

Wicked fast PaaS: Performance tuning of OpenShift 3.5 and Docker 1.12

Red Hat OpenShift Engineering Jeremy Eder and Mike Fiedler, 2017-05-03

CHOOSE YOUR OWN ADVENTURE®

Awesome titles such as ...

if ["\$containers" = "linux"];
 then
 echo "fundamentals don't change"
fi

Subsystem Food Groups

Terminology Overview

Let's just get this out of the way

- We're talking about OCP 3.5 or later
- Slides: https://www.slideshare.net/jeremyeder/
- Code: https://github.com/openshift/svt
- There's no video recording of this.

Deploying 2048 OpenShift nodes on the CNCF Cluster

https://www.cncf.io/blog/2017/03/28/deploying-2048-openshift-nodes-cncf-cluster-part-2/

OpenShift 3.5: Installation

```
[defaults]
forks = 20
gathering = smart
fact caching = jsonfile
fact caching timeout = 600
callback whitelist = profile tasks
[ssh connection]
ssh args = -o ControlMaster=auto -o
ControlPersist=600s
control path = %(directory)s/%%h-%%r
pipelining = True
timeout = 10
```


Docker Graph Driver: devicemapper vs overlay2

- RHEL 7.4
- SELinux
- Overlay2

Container Native Storage

Dynamic

Hyperconverged

Scalable

Performant

MASTER

CNS Session Thu 11:30a, Rm 157A

Container Native Storage: StorageClasses

```
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
  name: cnsclass
provisioner: kubernetes.io/glusterfs
parameters:
  resturl: "http://172.25.87.92:8080"
  restuser: "admin"
```

```
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
  name: ec2class
provisioner: kubernetes.io/aws-ebs
parameters:
  type: io1
  zone: us-west-2b
```


Container Native Storage

- Dynamic
- Hyperconverged
- Scalable
- Performant

Container Native Storage

distributed key value store that provides a reliable way to store data across a cluster of machines

OpenShift 3.5: etcd-3.1.x

- etcd-2.x limited node scalability
- etcd-3.x gets us to 2000+ nodes comfortably
- Image metadata moved from etcd to registry in 3.4.z and 3.5.

https://www.cncf.io/blog/2017/03/28/deploying-2048-openshift-nodes-cncf-cluster-part-2/

OpenShift 3.5: Image Metadata moved to Registry

OpenShift 3.5: etcd-3.1, storage mode v2, 5K projects

OpenShift 3.5: etcd-3.1.x, 1k proj/4k pods

OpenShift 3.5: Metrics

- Bump scalability limits 12,000 → 25,000 pods
- METRICS_DURATION=7, METRICS_RESOLUTION=30
- Capacity Planning and Scalability docs

OpenShift 3.5: Logging (EFK)

Logging Sizing Guidelines

OpenShift 3.5: Routing/Network Ingress Tier

HAProxy-based ingress tier (haproxy runs as a

```
projects:
  - num: 1
    basename: centos-stress
    ifexists: delete
    tuning: default
    templates:
      - num: 1
        file: ./content/quickstarts/stress/stress-pod.json
        parameters:
         - RUN: "wrk"
                                        # which app to execute inside WLG pod
                                        # benchmark run-time in seconds
         - RUN TIME: "120"
         - PLACEMENT: "test"
                                        # Placement of the WLG pods based on a node's label
         - WRK DELAY: "100"
                                        # maximum delay between client requests in ms
         - WRK TARGETS: "^cakephp-"
                                        # extended RE (egrep) to filter target routes
         - WRK CONNS PER THREAD: "1"
                                        # how many connections per worker thread/route
         - WRK KEEPALIVE: "y"
                                        # use HTTP keepalive [yn]
         - WRK TLS SESSION REUSE: "y"
                                        # use TLS session reuse [yn]
         - URL PATH: "/"
                                        # target path for HTTP(S) requests
```


OpenShift 3.5: Routing/Network Ingress Tier

OpenShift 3.5: Alpha Support for GPUs

- Works fine
- Mostly manual for now
- GA gated on finalizing resource management

https://blog.openshift.com/use-gpus-openshift-kubernetes/

Tooling

"I want an environment with thousands of deployments, pods (with persistent storage), build configurations, routes, services, secrets and more..."

"I want an environment with thousands of deployments, pods (with persistent storage), build configurations, routes, services, secrets and

more..."

OpenShift Scalability Testing

- Cluster horizontal scale
 - # of nodes, # of running pods across all nodes
 - application traffic
- Node vertical scale
 - # of pods running on a single node
 - work that 1 node can support (applications, builds, storage)
- Application scalability
 - Scale # of application replicas up/down

OpenShift Performance Tests

- Resource usage/response times for scenarios
 - Application workload and access performance
 - Builds (OpenShift)
 - Metrics and Log collection
- OpenShift infrastructure performance
 - Resource usage of processes under load
 - Network (SDN) throughput
 - Routing
 - Storage (EBS, Ceph, Gluster, Cinder, etc)

Tools

- https://github.com/openshift/svt
 - cluster load-up
 - traffic generation
 - concurrent builds, deployments, pod start/stop
 - reliability testing
 - network performance
 - logging and metrics tests

Cluster loader

- <u>cluster-loader</u> python tool to quickly load clusters according to a <u>YAML</u> test specification.
- Can be used with Kubernetes or OpenShift

```
projects:
```

- num: 1000

basename: nginx-explorer

tuning: default

templates:

- num: 10

file:

cluster-loader/nginx.yaml

- num: 20

file:

cluster-loader/explorer-pod.yaml

Demo

7.....

THANK YOU

n linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

