

Red Hat Virtualization

Status Overview and Roadmap

Yaniv Dary Senior Technical Product Manager, Red Hat

Moran Goldboim Senior Technical Product Manager, Red Hat

May 2017

RED HAT[®] VIRTUALIZATION 4.1

#redhat #rhsummit

HISTORY OF RED HAT VIRTUALIZATION

	RHEV BEATS VMWARE on the SPECvirt_sc2010 benchmark for both speed and scale 2010		RHEV 3.1, 3.2 Windows guests NUMA collaboration with HP 2013		RHEV 3.6 V-2-V migration tool		Ansible integration Native SDN 10 years KVM Foundation of Linux Virtualization 2017
2008 QUMRANET ACQUISITION		2012 RHEV 3.0 More solution partners RESTful API memory overcommit		2014 RHEV 3.3, 3.4 OpenStack Neutron integration Hot plug CPU Affinity management IBM Power support		2016 RHV 4.0 10th product release	Ì

RHV 4.1

THE DATA CENTER IS MOVING FORWARD PRESSURE FROM CUSTOMERS & COMPETITORS TO MODERNIZE

NEXT-GENERATION ARCHITECTURE

CLOUD-NATIVE PLATFORMS

DEVOPS & CULTURAL CHANGES

New ways of developing, delivering, and integrating applications

Modernize existing and build new cloud-based infrastructure A more agile process across both IT and the business functions

BALANCING INNOVATION AND OPTIMIZATION

MOST CUSTOMERS NEED BOTH VIRTUALIZATION AND CLOUD

BALANCING INNOVATION AND OPTIMIZATION RED HAT VIRTUALIZATION FOCUS

Leverage and integrate existing investments in order to enable future technology

RED HAT VIRTUALIZATION DEVELOPMENT MODEL

IT OPTIMIZATION AND CLOUD INTEGRATION

.

#redhat #rhsummit

OPEN HYBRID CLOUD CHALLENGES

Vendor Lock-In Cost of Change

Dependence on a Financial, Process, specific vendor Personnel

Solving the Puzzle Determining how disparate parts fit together

RED HAT'S VISION: OPEN HYBRID CLOUD

ANSIBLE BY Red Hat' RED HAT VIRTUALIZATION ANSIBLE STRATEGY

Deliver

Seamlessly create, deploy and manage VMs on top of RHV

Empower

Leverage existing Ansible eco-system

ANSIBLE 2.3 INTEGRATION - RHV 4.1

Providing the building blocks

- Ansible modules for infrastructure configuration and management
 - Tiered applications deployment using dynamic inventory
 - Community supported Ansible Roles
 - "Common API" to integrate with different entities in the datacenter like storage and networking

ANSIBLE LAB AT RED HAT SUMMIT

Hands on Lab

"Automate Red Hat Virtualization Infrastructure using Ansible"

Instructor led

Wednesday, May 3, 1:00 PM - 3:00 PM -Room 254A

OPENSTACK SERVICES INTEGRATION

Neutron

RED HAT

OPENSTACK°

PLATFORM

- Support for OSP 8/9/10.
- Assign Neutron OVS ml2 native networks to RHV virtual machines.
- Use director and composable roles to manage the Neutron agent on the RHV hosts.

Glance

Use, export, and share templates and images.

Cinder (tech preview)

- Allows manage disks on OpenStack Cinder.
- Leverages storage offloading for improved VM provisioning performance.

CLOUDFORMS 4.5 USER STORIES

RED HAT CLOUDFORMS

IT AUTOMATION AND MANAGEMEN Stopped to change

 $\odot \odot \odot$

Playbooks as a Service

- Order, Modify & Retire
- nTier Applications
- Compute, Storage, Networking
- **Configuration Management**

Ansible Playbook based Policies

- Event->Condition->Playbook •
- Alert->Playbook ۲
- **Custom RHV functionality** extensions
- OOB playbooks (advanced functionality)

ANSIBLE

HYBRID CLOUD ENABLEMENT ROADMAP						
				Ject to change		
Cloud Snapshot Live r 2017-01	Forms 4.2 management nigration	CloudFo Integra OSP 11 Ce ~2017-05	orms 4.5 Ited V2V ertification	RHV 4.2 OSP 12 Certification ~2018- winter		
	2017-04		~2017- Summer			
RHV 4.1/Ansible 2.3 oVirt Ansible modules		nsible 2.3 e modules	CloudForms 5.x Admin Story- Day 1 ops Advanced VM Management Cross RHV operations			

HYPERCONVERGED INFRASTRUCTURE

#redhat #rhsummit

MISSION CRITICAL • VIRTUALIZATION & PERFORMANCE

.

MISSION CRITICAL WORKLOADS

Performance and Resilience

Unmatched performance & high availability across x86 and IBM's Power architectures. Long Workload Lifecycles

Scale Up/Down & migrate workload without downtime

Monitoring and Alerting Capabilities

Ensure SLA, pinpoint bottlenecks & perform real-time monitoring

VIRTUAL WORKLOAD SCALE UP/DOWN

Resource	Hot Plug	Hot Unplug
CPU	~	✓ *
Memory	~	X **
Disks	~	~
Network Interfaces	~	~

* New in RHV 4.1 ** Planned for RHV 4.2

SYSTEM LEVEL DASHBOARD

REAL TIME GLIMPSE INTO THE INFRASTRUCTURE

RHV METRICS - LIGHTNING TALK

Lightning Talk

"Red Hat Virtualization Analytics -Transitioning to Metrics Store"

Wednesday, May 3, 11:30 AM - 12:15 PM Room 101

DISASTER RECOVERY

Subject to change Native DR solution for stretched clusters and site to site recovery

Active-Active Stretched Clusters

- End to end support.
- High availability via VM storage locking (RHV 4.1).

Site to site Failover of **Different Managers** Single click offline tool

MISSION CRITICAL VIRTUALIZATION Solvect to change

DEV/TEST INFRASTRUCTURE

DEV/TEST ENVIRONMENTS

Simple & inexpensive virtualization platform

- Infrastructure deployment in matter of hours
- No additional licensing fees on advanced features

Maximizes physical infrastructure utilization

- Supports both Linux and Windows workloads
- Improved virtual workload density per hypervisor

Automation friendly

- Utilizing **RESTful API**
- Python, Java and Ruby software development kits
- Ansible modules and roles

STORAGE SCALE & PERFORMANCE

Storage subsystem scalability

• Number of virtual disks supported by the storage domain is increased from 250 to 1000

VM virtual disk maintenance tasks

- Speed up the removal of snapshots when the VM is not running.
- Improve VM storage deletion performance and thin provision efficiency (discard support).
- Trim VM disk size (virt-sparsify).

STORAGE SCALE & PERFORMANCE

Storage subsystem performance

- Distribution of data operations across all hosts
- Reduced resources consumption.
- An average improvement of 38%.

Scale Load Example (seconds)

 $\cap \cap$

NATIVE SOFTWARE DEFINED NETWORKING

- Native SDN support via Open Virtual Network for Open vSwitch (Tech preview in RHV 4.1)
 - Exposes a Neutron-like API, enabling customers to reuse Neutron's existing automation with **minimal changes**.
 - Enables overlay networking and subnet management in RHV.
- Extend SDN functionality coverage (RHV 4.2)
- Subject to change Focus on complete security groups and routing support.
 - Addition of user interface in administration.

DEVELOPMENT WORKFLOWS

Provision

Stage

- Templates native & Glance
- Cloudinit & Windows
 Sysprep
- Upload\Download API

Console (Spice & serial) SDKs & Ansible support

SDN

- Complete Monitoring Stack
- High density
- Tech preview nested VMs

- High Availability Low latency features
- Scale up\down

Production

DEV\TEST FEATURES ROADMAP

RHV 4.1 GA

- Disk maintenance improvements
 - Native SDN (tech preview)
 - Disk image upload\download

RHV 4.X

Subject to change

-ISO upload\download - Improved storage performance (XCopy\SDS)

Future

2017-04

-Native SDN support and GUI -Self Service focus RHV/CF 5.0

VIRTUAL TECHNICAL WORKSTATIONS

* * * * * * * * * * * * * * * *

#redhat #rhsummit

VIRTUAL TECHNICAL WORKSTATION

Reduce costs for technical workstations

- No dedicated hardware
 per technical workstation
- Centralized Management
 and deployment

Maximizes physical infrastructure utilization

- Supports both Linux and Windows workloads
- Carve single GPU across several virtual technical workstations

Fast deployment and self-service

Subject to change

- **Resource Management** allowing hardware planning
- Fast deployment process for new workloads including self-service

VIRTUAL TECHNICAL WORKSTATION

vGPU Partners

- NVIDIA (GRID)
- Intel (GVT-G)

Target Markets

- Oil & Gas
- Energy

- Sciences & Education
- Animation
 Manufacturing & Engineering

vGPU ENABLEMENT ROADMAP

RHEL 7.4 GA - vGPU kernel enablemen - RHV 4.1 vGPU Tech Preview hooks Late Summer 2017	nt - fully vusing (Displa Late Winter 2	IV 4.2 GA vGPU support y via 3rd party) ²⁰¹⁸
E	ind of 2017	Summer 2018
	oVirt 4.2 GA - vGPU Support	RHEL 7.5 GA - SPICE for vGPU Full remote display support

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

#redhat #rhsummit

vGPU OVERVIEW

- vGPUs are enabled through the Mediated Device (mdev) Linux kernel framework (similar to VF in SR-IOV)
- Each vGPU (mdev) is created on the RHV host, using resources of the parent device, such as Tesla
- Parent devices support multiple vGPUs for VDI or GPGPU workloads

CLOUDFORMS 5.x USER STORIES Subject to change

Advanced VM

Management

Ability to configure and manage RHV datacenter to operational level.

Edit VM functionality as it is in RHV today, including SLA features (Numa, Affinity, QOS)

Cross RHV operations

Disaster recovery, templates and image syncing

