
IoT in Oil and Gas
Architectures and Experiences

Glenn West - Principal Engineer, Red Hat
Michael Costello - Senior Middleware Consultant, Red Hat
John Archer - Senior Energy AppDev Solution Architect, Red Hat
Anne Joseph - CEO, Rutledge Omni Services Group

● Asset Surveillance
○ ESP (Electrical Submersible Pump)

■ Heat, Vibration, Voltage, Flow Rate
○ BOP (Blowout Preventers)
○ Seismic Vessel Streamers

■ Twisting, UV and Salt Corrosion
○ Pipeline and Valves

■ Flow Rate, Corrosion, Pig Status, Leak Detection
● Remote Production Monitoring
● Remote Drilling Monitoring
● HSE - Field Worker

○ Wearables, Location, Certifications, Environmentals

Oil and Gas Common IIoT Use Cases

The cost of
Non-Productive Time per

asset during drill to
completion is $500K -
$1M per day, and post

completion is
$40K-$300K per day on

average

Prioritizing Upstream Use Cases

Rutledge Overview
• Three Tier Architecture

• Overcloud
• Undercloud
• IOT

Overcloud

• Three Datacenters
• Openshift on Bare Metal
• High Performance Storage
• RHEV for Dev/Test Needs
• Hyper-converged Hardware

• Reasons:
• Ping Time
• Data Sovereignty
• Redundancy

Undercloud

• Extreme Environment
• Cloud Access – 0 to Infinite
• Mission Critical Local Apps
• Must have local servers
• Redundancy is mandatory
• Blackbox function is needed
• Special Hardware

Undercloud Server

• Project started with concept of
traditional IOT Gateway

• During version one, we saw
developer things of this more of an
Access Point

• We found the power and
performance not up to software
needs

• Moved to IOT Server Concept

• IOT Server – 3 + 1 on Site
• Xeon-D
• NVMe Solid State Storage
• Dual 10Gig Ethernet
• Dual IOT Radio
• Dual Wifi Radio
• 12 Slots M.2
• RHEL Atomic

Software Environment

• Projects Started with DevOps and
Microservices

• Openshift Confirmed as Overcloud –
Containers on Top

• How to do Microservices Everywhere?
• Due to real-time nature of undercloud,

needed static environment
• RHEL ATOMIC To Rescue

• Final System is “Microservice”
Everywhere”

• A Microservice in the Rutledge system
= 1 Container

• Development Environment
• NodeJS

• Database?

What to do for Database in Scale Out
• Version 1, the database was not

specified, any database any
microservice

• We found that this resulted in a
more traditional approach, not
microservice

• Recovery and Reliability took
second seat

• Realtime nature and syncing of
overcloud and undercloud got
forgotten.

• Version 2, Database tightly
specified

• Database and Microservice were
connected using a framework.

• Rockmsvc framework born
• Solved syncing between onsite IOT

Servers and under/over cloud.

Microservices and Rocks – Version 2
• Architecture rule of 100 Lines of

Code per Microservice
• Rockmsvc provides:

• Rocksdb
• Rest API
• Schema Support
• Support for business Logic
• Horizontal and Vertical Sync

• Why Rocksdb
• Designed for SSD and

in-memory
• Compression
• Low Overhead

• Framework provides:
• Multi-Table
• Multi-Key
• Application Sync over MQTT
• Local Storage / No SAN

Needed
• Runs on Openshift and RHEL

ATOMIC

Microservices
• Takes messages from AMQ,
and performs business logic.

• Looks up data in Rocks
• Writes Data In Rocks
• Send message(s) to AMQ
• Rockmsvc will also send
update messages on deletes
and writes so the 3+1 local
copies can stay up to date

IOT Overview

• Fixed Devices
• Room Sensor

• Provides a relay point for mesh,
and a PIR Sensor to detect
Humans

• Fixed Gas Detectors
• Provides level of various

Poisonous Gas

• Mobile Devices
• Badge

• IOT Devices
• Inherently Safe Battery Power
• Solar Power Top Up
• Inductive Charging

• Full Bidirection IP V6 Network
Device

• MQTT over IPV6

Lessons Learned

• Make sure your architect eats
and breaths Microservices

• Buy-in at every Level for
Microservice Architecture

• Biggest issues are often not
technical – It’s people
resisting change

• Power Management is King in
IOT

• Management of Network
Bandwidth is important in IOT
Applications – Bandwidth and
Power Connected

• Clean Division of Display
Logic and Business Logic
offers flexibility

Red Hat JBoss Fuse & A-MQ in SCADA system to monitor flow of oil/gas in pipelines

Global Midstream Oil & Gas Company

Partnered with Red Hat to adopt a software defined approach to taking sensor data
off the pipelines, and ingest it into their SCADA system over the IoT protocol, MQTT.

Lowered their operational IT
spend for MQ
Adopted open standards

Easier to maintain
Faster innovation
More secure

● Prevent new Silos - Single Backplane
● Validating Custom vs Package
● General Protocol Handling
● Message Formats
● New Sensors
● New Use Cases
● Intelligent Bandwidth Utilization

How to Future Proof the IT OT gap

22

Intelligent Gateway Architecture
Transforming device data into actionable information

23

Red Hat and Open Source for IoT

Our open source solutions
• Free you from proprietary lock-in and cost

escalation
• Capture community innovation
• Provide the enterprise-level security,

reliability, scalability and support required by
the IoT

• Bring the internet of things to life quickly,
cost-effectively, and with lower risk.

Data Focus
Services can be leveraged
and composed to create
net new value to build
applications rapidly to
deliver immediately. Reuse
enhanced with DaaS.

Data Centricity - Oil and Gas Data Opportunities
Application Focus
Challenges the package
applications to be
maintained and provide
net new value of the
support cost – data
locked away

Electrical Submersible Pump Machine Health
● Challenges

○ Deferred production
■ Lost oil due to ESP downtime
■ Underperforming ESP

○ Inefficient pump operation
○ Faster equipment deterioration due to misoperation

● Solution
○ Effective ESP Machine Health will increase the average run-life of an ESP and decrease

downtime.
○ Optimize pump flow rate
○ Minimize operational risk (e.g. operation under low flow conditions)
○ Reduce number of stops and starts
○ Optimize pump replacement

Openshift Container Platform

Machine Health Demo Architecture

IIoT Gateway
(Eclipse Kura)

ESP

Vibration
(Modbus TCP or
RTU)

Pump RPM
(Modbus RTU)

Fuse

JBoss Data
Virtualization

Red Hat
Mobile

Application
PlatformBPM Suite and

Business
Resource
Planner

Ansible/Cloudforms

PPDM
(Postgres)

OSISoft
Historian

A-MQ

ESP Replacement Business Optimization - BPMN

ESP Demo Walkthrough

ESP Vibration Simulation ESP Remote Metrics ESP Remote Control

 Global visibility to Production KPIs

Demo ESP Machine Health Scenario

● Non Productive Time (NPT) and Invisible Lost Time (ILT) involved with

production sites and personnel

● Just in Time synchronization for equipment and field workers

● Enable Remote Operators and SMEs

● End-to-end visibility of Maintenance Cycle

● Consume real-time machine health information

● Continuous Deployment and Improvement

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

Energistics WITSML – OPC-UA Reference Architecture

Energistics WITSML – OPC-UA Use Cases

Data acquisition, integration, & rules activation, providing dynamic intelligence at the
edge

Intelligent Gateway & IoT Cloud

Bridge between IT and OT by streamlining
the many data formats and velocities

Process and act on data at scale
Reduce latency and bandwidth
Apply real-time decisions locally
Transform IoT data and connect with
enterprise systems
Control and manage millions of IoT devices

(IIOT) Beyond the Gateway

●
−

● As a device messaging protocol, Modbus is ubiquitous; however, its limitations make
it non-ideal for highly available messaging needs

● Other TCP based messaging standards have evolved to carry modbus payloads

● MQTT
● STOMP
● OPC (highly used in many IIOT use cases)
● AMQP
● Others

(IIOT) MQTT

“MQTT is an ISO standard (ISO/IEC PRF 20922) machine-to-machine (M2M)/"Internet
of Things" connectivity protocol. It was designed as an extremely lightweight
publish/subscribe messaging transport. It is useful for connections with remote
locations where a small code footprint is required and/or network bandwidth is at a
premium. For example, it has been used in sensors communicating to a broker via
satellite link, over occasional dial-up connections with healthcare providers, and in a
range of home automation and small device scenarios. It is also ideal for mobile
applications because of its small size, low power usage, minimised data packets, and
efficient distribution of information to one or many receivers”
source : mqtt.org

● stan

(IIOT) MQTT
Characteristics

● MQTT provides a push based publish subscribe protocol based on its set of
protocol level control packets

● This architecture occurs on top of TCP

● MQTT’s control packets are kept as small as possible enabling high latency, low
bandwidth networks

● MQTT carries a data agnostic payload (it doesn’t have to be modbus...it could be
any type of serializable binary)

● MQTT’s QoS, Session Persistence, Last Will and Testament, and Retained Message
Flags provide capabilities uniquely suited to devices

(IIOT) MQTT
Provides a “Stateless Session” Scope

● With the use of retained messages and LWT feature, MQTT as a protocol allows other clients
to bind into a sort of “stateless session scope”
● MQTT subscribers may event based on LWT messages

● IIOT Example: A monitoring application receives a LWT message from a critical system
that it is “offline”

● Retained message flag allows publishers to avail subscribers of their values without having to
maintain state of whether or not subscribers were interested in the publisher's last relevant
message

● Due to the use of the MQTT keepalive feature, clients become aware of the state of publishers
in combination with their LWT

(IIOT) MQTT
Best Practices

● Report by Exception – all of the data all of the time may not be valuable
○ IIOT Example: Temperature fluctuations

● Just Good Enough Delivery - The broker must prevail
○ Sacrifice message durability for broker performance

■ IIOT Example: Durable chirps may cause a broker to deliver millions (or
more) of message in order at once

● Be wary of durable subscriptions, make sure to protect the broker against them!

(IIOT) MQTT
ActiveMQ
● ActiveMQ provides an MQTT based TCP transport for IOT Messaging:

<transportConnector
name="mqtt+nio"uri="mqtt+nio+ssl://localhost:1883"/>

● Transport has available options for:
● Keep Alive
● Subscription Strategy
● Message prefetch

(IIOT) AMQ Security Survival Guide

● AccessControlLists’s are critical
<authorizationEntries>

<authorizationEntry topic="field.device.1.>"
read="field-device-consumers" write="field-device-producers"
admin="admin"/>

<authorizationEntry topic="field.device.1.iotdata>"
read="iot-consumer" write="iot-producer" admin="admin"/>
</authorizationEntries>

● Restrict publishers and subscribers to only what they need
● Don’t allow #,> on high level topic namespaces

(IIOT) AMQ Security Survival Guide

PROTECT THE BROKER with destination policies

<policyEntry topic="CRITICAL.IOT.DATA.>">
<pendingMessageLimitStrategy>

 <constantPendingMessageLimitStrategy limit="10"/>
 </pendingMessageLimitStrategy>
 <subscriptionRecoveryPolicy>
 <timedSubscriptionRecoveryPolicy recoverDuration="10000"/>
 </subscriptionRecoveryPolicy>
</policyEntry>

(IIOT) AMQ Security Survival Guide
(continued)
● Secure The Transport

● SSL/TLS – ensure the wire is encrypted
● Narrow the zone of trust (ensure survival of the edge)
● This can help assure prevention of device and broker intrusion

● Message Level Authorization
● Interceptors that apply custom message based authorization to messages (inspect

payloads, headers, etc.)

<messageAuthorizationPolicy>
 <bean class="com.redhat.iiot.FactoryAuthorizationPolicy"
xmlns="com.redhat.iiot"/>
</messageAuthorizationPolicy>

(IIOT) Highly Available AMQ Based
Broker Topologies Enable IIOT

● Elastically scale to device load
● HA topologies in use with PAAS appliances such as OpenShift allow for message

brokers to elastically scale to pub/sub needs
● Topologies ensure high availability and distribution of load
● AMQ has various capabilities with durability of its journal that allows most MQTT QoS

to flourish at incredibly high volumes
● KahaDB
● Memory Persistence Adapter – Message simply dispatch in memory

(IIOT) Highly Available Broker Topologies

−

