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Eclipse MicroProfile



Enterprise Java Standards History



Eclipse MicroProfile Background
● Many innovative “microservices” efforts in existing Java EE projects

■ WildFly Swarm
■ WebSphere Liberty
■ Payara
■ TomEE

○ Projects already leveraging both Java EE and non-Java EE technologies
○ Creating new features/capabilities to address microservices architectures

● Wanted to avoid splitting into separate communities

● So we are collaborate in one community!

http://wildfly-swarm.io
http://wildfly-swarm.io
https://developer.ibm.com/wasdev/websphere-liberty/
https://developer.ibm.com/wasdev/websphere-liberty/
http://www.payara.fish/
http://www.payara.fish/
http://tomee.apache.org/apache-tomee.html
http://tomee.apache.org/apache-tomee.html


An Eclipse 
Foundation
Project

● Meritocracy; vendor neutrality
● MicroProfile leadership can change over 

time
● Legal and technical infrastructure
● Trademark Ownership
● Accepts Apache License



The Path to Microservices with MicroProfile

1. Leverage relevant Java EE
Technologies

2. Organic Innovation

3. Collaborate in Open Source



Quickly Put Features in Developers Hands
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* 2-4 releases per year



Practical Usage of MicroProfile - Example

3rd Party Frameworks



Join Us Later Today

Optimizing Java EE for a microservices architecture

4:30 PM - 5:15 PM

Room 102B



WildFly Swarm



What is it?

● Begins with WildFly / Java EE

● Extends Java EE with cloud native capabilities

● Package deployment

○ Uber Jar - including deployment

○ Hollow Uber Jar - without deployment



Just enough App Server (JeAS)

● Bundles your deployment (JAR/WAR)

● Fractions define available functionality for 
deployment

● Internal Maven repository with dependencies

● Bootstrap Code



Fractions...

● Enable WildFly subsystems (e.g. Infinispan)

● Integrate additional frameworks/services (e.g. Topology)

● Provide deployments (e.g. Swagger, Jolokia)

● Add API dependencies (e.g. JAX-RS)

● Alter deployments (e.g. Keycloak)



Fractions...

● Expressed as Maven (GAV) coordinates:
○ org.wildfly.swarm:<fraction>:<version>, e.g
○ org.wildfly.swarm:undertow:2017.5.0

● 184 fractions currently available
○ 158 stable
○ 26 experimental

● About 80% wrap WildFly related components (Java EE, WF Camel, internal WF)

● More in the pipeline



Enabling WildFly Swarm

      <plugin>
        <groupId>org.wildfly.swarm</groupId>
        <artifactId>wildfly-swarm-plugin</artifactId>
        <version>${version.wildfly.swarm}</version>
        <executions>
          <execution>
            <id>package</id>
            <goals>
              <goal>package</goal>
            </goals>
          </execution>
        </executions>
      </plugin>



AUTO DETECTION DEMO



Enabling specific WildFly Swarm Fractions

      <dependency>
        <groupId>org.wildfly.swarm</groupId>
        <artifactId>bom</artifactId>
        <version>${version.wildfly.swarm}</version>
        <type>pom</type>
        <scope>import</import>
      </dependency>



Enabling specific WildFly Swarm Fractions

      <dependency>
        <groupId>org.wildfly.swarm</groupId>
        <artifactId>jaxrs</artifactId>
      </dependency>



Build / Run

Build

mvn package

Run

mvn wildly-swarm:run

OR

java -jar <my-app>-swarm.jar

OR

IDE > Run … org.wildfly.swarm.Swarm()



Flexible Configuration
● Maven Plugin

… <swarm.http.port>8081</swarm.http.port> … 

● Java properties
java -Dswarm.http.port=8081 myapp.jar

● JBoss EAP configuration
java myapp.jar -c standalone.xml

● Environment-specific configuration
java myapp.jar -s project-production.yml



MICROPROFILE DEMO



Proposed Eclipse MicroProfile Features

● WildFly Swarm status:

○ Configuration - Implementation being worked on at present

○ Health Check - Align with monitor  fraction when released

○ Security - May just require validation with keycloak  fraction



Health Checks

● monitor fraction was basis for MicroProfile Health Check specification

● Ability to add /health endpoints to microservice

● Integration with OpenShift Readiness/Liveness Checks

○ via fabric8-maven-plugin



Health Checks

      <dependency>
        <groupId>org.wildfly.swarm</groupId>
        <artifactId>monitor</artifactId>
      </dependency>

  <enricher>
    <includes>
      <include>wildfly-swarm-health-check</include>
    </includes>
  </enricher>



HEALTHCHECK DEMO



WildFly Swarm Community

● IRC - #wildfly-swarm on Freenode

● Google Group - https://groups.google.com/forum/#!forum/wildfly-swarm

● JIRA - https://issues.jboss.org/browse/SWARM

● Twitter - @wildflyswarm

https://groups.google.com/forum/#!forum/wildfly-swarm
https://issues.jboss.org/browse/SWARM


Java Microservices Book
● Recently released into MEAP

● Uses WildFly Swarm

● 39% discount on all Manning books with 
code: ctwrhsummit17

https://www.manning.com/books/java-microservices-in-action

https://www.manning.com/books/java-microservices-in-action
https://www.manning.com/books/java-microservices-in-action


QUESTIONS ?



Demo Code
Available from:

https://github.com/kenfinnigan/wfswarm-rhsummit2017



THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews




