
Taking out the Trash!
The G1 Garbage Collector Overview for Everyone

@mattjrobson

Matthew Robson
Senior Technical Account Manager
May 3rd, 2017

Today’s Goals

✓ How does it work?

✓ Why is it making those decisions?

✓ Which logs are useful?

✓ Addressing the most common problems

✓ What’s your role?

G1 is...
A Java Garbage Collector

● Dynamic
● Generational
● Region Based
● Non-Contiguous
● Parallel
● Multi-Phased
● Incrementally Compacting
● Fully Evacuating
● Garbage First

Your Role

G1 Has Goals
How can I help?

● Keep it simple - Predictable Pause Times
○ Soft target defined by MaxGCPauseMillis
○ How many regions are collectible within my target

● Consistent Throughput
○ Maintain a predictable number of transactions per second

● Find the Balance - Understand Your Application!
○ Low Latency / Time Sensitive = Lower Max Pause Time

■ Absolutely cannot tolerate application disruption
○ High Throughput / Lots of Data = Higher Max Pause Time

■ Push as much data as fast as we can; longer pauses are not a problem

Do what’s necessary - In the time defined - Irrespective of the overall Heap Size

G1 Has Goals
How can I hinder?

● Unlike other collectors, G1 set out to simplify parameters and tuning options
○ The more you set, the less G1 is able to do dynamically

● Start out simple; do not carry over settings from other collectors
✓ Enable G1
✓ Set Xms=Xmx
✓ Define a pause target
✓ Turn on lots of GC logging
✓ Test
✓ Tune
✓ Repeat

There is no definitive guide or magic set of options; you are responsible for evaluating
performance, making incremental changes and re-evaluating until you reach your goals

The How and The Why
(with some sweet logs)

Regions

● 5 Region Types - (E)den, (S)urvivor, (O)ld, (H)umongous and (F)ree
● Breaks the heap into ~2048 Regions
● Power of 2 from 1 to 32MB

Understand me, before you change me

E

S E E EO

EF F O

E E S F S

H H F O E● Explicitly set through G1HeapRegionSize
○ Fewer Regions means less flexibility
○ Longer to scan, mark and copy

12 GB Heap
12288 / 2048 Regions 6 MB - not a power of 2

12288 / 8MB Region 1536 Regions - too low

12288 / 4MB Region 3072 Regions - acceptable

Why Regions?
And what are they?
A Region represents a block of allocated space that can hold objects of any generation

without the need to maintain contiguity with other Regions of the same generation

● Reduced synchronization
○ Regions are allocated through a Thread Local Allocation Buffer (TLAB)
○ Object allocation can happen within a TLAB without additional synchronization

● Reduced fragmentation
○ Guaranteed evacuation of Young Regions
○ Incremental and Concurrent compaction of Old Regions

● Dynamic
○ Number of Young Regions is proportional to what’s collectable within the pause

target
○ Size is adjusted after each collection

Allocation, Evacuation and Promotion
Phase 1 - Young Collection Pause (YC)

● All new objects smaller than 50% of the Region size are allocated in Eden
● Number of Eden Regions defined by what can be collected within the pause target

E

S E E E S S S E OO

E E E SO S S EO

E E S S O E E SO E

E E O E E S S S E

Allocation, Evacuation and Promotion
Phase 1 - Young Collection Pause (YC)

● Younger objects are compacted into new Survivor Regions
● Tenured objects are promoted to new Old Regions

 S OO

S O O

O SO

S O S O

2016-12-12T10:40:18.811-0500: 29.959: [GC pause (G1 Evacuation Pause) (young), 0.0305171 secs]

 [Parallel Time: 26.6 ms, GC Workers: 4]
 [GC Worker Start (ms): Min: 29960.0, Avg: 29961.0, Max: 29962.1, Diff: 2.1]
 [Ext Root Scanning (ms): Min: 0.8, Avg: 3.5, Max: 9.7, Diff: 8.9, Sum: 13.9]

 [Update RS (ms): Min: 0.0, Avg: 0.3, Max: 0.4, Diff: 0.4, Sum: 1.1]
 [Processed Buffers: Min: 0, Avg: 66.0, Max: 134, Diff: 134, Sum: 264]

 [Scan RS (ms): Min: 0.3, Avg: 0.3, Max: 0.3, Diff: 0.1, Sum: 1.1]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0]

 [Object Copy (ms): Min: 15.8, Avg: 19.0, Max: 20.4, Diff: 4.7, Sum: 76.1]
 [Termination (ms): Min: 0.0, Avg: 1.8, Max: 2.9, Diff: 2.9, Sum: 7.3]
 [Termination Attempts: Min: 1, Avg: 1.0, Max: 1, Diff: 0, Sum: 4]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.1]

 [GC Worker Total (ms): Min: 23.7, Avg: 24.9, Max: 26.5, Diff: 2.8, Sum: 99.8]
 [GC Worker End (ms): Min: 29985.8, Avg: 29986.0, Max: 29986.5, Diff: 0.7]

Young Log
The Most Common Collection

 [Eden: 1097.0M(1097.0M)->0.0B(967.0M)
Survivors: 13.0M->139.0M
Heap: 1694.4M(2048.0M)->736.3M(2048.0M)]

 [Times: user=0.08 sys=0.00, real=0.03 secs]

2016-12-12T10:40:18.811-0500: 29.959: [GC pause (G1 Evacuation Pause) (young), 0.0305171 secs]
 [Parallel Time: 26.6 ms, GC Workers: 4]
 [GC Worker Start (ms): Min: 29960.0, Avg: 29961.0, Max: 29962.1, Diff: 2.1]
 [Ext Root Scanning (ms): Min: 0.8, Avg: 3.5, Max: 9.7, Diff: 8.9, Sum: 13.9]
 [Update RS (ms): Min: 0.0, Avg: 0.3, Max: 0.4, Diff: 0.4, Sum: 1.1]
 [Processed Buffers: Min: 0, Avg: 66.0, Max: 134, Diff: 134, Sum: 264]
 [Scan RS (ms): Min: 0.3, Avg: 0.3, Max: 0.3, Diff: 0.1, Sum: 1.1]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0]
 [Object Copy (ms): Min: 15.8, Avg: 19.0, Max: 20.4, Diff: 4.7, Sum: 76.1]
 [Termination (ms): Min: 0.0, Avg: 1.8, Max: 2.9, Diff: 2.9, Sum: 7.3]
 [Termination Attempts: Min: 1, Avg: 1.0, Max: 1, Diff: 0, Sum: 4]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.1]
 [GC Worker Total (ms): Min: 23.7, Avg: 24.9, Max: 26.5, Diff: 2.8, Sum: 99.8]
 [GC Worker End (ms): Min: 29985.8, Avg: 29986.0, Max: 29986.5, Diff: 0.7]
 [Code Root Fixup: 0.0 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.3 ms]
 [Other: 3.7 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 1.4 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.0 ms]
 [Humongous Register: 0.1 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 0.5 ms]
 [Eden: 1097.0M(1097.0M)->0.0B(967.0M) Survivors: 13.0M->139.0M Heap: 1694.4M(2048.0M)->736.3M(2048.0M)]
 [Times: user=0.08 sys=0.00, real=0.03 secs]

Occupancy
Phase 1 Transition

● Old occupancy will continue to grow as Tenured objects are promoted

YC YCYC YC YC YC YCYC YC YC YC YC YC YC YC

● At the end of each Young Collection (YC), non-Young occupancy is evaluated against
the InitiatingHeapOccupancyPercent (IHOP) (45% default)

● Known as the ‘soft-margin’, passing the IHOP threshold triggers Concurrent Marking

YC

YC
Initial-MarkO > IHOP %

Young Ergonomics
-XX:+PrintAdaptiveSizePolicy - Why is it doing that?

2016-12-30T13:28:18.343-0500: 130.629: [GC pause (G1 Evacuation Pause) (young)
 130.629: [G1Ergonomics (CSet Construction) start choosing CSet, _pending_cards: 1792, predicted base time: 2.98 ms,
remaining time: 197.02 ms, target pause time: 200.00 ms]

 130.629: [G1Ergonomics (CSet Construction) add young regions to CSet, eden: 664 regions, survivors: 112 regions,
predicted young region time: 90.15 ms]

 130.629: [G1Ergonomics (CSet Construction) finish choosing CSet, eden: 664 regions, survivors: 112 regions, old: 0 regions,
predicted pause time: 93.13 ms, target pause time: 200.00 ms]

 130.655: [G1Ergonomics (Concurrent Cycles) request concurrent cycle initiation, reason: occupancy
higher than threshold, occupancy: 1013972992 bytes, allocation request: 0 bytes, threshold: 966367620
bytes (45.00 %), source: end of GC], 0.0266860 secs]

227.306: [G1Ergonomics (Concurrent Cycles) request concurrent cycle initiation, reason: occupancy higher than threshold,
occupancy: 115343360 bytes, allocation request: 530800 bytes, threshold: 115133625 bytes (45.00 %), source:
concurrent humongous allocation]

Initial Mark
Phase 2 - Where do I start?

Previous TAMS

Next TAMSBottom
Top

● Stop The World Pause piggybacked on a Young Collection
● Marks all root objects
● Top At Mark Start (TAMS) is set to the current top of each regions

130.726: [G1Ergonomics (Concurrent Cycles) initiate concurrent cycle, reason:
concurrent cycle initiation requested]

Concurrent Marking
Phase 2 - What’s the catch?

Previous TAMS

Next TAMSBottom

Top

● Based on a Snapshot-At-The-Beginning (SATB) principal
○ Only objects which exist at the time of the snapshot may be identified as garbage
○ Newly allocated objects are implicitly marked live (above the Next TAMS)
○ Calculates the necessary live data information to collect “Garbage First”

Concurrent Marking Log
2016-12-12T10:40:08.363-0500: 19.510: [GC pause (G1 Evacuation Pause) (young)

(initial-mark), 0.0387872 secs]

2016-12-12T10:40:08.402-0500: 19.549: [GC concurrent-root-region-scan-start]
2016-12-12T10:40:08.405-0500: 19.552: [GC concurrent-root-region-scan-end, 0.0030613 secs]

2016-12-12T10:40:08.405-0500: 19.553: [GC concurrent-mark-start]
2016-12-12T10:40:08.711-0500: 19.858: [GC concurrent-mark-end, 0.3055438 secs]

2016-12-12T10:40:08.713-0500: 19.861: [GC remark
2016-12-12T10:40:08.713-0500: 19.861: [Finalize Marking, 0.0014099 secs] 2016-12-12T10:40:08.715-0500:
19.862: [GC ref-proc, 0.0000480 secs] 2016-12-12T10:40:08.715-0500: 19.862: [Unloading, 0.0025840 secs],
0.0055136 secs]

 [Times: user=0.01 sys=0.00, real=0.00 secs]

2016-12-12T10:40:08.724-0500: 19.872: [GC cleanup 1757M->914M(2048M), 0.0023579 secs]
[Times: user=0.01 sys=0.00, real=0.00 secs]

2016-12-12T10:40:08.727-0500: 19.875: [GC concurrent-cleanup-start]
2016-12-12T10:40:08.729-0500: 19.876: [GC concurrent-cleanup-end, 0.0012954 secs]

STOP THE WORLDCONCURRENT

Garbage First
Phase 2 Transition

● During GC Cleanup the Candidate Old Region list is finalized
○ A Region is a candidate if live objects are < 85% (G1MixedGCLiveThresholdPercent)
○ Regions are sorted based on their GC efficiency

YC YC YC
IM YC YC YC YC YC YC RM CU YC

Concurrent Marking

● Once CM finishes, an immediate Young Collection occurs
○ Garbage from Old Regions is > 5% (G1HeapWastePercent) - Start Mixed Collections

2016-12-30T13:28:18.745-0500: 131.030: [GC pause (G1 Evacuation Pause) (young)
 131.051: [G1Ergonomics (Mixed GCs) start mixed GCs, reason: candidate old regions available, candidate
old regions: 740 regions, reclaimable: 485716240 bytes (22.62 %), threshold: 5.00 %], 0.0101749 secs]

Mixed Collections
Phase 3 - Mixed Collection Pause (MC)

E

S E E E S S S E OO

OO E E SO S S EO

E E S S O E E SO E

E S O E E S O S S O

● Mixed Collections are handled incrementally and executed immediately
○ The candidate Old Regions are divided by G1MixedGCCountTarget (default 8)

○ Goal is to collect at least that many Old Regions per cycle

Mixed Collections - Incremental Compaction
Phase 3 - Mixed Collection Pause (MC)

O SO

O O O

S O O

S O O S O

● Mixed Collections provide incremental compaction
○ Remaining live objects from the collected Old Regions are copied into to new ‘highly

live’ regions

Mixed Ergonomics
What’s up with the Old?

2016-12-30T13:28:18.777-0500: 131.063: [GC pause (G1 Evacuation Pause) (mixed)

 131.063: [G1Ergonomics (CSet Construction) start choosing CSet, _pending_cards: 1061, predicted base time: 2.66 ms, remaining time: 197.34 ms,
target pause time: 200.00 ms]
 131.063: [G1Ergonomics (CSet Construction) add young regions to CSet, eden: 89 regions, survivors: 13 regions, predicted young region time:
11.28 ms]

 131.063: [G1Ergonomics (CSet Construction) finish adding old regions to CSet, reason: old
CSet region num reached max, old: 205 regions, max: 205 regions]

 131.063: [G1Ergonomics (CSet Construction) finish choosing CSet, eden: 89 regions, survivors:
13 regions, old: 205 regions, predicted pause time: 19.04 ms, target pause time: 200.00 ms]

 131.073: [G1Ergonomics (Mixed GCs) continue mixed GCs, reason: candidate old regions
available, candidate old regions: 535 regions, reclaimable: 305363768 bytes (14.22 %),
threshold: 5.00 %], 0.0141132 secs]

Mixed Collections
Phase 3 Transition

● Collections continue until garbage drops below G1HeapWastePercent or 8 iterations

2016-12-30T13:28:18.877-0500: 131.163: [GC pause (G1 Evacuation Pause) (mixed)

 131.187: [G1Ergonomics (Mixed GCs) do not continue mixed GCs, reason: reclaimable
percentage not over threshold, candidate old regions: 254 regions, reclaimable: 107174304
bytes (4.99 %), threshold: 5.00 %], 0.0172178 secs]

YC MC MC MC MC MC MC YC YC YC

O < WasteO > Waste

Humongous Allocation
My object is so big, I cannot lie, a single young region, I shall not try

● Any object larger than 50% of a single Region
○ Allocated directly to Old and tagged as Humongous Start / Continues

● An object larger than a single Region must be allocated into contiguous free Regions

S E E E S S S OO

OO E E SO S S EO

E E S S O EO

E O E E S O S S OHS HC

HS HC

HS

HS HC HC HC

Full GC
Why oh why, a Full GC, did my collector try?

● Same implementation as the Serial Collector

○ Single Threaded

○ Stop The World

● Collects all Regions

● Fully Compacting

● Guarantees all garbage will be removed

● May shrink (MaxHeapFreeRatio) or expand (MinHeapFreeRatio) the heap if

you do not have Xms=Xmx

Full GC Ergonomics
Why is it doing that?

 106.445: [G1Ergonomics (Heap Sizing) attempt heap expansion, reason: allocation request failed,
allocation request: 24 bytes]

 106.445: [G1Ergonomics (Heap Sizing) expand the heap, requested expansion amount: 1048576 bytes, attempted
expansion amount: 1048576 bytes]

 106.445: [G1Ergonomics (Heap Sizing) did not expand the heap, reason: heap already fully
expanded]
2016-12-30T13:27:54.160-0500: 106.445: [Full GC (Allocation Failure)
 106.539: [G1Ergonomics (Heap Sizing) attempt heap shrinking, reason: capacity higher than max desired capacity after
Full GC, capacity: 2147483648 bytes, occupancy: 391145472 bytes, max desired capacity: 1303818239 bytes (70.00 %)]

 106.570: [G1Ergonomics (Heap Sizing) shrink the heap, requested shrinking amount: 843665409 bytes, aligned shrinking
amount: 843055104 bytes, attempted shrinking amount: 843055104 bytes]
 2047M->373M(1244M), 0.1278200 secs]

Metaspace
The new Perm

● Metaspace lives in native memory and is committed as necessary (non-contiguous)
○ No max size (by default), bound by OS memory and SWAP
○ Grows dynamically until it reaches max size
○ Faster, because it lives in native memory
○ MetaspaceSize (high watermark) determines when a collection will happen

■ Depending on the amount freed, the high watermark may increase

● UseCompressedClassesPointers creates a separate 1Gig class space
○ CompressedClassSpaceSize is reserved in contiguous space at VM initialization

■ This cannot change or grow
○ Committed space counts as part of MaxMetaspace

The most common problems

7 Common G1 Issues
And where to start

✓ Collect and analyze the GC logs
○ Garbagecat and GCViewer are good options

✓ Calculate the size of your Live Data Set
○ At any given time, how much is alive?

✓ Calculate your most common large object sizes
○ Does the default G1HeapRegionSize align?

✓ Evaluate your promotion rate
○ What is dieing young versus what ends up in Old

✓ Map Growth of Young and Old Generations over time
○ Is the Eden too compressed?

7 Common G1 Issues
And where to start
1. Promotion Failures / Premature Marking - (to-space exhausted), 0.5669726 secs]

☒ Very Long Pause compared to a regular Young Collection

☒ Copied objects must be updated

☒ Objects which failed to copy are tenured in place (as there are no free Regions)

✓ Evaluate Concurrent Marking (InitiatingHeapOccupancyPercent)

✓ Mixed Collection Effectiveness

✓ Tune Heap Size and Reserve Percentage

Common G1 Issues Cont.
Big Issues from Big Objects
2. Humongous Obj - reason: requested by GC cause GC cause: G1 Humongous Allocation

☒ Creates fragmentation

☒ Accelerates Old region growth and premature marking

✓ Compare and adjust G1HeapRegionSize in relation to the average object size

✓ Tune Max Heap to better accommodate common object size

Region Size: 4096 K
Object A: 12800 K

Result: 4 regions and 16384 K
Waste: 3584 K

HS HC HC HC

Common G1 Issues Cont.
Full GC Fail
3. Full GC - 3 Most Common Cases:

a. Full GC (Metadata GC Threshold)
☒ Setting a MaxMetaspaceSize that is too small for the workload
☒ UseCompressedClassesPointers creating tight Metaspace
☒ Classloader leaks
✓ Tune Metaspace for proper sizing and check for leaks

b. [GC pause (young) (to-space exhausted) and [Full GC]
☒ Heap can no longer be expanded and there are no free regions for evacuation
☒ The G1ReservePercent did not provide enough of a promotion buffer
☒ Collector could not recover
✓ Evaluate Concurrent Marking (IHOP) and Mixed Collection effectiveness
✓ Tune Max Heap Size and Reserve Percentage

Common G1 Issues Cont.
Did you actually mark anything?

4. Concurrent Marking - [GC concurrent-mark-end, 25.3988906 secs]
☒ Running out of heap before concurrent marking can finish
☒ Not collecting a high percentage of garbage
✓ Large heap and undersized machine - Not enough CPU
✓ Too few concurrent threads - Percentage of Parallel Threads

✓ Increasing ConcGCThreads will take away CPU from application threads
✓ Object creation rate leading to many interrupting Young Collections

c. [GC concurrent-mark-start] and [Full GC] and [GC concurrent-mark-abort]
☒ Running out of heap before Concurrent Marking can finish
☒ Longer lived objects with a promotion rate faster than you can collect
✓ Evaluate when Concurrent Marking starts (InitiatingHeapOccupancyPercent)
✓ Review how long Concurrent Marking takes
✓ Tune Max Heap Size based on your Live Data Set

Common G1 Issues Cont.
Why so slow?
5. Long / Inefficient Mixed Collections

☒ Leads to Full GC
☒ Takes away from Application processing time
✓ Collecting too many inefficient regions? Increase G1HeapWastePercent
✓ Not maximizing the full pause time? Increase G1OldCSetRegionThresholdPercent

6. Long Update RS
✓ Tune concurrent refinement threads - G1ConcRefinementThreads
✓ Tune RSet Update time - G1RSetUpdatingPauseTimePercent
✓ Check for working being pushed to mutator threads

7. Long Scan RS
✓ Evaluate the RSet statistics - G1SummarizeRSetStats
✓ Check for coarsenings in RSetStats

Useful Flags

G1 Flags
Keep it simple and test

Flag Definition

-XX:+UseG1GC Enable G1

-XX:MaxGCPauseMillis=200 G1 soft pause target (ms)

-XX:InitiatingHeapOccupancyPercent=45 Soft margin to initiate marking

-XX:G1HeapRegionSize=1m Region size, as a power of 2

-XX:G1MixedGCCountTarget=8 Target number of mixed collections

-XX:G1MixedGCLiveThresholdPercent=85 Live byte threshold for Old region CSet inclusion

-XX:G1HeapWastePercent=5 Amount of heap to waste to avoid expensive regions

-XX:G1ReservePercent=10 Space reserved for promotion

-XX:G1EagerReclaimHumongousObjects=true Reclaim Humongous objects with Young GC

G1 Flags Cont.
Keep it simple and test

Flag Definition

-XX:G1ConcRefinementThreads Parallel threads for RSet updates

-XX:G1NewSizePercent=5 Set the minimum Young size

-XX:G1MaxNewSizePercent=60 Set the maximum Young size

-XX:G1OldCSetRegionThresholdPercent=10 Max Old regions in CSet as a percent of heap

-XX:G1RSetUpdatingPauseTimePercent=10 Percent of time for Update RS

-XX:SurvivorRatio=8 Ratio of Eden to Survivor space

-XX:MaxTenuringThreshold=15 Number of iterations before promotion to Old

-XX:ParallelGCThreads=’logical CPUs’ Parallel STW threads

-XX:ConcGCThreads=’25% of Parallel’ Concurrent marking threads

G1 Flags Cont.
Keep it simple and test

Flag Definition

-XX:MetaspaceSize= Initial Metaspace high water mark

-XX:MaxMetaspaceSize=unlimited Max Metaspace size

-XX:CompressedClassSpaceSize=1G Maximum class area for Compressed Class Pointers

-XX:+UseCompressedOops Use 32-bit references

-XX:+UseCompressedClassPointers Use 32-bit class pointers

Logging Flags
Must Use

Flag Definition

-Xloggc:/path/to/gc.log Path where the GC logs are written

-XX:+UseGCLogFileRotation Enable GC log file rotation

-XX:NumberOfGCLogFiles=<value> Number of rotated GC logs files to retain

-XX:GCLogFileSize=<size> Size of each GC logs file to initiate rotation

-XX:+PrintGCDetails Detailed GC log

-XX:+PrintGCDateStamps Actual date and timestamp of the collection

-XX:+PrintGCApplicationStoppedTime Amount of time the application stopped during GC

-XX:+PrintGCApplicationConcurrentTime Amount of time the application ran between GCs

-XX:-PrintCommandLineFlags Prints all the command line flags in the GC log

Logging Flags
For Testing and Analysis

Flag Definition

-XX:+PrintAdaptiveSizePolicy Details about the collector ergonomics

-XX:+PrintTenuringDistribution Survivor space usage and distribution

-XX:+PrintReferenceGC Time spent processing references

Logging Flags
For Debug

-XX:+UnlockDiagnosticVMOptions
-XX:+G1SummarizeConcMark Summarizes Concurrent Mark at JVM exit

-XX:+G1PrintHeapRegions Print the heap regions selected for allocation, cleanup,
reuse, compact, cset, commit, failure etc...

-XX:+G1PrintRegionLivenessInfo Prints previous and next liveness data per Old region
before and after every concurrent mark cycle

-XX:+G1SummarizeRSetStats
-XX:G1SummarizeRSetStatsPeriod=1

Print RSet processing information every X, where X is
measured in GC cycles

-XX:+UnlockExperimentalVMOptions
-XX:G1LogLevel=fine, finer, finest Increased logging verbosity on collections

-XX:+G1TraceEagerReclaimHumongousObjects Details about live and dead Humongous objects

Supplemental Resources
TAM Blogging

● Part 1: Detailed G1 Introduction
○ https://www.redhat.com/en/about/blog/part-1-introduction-g1-garbage-collector

● Part 2: Collecting and Reading G1 Garbage Collector Logs
○ Publish Date May 9th

● Part 3: Evaluating and Tuning the G1 Garbage Collector
○ Future

● Part 4: A Look Ahead; G1 Changes in JDK9
○ Future

● TAM Blogging Series
○ https://www.redhat.com/en/about/blog/technical-account-managers

https://www.redhat.com/en/about/blog/part-1-introduction-g1-garbage-collector
https://www.redhat.com/en/about/blog/part-1-introduction-g1-garbage-collector
https://www.redhat.com/en/about/blog/technical-account-managers
https://www.redhat.com/en/about/blog/technical-account-managers

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

