
A Greybeard's Worst Nightmare

How Kubernetes and Containers are re-defining the Linux OS

Daniel Riek, Red Hat
April 2017

Greybeard

Greybeards fight Balrogs. They hate systemd. They fork distributions.

The Role of the Linux OS
Infrastructure or Application Platform?

● In abstract representations of the
modern software stack, the OS is often
considered part of the Infrastructure.

● However, an alternative,
application-centric view would
consider it’s primary role to provide a
common runtime for applications,
abstracting from infrastructure.

Application
View

Infrastructure
View

Red Hat
Enterprise Linux

Historic Role of Linux
Breaking the vertical lock-in of Mainframe, Mini-Computers, and UNIX

OPEN
ISV ECOSYSTEM
APPLICATION CONTENT

MAINFRAME

Complete vertical integration

Vendor-controlled
HW/OS/Ecosystem.

UNIX

Vertical integration of
infrastructure & app platform

Semi-open ecosystem.

RHEL

Completely Open HW and ISV
ecosystem with RHEL as the
neutral enterprise app
platform

INFRASTRUCTURE

OPERATING SYSTEM
APPLICATION PLATFORM

ISV ECOSYSTEM
APPLICATION CONTENT

INFRASTRUCTURE

OPERATING SYSTEM
APPLICATION PLATFORM

ISV ECOSYSTEM
APPLICATION CONTENT

RHEL

P
H

Y
S

IC
A

L
IN

FR
A

S
TR

U
C

TU
R

E

P
R

IV
A

TE
 C

LO
U

D
 &

E
N

TE
R

P
R

IS
E

 V
IR

T

P
U

B
LIC

 C
LO

U
D

S

● Servers were special pets. - They were dog-show exhibits.
○ Inherited from Unix host tradition.

● Software often compiled on the production machine.
● High-maintenance.
● Fragile due to dependencies on each host's environment:

○ Application behaviour depends on the state of the individual
machine.

○ Not efficient for managing artifacts.
● Late-binding based on source-level API.

Doesn't scale in distributed environments (aka PCs).

Early Linux Software Stack Management
In the beginning there was /usr/local/ - and stow, and binaries mounted on NFS.

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

/U
S

R
/LO

C
A

L/A
P

P
1

/U
S

R
/LO

C
A

L/A
P

P
2

/M
N

T/A
P

P
3

Scalability Through Binary Packaging
Then, There Be RPM and up2date, yum, dpkg, and apt..

● Frozen binary distribution, reproducible builds.
○ Build once, distribute binary across multiple Linux servers.
○ Metadata, signatures.
○ Predictable behavior, dependency management.
○ Management of installed artifacts, updates.
○ Transport for a curated content stream from a trusted source.

● Implicit lock into single instance, single version monolithic userspace.
● Implements a late-binding model for deploying software in Ops based

on an ABI contract.

Welcome to Dependency Hell. HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

Efficiency Through Central Control
Finally kickstart, satellite, cfengine, and the likes...

● Mass deployment and recipes
● Efficiency through automation. Binary distribution at scale.
● Volatility of late-binding dependency resolution, conflicts &

compatibility.
● Automate the stack composition on machines.
● Manage the lifecycle of the software stack.
● Centralize management control.
● Components move across dev/test/ops independently.
● Still in Dependency Hell.

Model still largely used today, sometime with the same components plus
newer tools.

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

A Whiff Of Freedom
Virtualization, Appliances, The Cloud - Everything is a VM

● Common model: Deploy as pre-built images, operate as pet.
● Predictable initial stack behaviour.
● Existing tools continue to work - it’s just virtual HW.
● Multiple instances, multi-tenant.
● Still monolithic inside the VM, still dependency conflicts in VM

Less Dependency Hell - Hello VM Sprawl and inconsistent management.

HARDWARE

HYPERVISOR

LINUX
KERNEL

COMMON
SHARED
USER
SPACE

APP 1

LINUX
KERNEL

COMMON
SHARED
USER
SPACE

APP 2

LINUX
KERNEL

COMMON
SHARED
USER
SPACE

APP 3

VM 1 VM 2 VM 3

Enterprise Virtualization & Cloud
Infrastructure Elasticity

● Efficient sharing of physical HW due to sharing infrastructure.
● Often Linux inherited one VM per service from Windows.

○ Multi-tier applications consisting out of multiple service.
○ Heavyweight compared to running multiple processes in a single

instance.
● Efficient cluster management on VM-level, ‘Software Defined’ Datacenter
● Potentially the a single artifact to move across DEV/TEST/PROD if

integrated into a full image-based lifecycle.
● Did we say Sprawl, but The Cloud takes the ops problems off your hands.

Move towards service aggregation, vertical integration.
PHYS
HW

PHYS
HW

PHYS
HW

PHYS
HW

COMPUTE NETWORK STORAGE

VM VM VM

VM VM VM

VM VM VM

VM VM VM

Shifting Paradigms

• Move towards Cloud Native
behaviors

• Aggregation of services replaces
monolithic systems

• Preference to consume most
current versions

• Shift from a broadcast-model to
an on-demand model, SaaS

PREFERENCES &
BEHAVIOR

MACRO
TRENDS

TECHNIQUES
& TOOLS

• DevOps enables developers to
manage rapid pace of change

• Containers creates
application-centric runtimes that
allow maximum flexibility with
minimal overhead

• “Software is eating the world”

• Business-value driven developers
gaining influence over traditional
IT

• Open source is the default; driving
rapid growth in content volume
and stack complexity

BIFURCATED DEVELOPMENT
ENVIRONMENTS
Customers are increasingly operating in both environments; we must remain relevant in
both

Ops-Centric Environments

• Single-stream and generational-based distribution

• Stability through control

• Approval-based governance

• Generational, planned appdev

• Optimized for the traditional hardware-centric,
monolithic host deployment model

• Download to install and update in place

• On-demand distribution

• Stability through validation

• Continuous and process-based governance

• Rapid prototyping and iterative development

• Optimized for cloud-ready applications where
infrastructure is ubiquitous

• Download to build

Application Environments

Software Stack Complexity Keeps Growing

Source: http://www.modulecounts.com/

Traditional Distro Challenges in the App-Space
Diminishing Returns at Growing Complexity

Traditional binary software distribution great for foundational platform components… But:

● Modern software stacks have become too complex to be mapped into a common,
monolithic namespace.

● As a developer, I have to go to native packaging (e.g. npm) anyways because the
distribution does only provide a small part of what I need to build my application.

● Slow delivering new versions to app developers.
● The higher in the stack, the bigger the issue.
● Re-packaging, frozen binary distribution offers little value for the App developer.
● Upstream binary/bytecode formats sufficient, they compile their software anyways,

lock-in for hybrid environments.
● Testing is more valid if done with the actual application, using it.

Liberation: Containers
Expanding use of containers, from VServer over LXC to OCI

● Separate the application runtimes from system runtime.
○ Like chroot but with an epstein drive.

● Multi-instance, multi-version environment with possible
multi-tenancy: each service has it’s own binary runtime.

● Light-weight - at the end, it’s just linux processes separated by
kernel features: CGroups, Namespaces, SELinux

Good bye Dependency Hell

P
H

Y
S

P
R

IV
A

TE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

LINUX KERNEL

HOST USER SPACE

APP 2

APP USER
SPACE 2

APP USER
SPACE 1

APP 3

APP USER
SPACE 3

APP 1

Enter: The Container Revolution
OCI Containers provide the package format for Application-Centric IT

● Aggregate packaging deployed into containers.
○ Initiated by the project previously known as ‘Docker’.
○ Combine existing Linux Container technology with Tar +

overlays -> Unicorns
● Frozen binary distribution, reproducible builds.

○ Build once, distribute binary across multiple Linux servers.
○ Metadata, signatures.
○ Management of installed artifacts, updates.
○ Transport for a curated content from a trusted source.

● Fully predictable stack behaviour, life cycle, lightweight.
● Implements an early-binding model for deploying applications

packaged by a developer.

The best of both worlds.
Source: http://www.clipartpanda.com/clipart_images/narwhal-facts-by-whispered-4184726

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Multi Container Apps
In reality, most applications consist of multiple containerized services.

● Ideal container is only a single binary.
● Applications are aggregated from multiple containerized

services.
● Ideal for cloud native applications.
● From multi-tier applications to micro services.
● Static linking or dynamic orchestration.

Great to solve dependency hell, but how to make sure my frontend
knows which database to talk to?

P
H

Y
S

P
R

IV
A

TE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

LINUX KERNEL

HOST USER SPACE

The Cluster Is The Computer
By default , everything is a cluster

● Kubernetes manages containerized services across a cluster
of Linux nodes.

● Application definition model, describing the relationship
between services in abstraction from the individual node.

○ Abstraction from the underlying infrastructure:
compute, network, storage.

○ Same application definition remains valid across
changing infrastructure.

● Whole stack artefacts move across dev/test/ops unmodified.
● Scale-out capabilities and HA are commoditized into the

standard orchestration.
● Often built around immutable infrastructure models.

P
H

Y
S

P
R

IV
A

TE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

KUBERNETES ORCHESTRATION

Container Use Cases
Three Major Types of Container Use Cases

FULLY ORCHESTRATED
MULTI-CONTAINER
APPLICATION

LOOSELY ORCHESTRATED
CONTAINER APPLICATION

PET CONTAINER

● Container build service

● Multi-container

● Kubernetes

● OpenShift

● Cloudforms mgmt engine

● Ansible used against
higher-level APIs

● Container build service

● One or multi-container

● No Kubernetes

● Static relationships
configured on the host

● Atomic tool

● Ansible used against
lower-level APIs

● Environment boot-
strapped by container

● Run YUM, NPM, etc
inside container instance
(NOT pre-built in
build service)

● Ansible inside container
(similar to VM use case)

The New App-Centric Platform

APPLICATION

APPLICATION PLATFORM

INFRASTRUCTURE

DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

DEVELOPER
TOOLING

MANAGEMENT
TOOLS

Built around the Application Platform
and Application Content.

Enabled by developer tools and hybrid
cloud management.

Fed by packaged service and developer
content ecosystems.

Supported by infrastructure integration.

Abstraction Across Hybrid Cloud

OpenShift provides a scale-out, “the
cluster is the computer” platform to
deploy fully-orchestrated multi-container
applications.

Built on RHEL Atomic Host in the
immutable infrastructure paradigm, OCI
containers, etcd, kubernetes, systemd.

Application is defined in abstraction from
Infrastructure provider details, works
across different cloud providers,
integrates with infrastructure services.

Fully Open Source, Standards-based,
pluggable.

APPLICATION

DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

DEVELOPER
TOOLING

MANAGEMENT
TOOLS

Storage Network Identity ...

S
tand A

lone /
B

are M
etal

R
H

E
V

R
H

E
L O

S
P

V
M

W
are

P
U

B
LIC

 C
LO

U
D

- A
W

S
- A

ZU
R

E
- G

O
O

G
LE

OpenShift

RHEL / Atomic Host / OCI Container Runtime

Routing Infra Drivers
Registry

Host Automation
KUBERNETES

Log / Metrics Security

Fully Portable Application

DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

Storage Network Identity ...

S
tand A

lone /
B

are M
etal

R
H

E
V

R
H

E
L O

S
P

V
M

W
are

P
U

B
LIC

 C
LO

U
D

- A
W

S
- A

ZU
R

E
- G

O
O

G
LE

Application Runtimes
C, Java, Python, Ruby, Perl, NodeJS, .NET, PHP, GO ...

Middleware
EAP, JWS, FUSE ...

Packaged Service
Database, Messaging,
Analytics, BxMS,
Instrumentation Tools ...

Custom Application CodeApplications consist of multiple
containers, built as OCI Container
images. Kubernetes defines application
entity.

Ansible Application Bundels and the
OpenServiceBroker API provide a
transport model for full-application
portability across the ecosystem.

Red Hat provides RHEL base images to
build layered apps on. Today RHEL 6 and
7 are supported in parallel.

Pre-packaged services can be easily
aggregated without need to build images
or application templates. Middleware is
integrated experience provided through
xPaaS.

OpenShift

RHEL / Atomic Host / OCI Container Runtime

Routing Infra Drivers
Registry

Host Automation
KUBERNETES

Log / Metrics Security
Build Automation CI/CD Deployment Auto
Self Service Service Catalog Extensions ...

CloudForms
Single Pane of Glass
Management,
Container
Management
Policy Management

Ansible Automation

Satellite Content
Management &
Infra Deployment

Infrastructure-specific
management tools -
OSP Director, HW, ...

3rd Party Management
tools

Red Hat Insights
Predictive Mmgt

CDK

3rd Party Developer
Tools:
Che, Visual Studio, ...

OpenShift.IO
Developer Tools &
Developer Services

Ansible Application
Bundle

Trusted Ecosystems

3rd Party Management
tools

DEVELOPER
CONTENT
ECOSYSTEM

RED HAT
CONTAINER
CATALOG

Storage Network Identity ...

S
tand A

lone /
B

are M
etal

R
H

E
V

R
H

E
L O

S
P

V
M

W
are

P
U

B
LIC

 C
LO

U
D

- A
W

S
- A

ZU
R

E
- G

O
O

G
LE

Application Runtimes
C, Java, Python, Ruby, Perl, NodeJS, .NET, PHP, GO ...

Middleware
EAP, JWS, FUSE ...

Packaged Service
Database, Messaging,
Analytics, BxMS,
Instrumentation Tools ...

Custom Application Code
OPEN ECOSYSTEMS

Content available from Red Hat, certified partners,
community. Selection controlled by customer. Red
Hat and partners provide guidance on content
security: Red Hat Insights, Blackduck, etc.

COMPONENT-LEVEL

Downloaded to build
E.g. Java Library, RPM, zip, pip, npm module, ...
“As a developer, I want to develop my application
using an existing UI framework library.”

PACKAGED SERVICES

Downloaded to install
OCI Container image
E.g. Database, messaging service, platform
extensions, host drivers.
“As a sysadmin or developer, I want to aggregate
a pre-packaged database service into my
application.”

OpenShift

Build Automation CI/CD Deployment Auto
Self Service Service Catalog Extensions ...

CloudForms
Single Pane of Glass
Management,
Container
Management
Policy Management

Ansible Automation

Satellite Content
Management &
Infra Deployment

Infrastructure-specific
management tools -
OSP Director, HW, ...

3rd Party Management
tools

Red Hat Insights
Predictive Mmgt

CDK

3rd Party Developer
Tools:
Che, Visual Studio, ...

RHEL / Atomic Host / OCI Container Runtime

Routing Infra Drivers
Registry

Host Automation
KUBERNETES

Log / Metrics Security

OpenShift.IO
Developer Tools &
Developer Services

Ansible Application
Bundle

Breaking the Vertical Integration

OpenShift

Build Automation CI/CD Deployment Auto
Self Service Service Catalog Extensions ...

DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

Storage Network Identity ...

S
tand A

lone /
B

are M
etal

R
H

E
V

R
H

E
L O

S
P

V
M

W
are

P
U

B
LIC

 C
LO

U
D

- A
W

S
- A

ZU
R

E
- G

O
O

G
LE

Application Runtimes
C, Java, Python, Ruby, Perl, NodeJS, .NET, PHP, GO ...

Middleware
EAP, JWS, FUSE ...

Packaged Service
Database, Messaging,
Analytics, BxMS,
Instrumentation Tools ...

Custom Application Code

OpenShift.IO
Developer Tools &
Developer Services

CDK

3rd Party Developer
Tools:
Che, Visual Studio, ...

Ansible Application
Bundle

CloudForms
Single Pane of Glass
Management,
Container
Management
Policy Management

Ansible Automation

Satellite Content
Management &
Infra Deployment

Infrastructure-specific
management tools -
OSP Director, HW, ...

3rd Party Management
tools

Red Hat Insights
Predictive Mmgt

Public cloud & proprietary private cloud
are driving vertical integration and
lock-in with pseudo-standards.
 - Just like UNIX.

Red Hat is in the unique position to again
become the neutral runtime for an open
ecosystem on hybrid infrastructure,
disrupting the vertical integration of
proprietary vendors.
- Just like RHEL.

RHEL / Atomic Host / OCI Container Runtime

Routing Infra Drivers
Registry

Host Automation
KUBERNETES

Log / Metrics Security

P
roprietary E

nterprise V
irtualization

V
ertically Integrated P

ublic C
loud

The future of the Linux OS is a scale-out cluster-as-computer
platform for fully orchestrated multi-container apps,
providing an abstraction layer across underlying
infrastructure, and breaking the vertical integration of
proprietary cloud.

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

