

Workforce Optimization With Business Resource Planner and OpenShift

Justin Goldsmith Red Hat Consulting Architect 05/03/2017 Josh Bryant thyssenkrupp elevator Solutions Architect

Agenda

- Problem Space
- Thyssenkrupp Elevator Use Case
- Business Resource Planner
- Openshift
- Demo
- Q&A

Planning planning problem use cases

- Agenda scheduling: doctor appointments, court hearings, maintenance jobs, TV advertisements, ...
- Educational timetabling: lectures, exams, conference presentations, ...
- Task assignment: affinity/skill matchmaking for tax audits, wage calc, ...
- **Employee shift rostering:** nurses, repairmen, help desk, firemen, ...
- Vehicle routing: route trucks, buses, trains, boats, airplanes, ...
- Bin packing: fill containers, trucks, ships, storage warehouses, cloud computers nodes, prisons, hospitals, ...
- **Job shop scheduling:** assembly lines for cars, furniture, books, ...
- **Cutting stock:** minimize waste while cutting paper, steel, carpet, ...
- **Sport scheduling:** football/baseball league, tennis court utilization, ...
- Financial optimization: investment portfolio balance, risk spreading, ...

What is a planning problem

Optimize goals with limited resources under constraints

Optimize goals

Maximize profit

Minimize ecological footprint

Maximize happiness of employees / customers

...

With limited resources

Employees

Assets (machines, buildings, vehicles, ...)

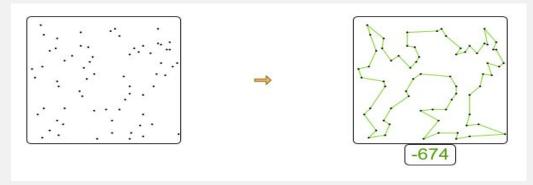
Time

Sudget

Under constraints

ô vs 🕟 Working hours

🥦 vs 🦛 Skills / affinity


vs S Logistic conflicts

...

Why are planning problems hard

- No known solution to solve in polynomial time
- Traveling Salesman
 - Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city
 - O(n!)
 - Just 10 cities would be 3628800 combinations
 - 25 cities is 1.551121e+25

Company Overview

Essen, Germany

- Integrated Materials and Technology Company
- 156,000 employees in 80 countries
- €40 billion order intake

thyssenkrupp elevator worldwide

- 50,000 employees
- 20 plants, > 900 branches in 70 Countries
- 1.1 m units under maintenance,
- 24,000 technicians
- €6 BILLION ORDER INTAKE

thyssenkrupp elevator US

- 8,600 employees
- 115 branches
- ~220,000 units under maintenance
- 5,000 technicians
- \$2 BILLION ORDER INTAKE

Maintenance Overview

- Field service organization of 2500+
- Install base of 220K +
- Various Service Levels
 - Contractual maintenance (Planned)
 - Break-fix (Unplanned)
- Planning Model
 - Routes
 - Location
 - Frequency, Durations

Measuring Maintenance

Objectives

- Reduce/eliminate missed maintenance
- Reduce break fix
- Increase customer service
- Increase service efficiencies

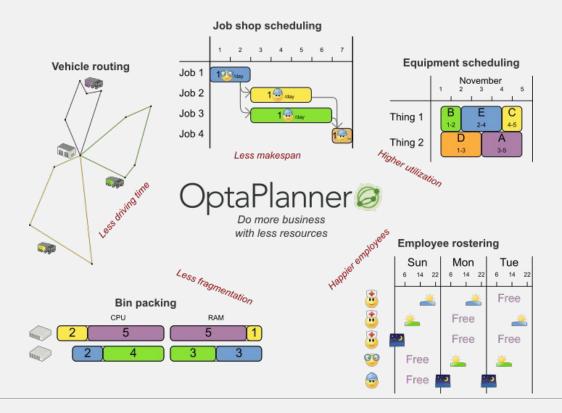
Measuring Success

- Increased % Mechanic total productive time
- Reduction % in NB CB OT hours
- Reduction % in missed maintenance
- Increase % in contract renewals

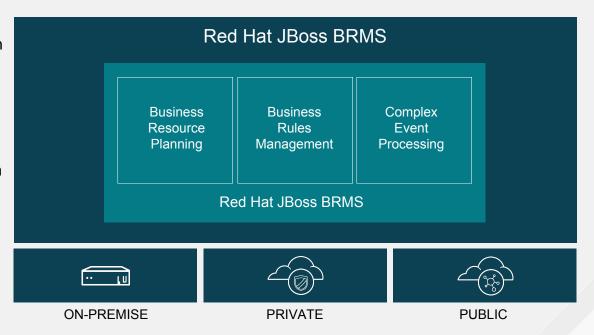
Future of Maintenance Planning

Plan

- Install base clean up
- SLA integration
- Resource availability
- Location grouping
- Unit scoring
- Service levels
- Schedule and balance routes


Future

- IOT
- Repairs
- Safety


Business Resource Planner

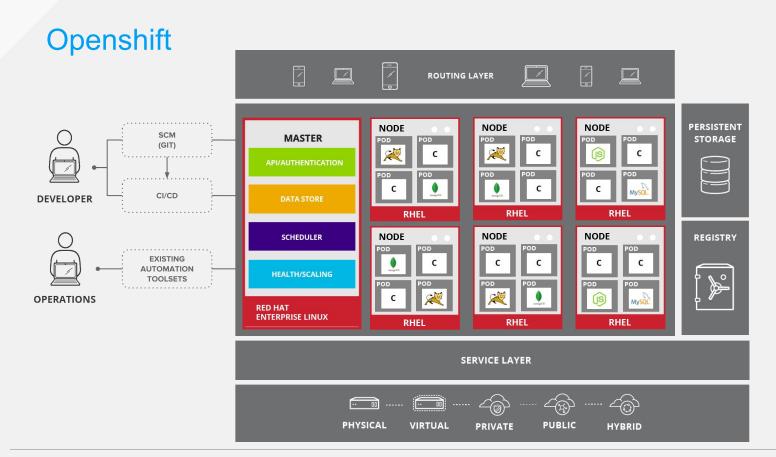
Business Resource Planner

Business Resource Planner is an "optimization engine" (or "constraint satisfaction solver") platform that runs on JBoss BRMS

It enables **regular Java developers** to create solvers for complex planning problems using a variety of out-of-the-box provided algorithms

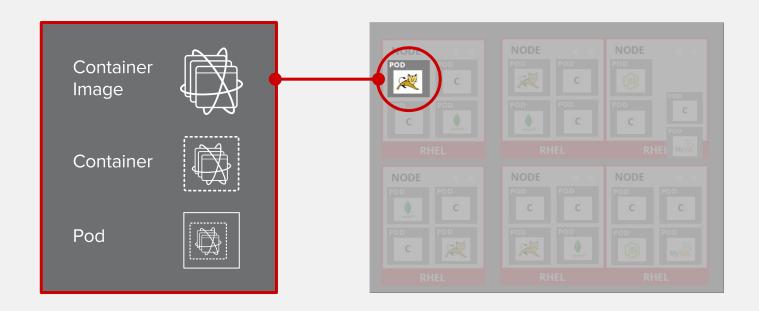
Business Resource Planner

Types of constraints

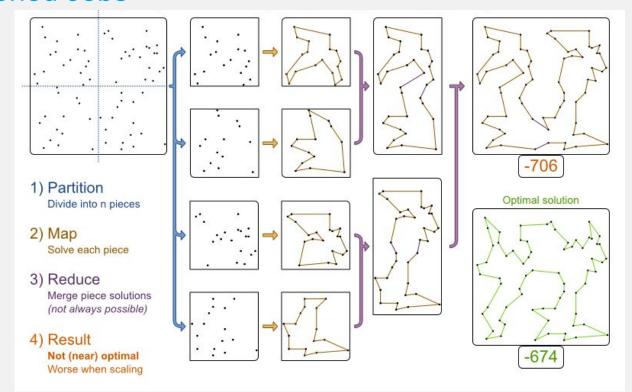

Hard Constraints must be satisfied by any solution (for it to be a feasible solution)

- Crew must not exceed 8 hours in 24
- Truck must not be overloaded
- Every shift must have a full complement of nurses
- PM visit should be before safety inspection in a year

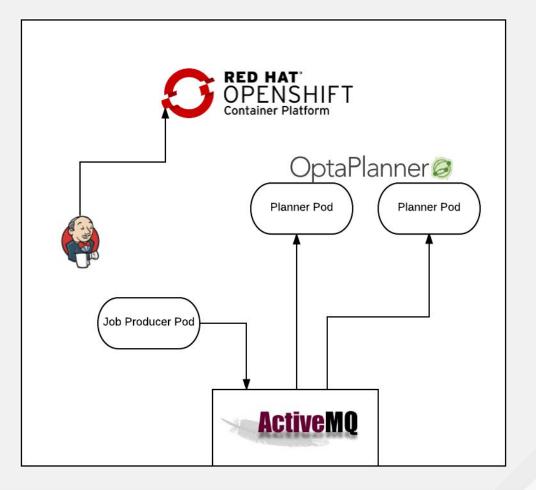
Soft Constraints should be satisfied as much as possible (better solutions satisfy more soft constraints)


- Crews should return home every 5 days
- A nurse's time preference should be honored
- A mechanic should have about an equal amount of work each week

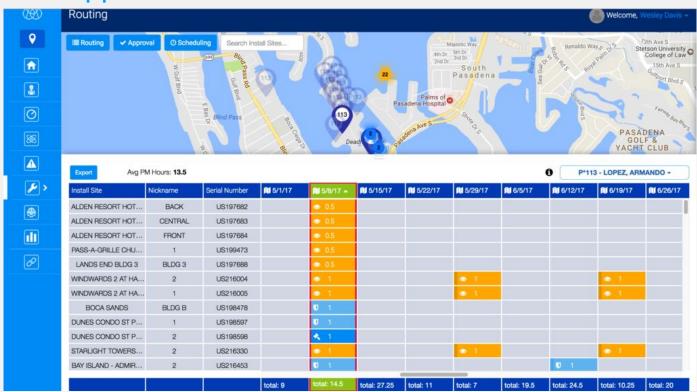
Openshift


Openshift Jobs

- Jobs are Pods that run to completion
- Jobs are a kubernetes object
 - Creates one or more pods and ensures they complete successfully


```
apiVersion: batch/v1
kind: Job
netadata:
 name: planner-job
spec:
  parallelism: 2
  template:
   metadata:
      name: planner-job
    spec:
      containers:
      - name: planner-job
        image: 172.30.1.1:5000/test/test:latest
        volumeMounts:
         - name: sample-data
           mountPath: /etc/sample-data
         - name: report-data
           mountPath: /etc/report-data
        resources:
          limits:
            cpu: "1"
          requests:
            cpu: "1"
        env:
         - name: JAVA MAIN CLASS
           value: com.rhc.planner.app.PlannerRunner
```


Partitioned Jobs


Demo Architecture

DEMO

THANK YOU

plus.google.com/ Treatlat

in linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

RED HAT SUMMIT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

