remote registries.

A Practical Introduction to Container Security

LAB 6: THE ATOMIC SCANNER
OpenSCAP Scanner

Look at the contents of the /var/lib/atomic/openscap directory on the rhserver0 host and
you should see the scanner’s results. The scanner runs as a container and writes the results in
the host’s file system using a bind mount. The scanning tools do not run as privileged
containers but they are able to mount up a read-only rootfs along with a writeable directory on
the host’s file system so the scanner can write the output. You’ll lean more about this feature
in the final lab.

ls -R /var/lib/atomic/openscap/

A Practical Introduction to Container Security

LAB 6: THE ATOMIC SCANNER
Scan Types

Scanners can support a number of different scan types. In the section, configure atomic to run
the openscap scanner’s standards compliance scan type.

Verify the scanner supports the standards-compliance scan type.

atomic scan --list

Now run the scanner using the standards compliance scan type.

atomic scan --scanner openscap --scan_type standards_compliance rhel7
atomic scan --scanner openscap --scan_type standards_compliance mystery

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Overview

The atomic scanner was designed with a pluggable architecture to allow developers to write
custom scanners using any programming language supported by RHEL. Adding a scanner
plugin involves the following:

● Make atomic aware of your plug-in.
● Ensure the plugin obtains the proper input from the /scanin directory.
● Ensure the plugin writes the results to the /scanout directory.

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Installing a custom scanner

cd /root/custom-scanner

Build a docker image that contains the new scanner.
docker build --rm=true --force-rm=true --tag=example_plugin .

The example_plugin image should appear in the docker image cache.

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
example_plugin latest 4a7521646d99 6 seconds ago 1.434 GB

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Installing a custom scanner

Now install the scanner and confirm it is configured.

atomic install --name example_plugin example_plugin
atomic scan --list

It should report 2 scanners each with 2 scan types. Also, the example_plugin file should
appear in the /etc/atomic.d directory.

ls /etc/atomic.d

example_plugin openscap

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Installing a custom scanner

Edit /etc/atomic.conf and set the following:
default_scanner: example_plugin

Confirm the default setting.
atomic scan --list

Scanner: example_plugin *

Run the new scanner using the default scan type against the rhel7 image. It should produce a
list of rpms that it found. Also run it against the mystery image and compare the output.

atomic scan rhel7
atomic scan mystery

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Installing a custom scanner

Use a specific scanner and scan_type to find out more about the mystery image that you
pushed to the registry on rhserver1.

atomic scan --scanner example_plugin --scan_type=get-os mystery

rhserver1.example.com:5000/mystery (caabc754b7c7dc6)

The following results were found:

 os_release: None

We’ll modify the scanner source code in the next lab to recognize non-rhel containers and file systems.

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Writing a custom scanner

As an example of how to create a custom scanner, you’ll make changes to the custom
scanner source code and rebuild it's container image.

cd /root/custom-scanner

Have a look at the scanner source code in the list_rpms.py source file. The atomic scan
command will bind mount directories so the scanner container can read from the /scanin
directory and write to the /scanout directory.

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Writing a custom scanner

Change to the custom_scanner directory and begin by making a backup copy of the
list_rpms.py file then modify the custom scanner python source code according to the
following.

Feel free to do your own thing but a simple, change would be at line 39. Insert an
‘etc/debian_version ’ element into the array after the 'etc/redhat-release' element. Now,
make a backup copy of the original scanner image by tagging the latest image as v1 then
re-build the scanner container.

docker tag example_plugin:latest example_plugin:v1
docker images
docker build --rm=true --force-rm=true --tag=example_plugin .

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Writing a custom scanner

Now run the modified example_plugin scanner on the mystery image again. If everything
worked, the scanner should help you solve the mystery.

atomic scan --scanner example_plugin --scan_type=get-os mystery

A Practical Introduction to Container Security

LAB 7: CUSTOM SCANNERS
Extra Credit

This concludes the lab on container security. We hope you had fun and learned something in
the process. Thanks for attending and please complete the course survey so we can improve
this course for next year.

Bob and Dan

CUSTOMIZATION INSTRUCTIONS

To make a copy of this deck for your use, go to "File" > "Make a copy" > and save
to your own Google Drive.

PRESENTATION RESOURCES
For help getting started with presentations, check out the official Red Hat
Presentation Guide. For more information about speaking at Red Hat Summit,
reference the presenter's guide.

NEED HELP?
If you have any questions about your session content or using the speaker
resource center, contact your theme captain or presenters@summit.redhat.com.

http://brand.redhat.com/applications/presentations/
http://brand.redhat.com/applications/presentations/
https://redhat.slides.com/events/2017-red-hat-summit-presenter-guide
mailto:presenters@summit.redhat.com

