
Developing Microservices
 with WildFly Swarm and MicroProfile

Ken Finnigan
Principal Software Engineer

John Clingan
Senior Principal Product Manager

Eclipse MicroProfile

Enterprise Java Standards History

Eclipse MicroProfile Background
● Many innovative “microservices” efforts in existing Java EE projects

■ WildFly Swarm
■ WebSphere Liberty
■ Payara
■ TomEE

○ Projects already leveraging both Java EE and non-Java EE technologies
○ Creating new features/capabilities to address microservices architectures

● Wanted to avoid splitting into separate communities

● So we are collaborate in one community!

http://wildfly-swarm.io
http://wildfly-swarm.io
https://developer.ibm.com/wasdev/websphere-liberty/
https://developer.ibm.com/wasdev/websphere-liberty/
http://www.payara.fish/
http://www.payara.fish/
http://tomee.apache.org/apache-tomee.html
http://tomee.apache.org/apache-tomee.html

An Eclipse
Foundation
Project

● Meritocracy; vendor neutrality
● MicroProfile leadership can change over

time
● Legal and technical infrastructure
● Trademark Ownership
● Accepts Apache License

The Path to Microservices with MicroProfile

1. Leverage relevant Java EE
Technologies

2. Organic Innovation

3. Collaborate in Open Source

Quickly Put Features in Developers Hands

2016 2017 2018 2019

8 9

1.0

1.1

1.2

2.0

2.1

2020

2.2

* 2-4 releases per year

Practical Usage of MicroProfile - Example

3rd Party Frameworks

Join Us Later Today

Optimizing Java EE for a microservices architecture

4:30 PM - 5:15 PM

Room 102B

WildFly Swarm

What is it?

● Begins with WildFly / Java EE

● Extends Java EE with cloud native capabilities

● Package deployment

○ Uber Jar - including deployment

○ Hollow Uber Jar - without deployment

Just enough App Server (JeAS)

● Bundles your deployment (JAR/WAR)

● Fractions define available functionality for
deployment

● Internal Maven repository with dependencies

● Bootstrap Code

Fractions...

● Enable WildFly subsystems (e.g. Infinispan)

● Integrate additional frameworks/services (e.g. Topology)

● Provide deployments (e.g. Swagger, Jolokia)

● Add API dependencies (e.g. JAX-RS)

● Alter deployments (e.g. Keycloak)

Fractions...

● Expressed as Maven (GAV) coordinates:
○ org.wildfly.swarm:<fraction>:<version>, e.g
○ org.wildfly.swarm:undertow:2017.5.0

● 184 fractions currently available
○ 158 stable
○ 26 experimental

● About 80% wrap WildFly related components (Java EE, WF Camel, internal WF)

● More in the pipeline

Enabling WildFly Swarm

 <plugin>
 <groupId>org.wildfly.swarm</groupId>
 <artifactId>wildfly-swarm-plugin</artifactId>
 <version>${version.wildfly.swarm}</version>
 <executions>
 <execution>
 <id>package</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

AUTO DETECTION DEMO

Enabling specific WildFly Swarm Fractions

 <dependency>
 <groupId>org.wildfly.swarm</groupId>
 <artifactId>bom</artifactId>
 <version>${version.wildfly.swarm}</version>
 <type>pom</type>
 <scope>import</import>
 </dependency>

Enabling specific WildFly Swarm Fractions

 <dependency>
 <groupId>org.wildfly.swarm</groupId>
 <artifactId>jaxrs</artifactId>
 </dependency>

Build / Run

Build

mvn package

Run

mvn wildly-swarm:run

OR

java -jar <my-app>-swarm.jar

OR

IDE > Run … org.wildfly.swarm.Swarm()

Flexible Configuration
● Maven Plugin

… <swarm.http.port>8081</swarm.http.port> …

● Java properties
java -Dswarm.http.port=8081 myapp.jar

● JBoss EAP configuration
java myapp.jar -c standalone.xml

● Environment-specific configuration
java myapp.jar -s project-production.yml

MICROPROFILE DEMO

Proposed Eclipse MicroProfile Features

● WildFly Swarm status:

○ Configuration - Implementation being worked on at present

○ Health Check - Align with monitor fraction when released

○ Security - May just require validation with keycloak fraction

Health Checks

● monitor fraction was basis for MicroProfile Health Check specification

● Ability to add /health endpoints to microservice

● Integration with OpenShift Readiness/Liveness Checks

○ via fabric8-maven-plugin

Health Checks

 <dependency>
 <groupId>org.wildfly.swarm</groupId>
 <artifactId>monitor</artifactId>
 </dependency>

 <enricher>
 <includes>
 <include>wildfly-swarm-health-check</include>
 </includes>
 </enricher>

HEALTHCHECK DEMO

WildFly Swarm Community

● IRC - #wildfly-swarm on Freenode

● Google Group - https://groups.google.com/forum/#!forum/wildfly-swarm

● JIRA - https://issues.jboss.org/browse/SWARM

● Twitter - @wildflyswarm

https://groups.google.com/forum/#!forum/wildfly-swarm
https://issues.jboss.org/browse/SWARM

Java Microservices Book
● Recently released into MEAP

● Uses WildFly Swarm

● 39% discount on all Manning books with
code: ctwrhsummit17

https://www.manning.com/books/java-microservices-in-action

https://www.manning.com/books/java-microservices-in-action
https://www.manning.com/books/java-microservices-in-action

QUESTIONS ?

Demo Code
Available from:

https://github.com/kenfinnigan/wfswarm-rhsummit2017

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

