

Unlocking Big Data infrastructure efficiency with Hadoop over disaggregated storage

Manoj Wadekar – Director Hardware Architecture, eBay Inc. Anjaneya "Reddy" Chagam, Chief SDS Architect, Intel Corporation

Acknowledgements: QCT team (Gary Lee, Becky Lin, Marco Huang, Kido Yen)

Notices and Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Configurations: Ceph* storage nodes, each server: 16 Intel® Xeon® processor E5-2680 v3, 128 GB RAM, twenty-four 6 TB Seagate Enterprise* hard drives, and two 2 TB Intel® Solid-State Drive (SSD) DC P3700 NVMe* drives with 10 GbE Intel® Ethernet Converged Network Adapter X540-T2 network cards, 20 GbE public network, and 40 GbE private Ceph network.

Apache Hadoop* data nodes, each server: 16 Intel Xeon processor E5-2620 v3 single socket, 128 GB RAM, with 10 GbE Intel Ethernet Converged Network Adapter X540-T2 network cards, bonded.

The difference between the version with Intel® Cache Acceleration Software (Intel® CAS) and the baseline is that the Intel CAS version is not caching and is in pass-through mode, so software only, no hardware changes are needed. The tests used were TeraGen*, TeraSort*, TeraValidate*, and DFSIO, which are the industry-standard Hadoop performance tests. For more complete information, visit intel.com/performance.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel, the Intel logo, Intel. Experience What's Inside, the Intel. Experience What's Inside logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

QCT, the QCT logo, Quanta, and the Quanta logo are trademarks or registered trademarks of Quanta Computer Inc.

© 2017 eBay Inc. No part of this presentation may be reproduced or further distributed without the permission of its authors. eBay and the eBay logo are trademarks of eBay Inc.

Copyright © 2017 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Agenda

- Data Growth Challenges
- Need for Storage Disaggregation
- Hadoop and Ceph Quick Tutorial
- Hadoop Over Ceph (Block)
- Summary

Hadoop @ eBay

Challenges with Scaling Apache Hadoop* Storage

Both storage and compute resources are bound to Hadoop nodes

Excess capacity:

Surplus storage capacity if cluster is compute-bound. And vice versa.

Inefficiency:

Spend, infrastructure space, power utilization

Scale Challenge:

Inefficiencies cause significant impact for large clusters

Challenges with Scaling Apache Hadoop* Storage

Native Hadoop storage and compute needs can be different for clusters

Different Cluster Needs:

Compute/Storage needs can change for different clusters. Can result in underperformance or wastage.

Inefficiency:

Capacity planning and capacity utilization

Proposed Solution: Disaggregated Storage

Separate out storage and compute resources

Right Sizing:

Clusters can use optimized ratio of compute and storage. Should allow reducing wastage and improve performance

Independent Scaling: Compute and storage capacities can be scaled per need

Storage Solutions: HDFS, iSCSI, Ceph etc. **Focus of this presentation is Ceph**

Hadoop/YARN Architecture

- 7 Client communicates with App Mstr directly for progress
- 8 Once work finishes, App Mstr deregisters with res mgr

Ceph Overview

Which OpenStack block storage (Cinder) drivers are in use? Source: April 2017 OpenStack User Survey

- managing, intelligent storage nodes
- Open-source, object-based scale-out storage
- Object, Block and File in single unified storage cluster
- Highly durable, available replication, erasure coding
- Runs on economical commodity hardware
- 10 years of hardening, vibrant community

- Scalability CRUSH data placement, no single POF
- Replicates and re-balances dynamically
- Enterprise features snapshots, cloning, mirroring
- Most popular block storage for Openstack use cases
- Commercial support from Red Hat

Apache Hadoop* with Ceph* Storage: Logical Architecture

Deployment Options

- Hadoop Services: Virtual, Container or Bare Metal
- Storage Integration: Ceph Block, File or Object
- Data Protection: HDFS and/or Ceph replication or Erasure Codes
- Tiering: HDFS and/or Ceph

QCT Lab Test Environment – System Configuration

1 x Cloudera Manager	2 x HDFS Name Node	16 x HDFS Data Node	
2xIntel® Xeon® E5-2670 v3 2x Intel® S3710 400G SSD 10G dual 24x16GB RAM	2x Intel® Xeon® E5-2680 v3 2x Intel® S3700 400G SSD 40G dual (Intel® XL710- QDA2), 8x16GB RAM	2x Intel® Xeon® E5-2680 v3 2x Intel® S3700 400G SSD 40G dual (Intel® XL710- QDA2), 8x16GB RAM	OS: RHEL 7.3 Hadoop version: CDH Data Hub Edition Trial 5.10.0
QuantaGrid D51B-1U,	QuantaPlex T41S-2U	QuantaGrid D51B-2U	

OS: RHEL 7.3 Ceph version: RedHat Ceph Storage 2.1

QCT Lab Test Setup #1 (Cloudera Hadoop 5.10.0 & RedHat Ceph Storage 2.1/FileStore)

NOTE: BMC management network is not shown

Gint (int

Workloads – MapReduce

Tera Benchmark Suite

- Most popular Hadoop test, supplied with distribution, exercises CPU, memory, disk, network
- TeraGen generates specified number of 100 byte records 1,
 2, and 3 TB used in tests
- TeraSort sorts TeraGen output
- TeraValidate validates TeraSort output is in sorted order

Performance Results (journal on NVMe SSD, no read cache)

Replication in both Ceph and HDFS provides best performance with resiliency but at the expense of extra copy

Intel Confidential

QCT Lab Test Setup #2 (Cloudera Hadoop 5.7.0 & Ceph Jewel 10.2.1/FileStore)

Intel CAS and Ceph Journal Configuration

Performance Results #2 (journal and read cache on NVMe SSD)

 Baseline - no Intel Cache Acceleration Software
 With Intel Cache Acceleration Software Caching HDFS replication 1, Ceph replication 2 Optimize performance with Intel[®] CAS and Intel[®] SSDs using NVMe*

- Resolve input/output (I/O) bottlenecks
- Provide better customer service-level-agreement (SLA) support
- Provide up to a 60percent I/O performance improvement²

Summary

- Both storage and compute resources are bound to Hadoop nodes resulting in excess capacity, increased cost and scale challenges.
- Disaggregating storage from Hadoop helps in independent scaling, improves resource efficiency and performance.
- Hadoop over Ceph with Intel[®] technologies delivers optimum performance while achieving scalability and flexibility.

Find Out More

To learn more about Intel[®] CAS and request a trial copy, visit: intel.com/content/www/us/en/software/intel-cache-acceleration-software-performance.html

To find the Intel[®] SSD that's right for you, visit: intel.com/go/ssd

To learn about QCT QxStor* Red Hat* Ceph* Storage Edition, visit: qct.io/solution/software-definedinfrastructure/storage-virtualization/qxstor-red-hat-ceph-storage-edition-p365c225c226c230

THANK YOU!

BACKUP SLIDES

NVM Express (NVMe)

Standardized interface for non-volatile memory, http://nvmexpress.org

Source: Intel. Other names and brands are property of their respective owners. Technology claims are based on comparisons of latency, density and write cycling metrics amongst memory technologies recorded on published specifications of in-market memory products and the specifications.

NVM Express

Advantages of Ceph* Storage vs. Local Storage

Free (if self-supported)	Supports all data types: file, block, and object data	Provides one centralized, standardized, and scalable storage solution for all enterprise needs
Open source	Supports many different workloads and applications	Works on commodity hardware

24

*Other names and brands may be claimed as the property of others.

Intel Confidential

Hadoop with Ceph* on QCT Platform

Physical architecture

Networking

Apache Hadoop*

Ceph Monitors

Ceph OSD x8

QCT Solution Center

Blanking Panel	FQuantaMesh T1048-LY4A
Blanking Panel	Blanking Panel
Blanking Panel	(EQuantaMesh T3048-LY9H)
Blanking Panel	Blanking Panel
QuantaMesh 15032-LY6	QuantaMesh 15032-LY6
Blanking Panel	Blanking Panel
Blanking Panel	Bianxing Canel
Blanking Panel	QuantaPlex T41S-2U (4N)
Blanking Panel	Blanking Pagel
QuantaPlex T41S-2U (4N)	QuantaPlex T41S-2U (4N)
Blanking Panel	Blanking Panel
QuantaGrid D51PC-1U	QuantaGrid D51PC-1U
Blanking Panel	Blanking Panel
Blanking Panel	QuantaGrid D51B-1U
QuantaGrid D51B-1U	QuantaGrid D51B-1U
Blanking Panel	Blanking Panel
QuantaGrid D51B-2U	QuantaGrid D51B-2U
	5-0(e) (0(e) (0(e) - (0)
QuantaVault-JB4242	QuantaVault JB4242
TOPPOPOLICE CONTRACTOR	P PPAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
QuantaGrid D51B-2U	QuantaGrid D51B-2U
·	
OuantaVault IB4242	Ourotal fourth ID 4242
Qualita vadic 10-12-12	Quantavault JB4242
OuantaGrid D51B-211	Quanta Crid D51R 20
	QuantaGhu DSTB-20
OuantaVault IB4242	OuantaVault IB4242
QuantaGrid D51B-2U	OuantaGrid D51B-2U
5-00 CO 00-0	0-00 00 0m-0
QuantaVault JB4242	QuantaVault JB4242
	at a character and the

Test Setup (Linux OS)

/etc/sysctl.conf

vm.swappiness=10
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.core.netdev_max_backlog = 250000

/etc/security/limits.conf

- * soft nofile 65536
- * hard nofile 1048576
- * soft nproc 65536
- * hard nproc unlimited
- * hard memlock unlimited

CPU Profile

echo performance> /sys/devices/system/cpu/cpu{0..n}/cpufreq/scaling_governor

Huge Page

echo never> /sys/kernel/mm/transparent_hugepage/defrag
echo never> /sys/kernel/mm/transparent_hugepage/enabled

Network

ifconfig <eth> mtu 9000
ifconfig <eth> txqueuelen 1000

Test Setup (Ceph)

[global] fsid = f1739148-3847-424d-b262-45d5b950fa3b mon initial members = starbasemon41, starbasemon42, starbasemon43 mon host = 10.10.241.41,10.10.241.42,10.10.242.43 auth client required = none auth cluster required = none auth service required = none filestore xattr use omap = true osd pool default size = 3 # Write an object 2 times. osd pool default min size = 3 # Allow writing one copy in a degraded state. osd pool default pg num = 4800 osd pool default pgp num = 4800 public network = 10.10.241.0/24, 10.10.242.0/24 cluster network = 10.10.100.0/24, 10.10.200.0/24 debug lockdep = 0/0debug context = 0/0debug crush = 0/0debug buffer = 0/0debug timer = 0/0debug filer = 0/0debug objecter = 0/0debug rados = 0/0debug rbd = 0/0debug ms = 0/0debug monc = 0/0debug tp = 0/0debug auth = 0/0debug finisher = 0/0debug heartbeatmap = 0/0debug perfcounter = 0/0

[global] debug asok = 0/0debug throttle = 0/0debug mon = 0/0debug paxos = 0/0debug rgw = 0/0perf = truemutex perf counter = true throttler perf counter = false rbd cache = false log file = /var/log/ceph/\$name.log log to syslog = false mon compact on trim = false osd pg bits = 8 osd pgp bits = 8 mon pg warn max object skew = 100000 mon pg warn min per osd = 0mon pg warn max per osd = 32768

Test Setup (Ceph)

[mon]

```
mon_host = starbasemon41, starbasemon42, starbasemon43
mon_data = /var/lib/ceph/mon/$cluster-$id
mon_max_pool_pg_num = 166496
mon_osd_max_split_count = 10000
mon_pg_warn_max_per_osd = 10000
```

[mon.a] host = starbasemon41 mon addr = 192.168.241.41:6789

[mon.b] host = starbasemon42 mon addr = 192.168.241.42:6789

[mon.c]
host = starbasemon43
mon addr = 192.168.242.43:6789

[osd]

osd_mount_options_xfs =
rw,noatime,inode64,logbsize=256k,delaylog
osd_mkfs_options_xfs = -f -i size=2048
osd_op_threads = 32
filestore_queue_max_ops = 5000
filestore_queue_committing_max_ops = 5000
journal_max_write_entries = 1000
journal_queue_max_ops = 3000
objecter_inflight_ops = 102400
filestore_queue_max_bytes = 1048576000
filestore_queue_committing_max_bytes = 1048576000
journal_max_write_bytes = 1048576000
journal_queue_max_bytes = 1048576000

Test Setup (Hadoop)

Parameter	Value	Comment
Container Memory yarn.nodemanager.resource.memory-mb	80.52 GiB	Default: Amount of physical memory, in MiB, that can be allocated for
		containers
		NOTE: In a different document, it recommends
Container Virtual CPU Cores	48	Default: Number of virtual CPU cores that can be allocated for containers.
yarn.nodemanager.resource.cpu-vcores		
Container Memory Maximum	<mark>12 GiB</mark>	The largest amount of physical memory, in MiB, that can be requested for
yarn.scheduler.maximum-allocation-mb		a container.
Container Virtual CPU Cores Maximum	48	Default: The largest number of virtual CPU cores that can be requested for
yarn.scheduler.maximum-allocation-vcores		a container.
Container Virtual CPU Cores Minimum	<mark>2</mark>	The smallest number of virtual CPU cores that can be requested for a
yarn.scheduler.minimum-allocation-vcores		container. If using the Capacity or FIFO scheduler (or any scheduler, prior
		to CDH 5), virtual core requests will be rounded up to the nearest multiple
		of this number.
JobTracker MetaInfo Maxsize	<mark>1000000000</mark>	The maximum permissible size of the split metainfo file. The JobTracker
mapreduce.job.split.metainfo.maxsize		won't attempt to read split metainfo files bigger than the configured value.
		No limits if set to -1.
I/O Sort Memory Buffer (MiB) mapreduce.task.io.sort.mb	<mark>400</mark> MiB	To enable larger blocksize without spills
yarn.scheduler.minimum-allocation-mb	<mark>2 GiB</mark>	Default: Minimum container size
mapreduce.map.memory.mb	<mark>1 GiB</mark>	Memory req'd for each type of container - may want to increase for some
		apps
mapreduce.reduce.memory.mb	<mark>1.5 GiB</mark>	Memory req'd for each type of container - may want to increase for some
		apps
mapreduce.map.cpu.vcores	1	Default: Number of vcores req'd for each type of container
mapreduce.reduce.cpu.vcores	1	Default: Number of vcores req'd for each type of container
mapreduce.job.heap.memory-mb.ratio	0.8	(Default). This sets Java heap size = 800/1200 MiB for
		mapreduce.{map reduce}.memory.mb = 1/1.5 GiB

Test Setup (Hadoop)

Parameter	Value	Comment
dfs.blocksize	128 MiB	Default
dfs.replication	<mark>1</mark>	Default block replication. The number of replications to
		make when the file is created. The default value is used if a
		replication number is not specified.
Java Heap Size of NameNode in Bytes	4127MiB	Default: Maximum size in bytes for the Java Process heap
		memory. Passed to Java -Xmx.
Java Heap Size of Secondary NameNode in	4127MiB	Default: Maximum size in bytes for the Java Process heap
Bytes		memory. Passed to Java -Xmx.

Parameter	Value	Comment
Memory overcommit validation threshold	0.9	Threshold used when validating the allocation of RAM on a
		host. 0 means all of the memory is reserved for the system.
		1 means none is reserved. Values can range from 0 to 1.

Test Setup (CAS NVMe, Journal NVMe)

NVMe0n1	NVMe1n1
Ceph journal configured for 1 st 12 HDDs will be	Ceph Journal configured for remaining 12 HDDs will be
/dev/nvme0n1p1 - /dev/nvme0n1p12	/dev/nvme1n1p1 - /dev/nvme1n1p12
Each Partition size: 20GiB	Each Partition size: 20GiB
CAS for 12-24 HDDs will be from this SSD. Use rest of	CAS for 1-12 HDDs will be from this SSD. Use rest of the free
the free space and split evenly for 2 cache partitions	space and split evenly for 2 cache partitions
e.g. /dev/sdo - /dev/sdz	e.g. /dev/sdc - /dev/sdn
cache 1 /dev/nvme0n1p13 Running wo -	cache 1 /dev/nvme1n1p13 Running wo -
core 1 /dev/sdo1 /dev/intelcas1-1	core 1 /dev/sdc1 - /dev/intelcas1-1
-core 2 /dev/sdp1 /dev/intelcas1-2	core 2 /dev/sdd1 - /dev/intelcas1-2
-core 3 /dev/sdq1 /dev/intelcas1-3	core 3 /dev/sde1 - /dev/intelcas1-3
-core 4 /dev/sdr1 /dev/intelcas1-4	core 4 /dev/sdf1 - /dev/intelcas1-3
-core 5 /dev/sds1 /dev/intelcas1-5	core 5 /dev/sdg1 - /dev/intelcas1-4
-core 6 /dev/sdt1 /dev/intelcas1-6	core 5 /dev/sdg1 - /dev/intelcas1-5
cache 2 /dev/nvme0n1p14 Running wo -	core 6 /dev/sdh1 - /dev/intelcas1-6
-core 1 /dev/sdu1 /dev/intelcas2-1	cache 2 /dev/nvme1n1p14 Running wo -
-core 3 /dev/sdv1 /dev/intelcas2-1	core 1 /dev/sdi1 - /dev/intelcas2-1
-core 3 /dev/sdv1 /dev/intelcas2-2	core 3 /dev/sdk1 - /dev/intelcas2-2
-core 3 /dev/sdv1 /dev/intelcas2-3	core 3 /dev/sdk1 - /dev/intelcas2-3
-core 4 /dev/sdx1 /dev/intelcas2-3	core 4 /dev/sdl1 - /dev/intelcas2-3
-core 4 /dev/sdx1 /dev/intelcas2-3	core 4 /dev/sdl1 - /dev/intelcas2-4
-core 5 /dev/sdy1 /dev/intelcas2-5	core 5 /dev/sdm1 - /dev/intelcas2-5
-core 6 /dev/sdz1 /dev/intelcas2-6	-core 6 /dev/sdn1 /dev/intelcas2-6

