
JBoss AMQ 7
Technical Deep Dive

Advanced Messaging for the Cloud

Ted Ross
Senior Principal Software Engineer
May 4, 2017

Presentation Outline
● Overview of AMQ7
● Technical Discussion of AMQ 7 Operation
● Cloud-Messaging Demonstration

Overview of AMQ7

AMQ7. GA. Today.

AMQ7 At A Glance
AMQ Broker

AMQ Interconnect

AMQ Clients

AMQ7 Broker
● High performance general-purpose message broker
● Asynchronous core with thread pooling for improved scale and performance
● Support for multiple protocols

○ Legacy “Core” protocol
○ Legacy “Openwire” protocol
○ Standard AMQP
○ Standard MQTT
○ STOMP

AMQ7 Interconnect
● All new message router for AMQP
● Separates message routing from message storage
● Integrates clients and brokers in flexible, scalable networks
● Provides direct/brokerless message delivery
● Provides security
● Leverages the extensive capabilities of the AMQP protocol

AMQ7 Clients
● Standard JMS2
● Reactive AMQP clients for better integration

○ C/C++
○ Python
○ Javascript (browser and Node.js)
○ .NET

● Legacy clients
○ AMQ6 (ActiveMQ5)
○ HornetQ
○ MRG-M

A Word about Performance
Broker Performance

SpecJMS - Transaction rate, Durable message rates, filtering, etc.

Router Performance

Raw latency and throughput

AMQ7 is Next-Generation Messaging for
Enterprise, Cloud, and IoT

Diving Deeper

AMQP Anatomy

Process

Message Producer
Messaging
System

Process

Message Producer

on_start():
 conn = container.connect(hostname)

Messaging
System

Process

Message Producer

on_start():
 conn = container.connect(hostname)
 sender = container.create_sender(conn, “Service”)

Messaging
System

Process

Message Producer

on_start():
 conn = container.connect(hostname)
 sender = container.create_sender(conn, “Service”)
on_sendable(event):
 msg = Message(headers, body)
 sender.send(msg)

Messaging
System

Process

Message Producer

on_start():
 conn = container.connect(hostname)
 sender = container.create_sender(conn, “Service”)
on_sendable(event):
 msg = Message(headers, body)
 sender.send(msg)
on_accepted(event):
 # message delivery confirmed

Messaging
System

Message Consumer
Messaging
System

Process

Message Consumer

on_start():
 conn = container.connect(hostname)

Messaging
System

Process

Message Consumer

on_start():
 conn = container.connect(hostname)
 receiver = container.create_receiver(conn, “Service”)

Messaging
System

Process

Message Consumer

on_start():
 conn = container.connect(hostname)
 receiver = container.create_receiver(conn, “Service”)
on_message(event):
 Process(event.message)

Messaging
System

Process

Message Consumer

on_start():
 conn = container.connect(hostname)
 receiver = container.create_receiver(conn, “Service”)
on_message(event):
 Process(event.message)
 container.accept(event.delivery)

Messaging
System

Process

AMQP Protocol Features
● Full-Duplex and Asynchronous
● Message encoding: Body and Headers/Annotations
● Settlement and Disposition

○ Settlement: Best Effort; At-Least-Once; Exactly-Once
○ Disposition: Accepted, Rejected, Released

● Flow Control
○ Message Credit
○ Session Frames

● Multiplexing
● Addressing

Brokered Messaging

Consumer

Producer

Consumer

Non-Brokered Messaging

Consumer

Producer

Consumer

Scaling Out

BOSR R

B B B

Scaling Out

BOSR R

B B B

ATL

R R

BPHX

R

Scaling Out

BOSR R

B B B

ATL

R R

BPHX

R

AWS
us.west

R

Hybrid Cloud Demonstration

The AMQ Network

RDU Data Center

Enmasse
Cluster
(AMQ in
openshift)

ON-PREM
Router

AWS

AWS
Router

Azure

AZURE
Router

20

20

Security Configuration
ON-PREM, AWS, and AZURE routers mutually authenticate using a dedicated
x.509 Certificate Authority

Connection roles are explicit. Inter-router connections are separate from normal
(client access) connections.

Client access to the cloud routers is not exposed outside the cloud provider.

The Application

● Service is an internal Enterprise application service
● All services are hosted inside the enterprise (in openshift)
● Service and SubService.B are also hosted in the public cloud for overflow
● SubService.A uses sensitive data and is not deployed outside the enterprise

Service
SubService.A

SubService.B

Accounting Queue Collector

The AMQ Network

RDU Data Center

OpenShift
Cluster
(AMQ in
openshift)

ON-PREM
Router

AWS
Router

AZURE
Router

20

20

Service

SubService.B

Service

SubService.B
client-once

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

