
THE TRUTH ABOUT MICROSERVICES

John Frizelle
Mobile Platform Architect
Wednesday, May 3rd 2017



Agenda

● What are Microservices
● Challenges with Microservices
● When to consider Microservices
● Summary



“...an approach to developing a single application 
as a suite of small services, each running in its 
own process and communicating with lightweight 
mechanisms, often an HTTP resource API. These 
services are [...] independently deployable by fully 
automated deployment machinery.”

- Martin Fowler

Mandatory “What are Microservices” Slide



“...an approach to developing a single application 
as a suite of small services, each running in its 
own process and communicating with lightweight 
mechanisms, often an HTTP resource API. These 
services are [...] independently deployable by fully 
automated deployment machinery.”

- Martin Fowler

Mandatory “What are Microservices” Slide



“ The Microservices buzz is much like teen 
dating. You do it because it's exciting and 
everyone is doing it. You don't really know what 
you are getting into, but want to do it anyways. 
By the time you realize what it's all about, you're 
already in a relationship.”

- Zohaib Khan, Red Hat

More Honest “What are Microservices” Slide



Microservice Vs Microservices Architecture

● Building a single Microservice is 

EASY
● Building a Microservices Architecture is

HARD



CHALLENGES WITH MICROSERVICES



Challenges with Microservices Architectures

● Building
● Testing
● Versioning
● Deploying

● Logging
● Monitoring
● Debugging
● Connectivity



Microservices Challenge 1 / 8 - Building

● How to identify dependencies between services
○ One build completing may need to trigger several 

other builds

● Building individual services vs building a product release
○ What versions of which services constitute a “release”



Microservices Challenge 2 / 8 - Testing

●Integration testing 
○Mocks vs full system stand up

●End to end testing
○Identifying root cause of failures



Microservices Challenge 3 / 8 - Versioning

●Public API vs versioning your microservices
○How do the two relate

●Updating to new versions
○Backward compatible APIs - code smell
○Multiple versions live for different clients



Microservices Challenge 4 / 8 - Deploying

●Huge amount of Automation
○Too complex for manual human deployment

●Blue / Green Deployments
○Deciding when to roll back and knowing it’s worked



Microservices Challenge 5 / 8 - Logging

●Distributed Systems => Centralised Logs
○Impossible to manage without centralization

●Tracing requests across services
○Global request Ids are essential



Microservices Challenge 6 / 8 - Monitoring

●Critical to have centralised view of system
○Pinpoint source of problems

●Distributed Request Tracing
○Need to be able to track a request across services



Microservices Challenge 7 / 8 - Debugging

●Root cause analysis
○How to determine where the problem is

●Remote Debugging
○Not feasible across dozens or hundreds of services



Microservices Challenge 8 / 8 - Connectivity

●Service Discovery
○Centralised (etcd) Vs integrated (properties)

●Network 
○HTTP - Circuit Breaker, dropped requests



WHEN TO CONSIDER MICROSERVICES



Challenges with Monolithic Architectures

●Size
●Stack
●Failure
●Scaling
●Productivity



Monolith Challenge 1 / 5 - Size

●Code Base Size
○Can overload IDE

●Local Development
○Requires huge amount of resources



Monolith Challenge 2 / 5 - Stack

●Hard to use any new tech stack
○How / where does it fit in

●Initial jump is the hardest
○Moving from 1 to 2 tech stacks doubles the overhead



Monolith Challenge 3 / 5 - Failure

●If anything fails, everything fails
○It's all one system

●Much larger surface area
○Higher likelihood of failure



Monolith Challenge 4 / 5 - Scaling

● Scale everything 
○ For any contention in any part of the system

● Excessive cost and resource consumption 
○ Larger footprint for CPU / Memory / Disk



Monolith Challenge 5 / 5 - Productivity

● Developers can not work independently
○ Single codebase, single deployment 

● Develop test debug cycle increases 
○ Compile time, run time, test execution time



IN SUMMARY...



Benefits of Microservices

● Agility and flexibility to change rapidly

● Smaller codebases => less context for developers

● Smaller teams => clearer focus and responsibility 

● Easier to scale => only scale the parts that need it

● Right tool for the right job => pick the technology that works 

best



Understand Why

● Don’t get caught up in the hype

● If you do Microservices, make sure you know why you 
are doing them



Complex systems require automation

● Microservices don’t make complexity disappear - they 
just move it

● Automation is key - Microservices Architectures are too 
complex for humans to manage 



Transformation is hard

● Moving from Monolith to Microservices is challenging 
and will take time

● Remember Conway’s law - moving to microservices will 
likely require an “Agile Transformation” 



THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews


