
App Trace Roll: Users Guide

Version 4.1 Edition

App Trace Roll: Users Guide :
Version 4.1 Edition
Published Dec 2005
Copyright © 2005 UC Regents

Table of Contents
Preface..??

1. Requirements...??

1.1. Rocks Version...??
1.2. Hardware Requirements...??
1.3. Software Requirements..??

2. Installing the App Trace Roll ...??

2.1. Adding the Roll..??

3. Using the App Trace Roll...??

3.1. Starting and Stopping Tracing on Compute Nodes..??
3.2. Analyzing App Trace Data at Your Site...??
3.3. Uploading Trace Files to SDSC...??

4. Tuning the App Trace Roll ...??

4.1. Tuning the App Trace Roll...??

5. Internals...??

5.1. SystemTap Internals...??
5.2. Upload Internals...??

6. Copyrights ...??

6.1. App Trace...??

iii

Preface
The App Trace Roll installs and configures system tracing tools that records the size and offset of every read/write
system call for all processes that are running on a node.

It only records size and offset information. User data is never accessed.

We see the App Trace Roll being used in two modes.

In the first mode, users will use the App Trace Roll for their personal use to better understand the I/O behavior of
their applications. They will use the collected data to help them to tune their application, tune their storage subsystem
or both. The Rocks Group will benefit from this usage mode as users will provide feedback on how to make the App
Trace Roll more useful.

In the second mode, users will use the App Trace Roll for their personal useandupload their trace files to SDSC’s
server. In the near term, Greg Bruno from the Rocks Group will use these trace files to support his Ph.D. research
into parallel file systems. In the long term, the Rocks Group will use these trace files to gain insight on how to
provide better storage systems for the Rocks Community.

i

Chapter 1. Requirements

1.1. Rocks Version
The App Trace Roll is for use with Rocks version 4.1 or later.

This requirement is strict as the App Trace Roll requiresSystemTapwhich was introduced in RedHat Enterprise
Linux Server 4 update 2 (which Rocks version 4.1 is based upon).

1.2. Hardware Requirements
This roll can only be used with i386 and x86_64 releases of Rocks.

As of 11/15/2005, RedHat has not releasedSystemTapfor ia64.

1.3. Software Requirements
The App Trace Roll works out-of-the-box with RedHat kernel version 2.6.9-22. If you update your RedHat kernel,
you’ll need to download a newkernel-debuginfopackage from RedHat’s FTP site. The version of the
kernel-debuginfopackage must match that of the kernel that is running on the compute nodes.

Thekernel-debuginfopackages can be found under:
ftp://ftp.redhat.com/pub/redhat/linux/updates/enterprise/4WS/en/os/Debuginfo. If you download a new
kernel-debuginfopackage, follow the procedure Adding Packages to Compute Nodes1 in order to install this package
onto your compute nodes.

Notes
1. http://www.rocksclusters.org/rocks-documentation/4.1/customization-adding-packages.html

1

Chapter 2. Installing the App Trace Roll

2.1. Adding the Roll
The App Trace Roll can be installed during the frontend installation step of your cluster (refer to section 1.2 of the
Rocks usersguide). If this method is chosen, then the App Trace Roll is added to a frontend installation in exactly the
same manner as the required OS Roll. Specifically, after the OS Roll is added, the installer will once again ask if you
have a Roll (see below). Select ’Yes’ and insert the App Trace Roll.

2.1.1. Adding the Roll to a Running System
The App Trace Roll can also be added to running frontend. Here’s the procedure for an x86_64 cluster (for an i386
cluster, substitutex86_64with i386).

cd /tmp
wget http://www.rocksclusters.org/ftp-site/pub/rocks/extras/4.1/x86_64/app-trace-4.1-0.x86_64.disk1.iso
mount -o loop app-trace-4.1-0.x86_64.disk1.iso /mnt/cdrom
cd /home/install
rocks-dist --install copyroll
umount /mnt/cdrom
rocks-dist dist
kroll app-trace > /tmp/app-trace-install.sh
sh /tmp/app-trace-install.sh

Now install your compute nodes (or re-install your compute nodes if you added the roll to a running system).

2

Chapter 3. Using the App Trace Roll

3.1. Starting and Stopping Tracing on Compute Nodes
After you install the App Trace Roll on your frontend and compute nodes, the compute nodes will be running a
SystemTap script that is ready to collect data about each read and write I/O for an application (or set of applications).

To start colleting data about the programiozone, execute:

cluster-fork ’echo "iozone" > /proc/sys/debug/traced-apps’

After the above command completes, when you runiozoneon any compute node, the SystemTap script will record
its I/O activity to a log file.

To trace multiple programs, just separate them by a comma. For example, to trace bothiozoneanddd:

cluster-fork ’echo "iozone,dd" > /proc/sys/debug/traced-apps’

To stop tracing, execute:

cluster-fork ’echo "" > /proc/sys/debug/traced-apps’

3.2. Analyzing App Trace Data at Your Site
If you wish analyze the data, follow the procedure in this section. If not and you would like to upload your trace files
to SDSC, skip to the next sectionUploading Trace Files to SDSC.

To download all the traces from all the compute nodes, execute:

make -f /opt/app-trace/collect/Makefile local

The above command will store all traces in/state/partition1/traces.

Collecting the trace files stops the trace function on each node. If you wish to trace more applications after
collecting the trace data, you’ll need to reexecute a command like:

cluster-fork ’service rocks-app-trace start’
cluster-fork ’echo "iozone" > /proc/sys/debug/traced-apps’

Then to build plots for specific executables, first go to the directory that has the recently downloaded traces:

cd /state/partition1/traces

Then, determine the directory that was created by the above collection. Below is an example listing:

ls | sort

3

Chapter 3. Using the App Trace Roll

1132195141.948881000
1132195260.675707000
1132195264.174861000

The last directory is the most recently created one. Now, let’s build some I/O trace graphs from the recently created
collection:

cd 1132195264.174861000
make -f /opt/app-trace/analyze/bin/Makefile PROGRAMS=iozone,dd

The above will build graphs for every instance of the programsiozoneanddd that were running on all the compute
nodes over the trace interval.

The resulting graphs are put under/var/www/html/rocks-app-trace/analyze/. This directory contains a subdirecties
that are labeled for each node that trace data was collected from.

Point your web browser athttp://10.1.1.1/rocks-app-trace/analyzeand navigate into the node directory names. In the
example above, there are the files:

trace-disk-iozone-8974-read-0.plot.png
trace-disk-iozone-8974-read-1.plot.png
trace-disk-iozone-8974-read-2.plot.png
trace-disk-iozone-8974-read-3.plot.png
trace-disk-iozone-8974-read-4.plot.png
trace-disk-iozone-8974-read,write,seek.plot.png
trace-disk-iozone-8974-seek-0.plot.png
trace-disk-iozone-8974-seek-1.plot.png
trace-disk-iozone-8974-seek-2.plot.png
trace-disk-iozone-8974-seek-3.plot.png
trace-disk-iozone-8974-write-0.plot.png
trace-disk-iozone-8974-write-1.plot.png
trace-disk-iozone-8974-write-2.plot.png
trace-disk-iozone-8974-write-3.plot.png

For traces that have many data points (e.g., traces that have over 50,000 events), the plot is broken up into subplots.
In the example above,trace-disk-iozone-8974-read-3.plot.pngis the 3rd graph for the iozone program and it plots
read disk events.

An example graph that contains read, write and seek disk events would be
trace-disk-iozone-6470-read,write,seek.plot.pngand it looks like:

In addition to disk I/Os, all network reads and writes are also captured. To view the network I/O activity for a
process, click on the file with the form ’trace-net-program-pid-op-graphnumber.plot.pdf’.

Here is an example plot from a Linpack process (xhpl):

4

Chapter 3. Using the App Trace Roll

3.3. Uploading Trace Files to SDSC
After you have collected traces for your application(s), you may wish to upload your traces files to our server at
SDSC (traces.rocksclusters.org). Once uploaded, then we (the Rocks Group) will use these traces to help us
understand the I/O characteristics of parallel applications.

Specifically, in the near term, these traces will be used to support Greg Bruno’s Ph.D. research regarding parallel file
systems. So in effect, you’ll be helping a student to graduate. :-)

To upload the trace files from each compute node to SDSC’s server, on the frontend execute:

make -f /opt/app-trace/collect/Makefile sdsc

This invokes the program/opt/app-trace/bin/collect.shon each compute node which uses HTTPS POST to copy the
file to SDSC’s server. See theInternals Chapterfor details regarding the mechanisms that are invoked when
uploading trace files.

5

Chapter 4. Tuning the App Trace Roll

4.1. Tuning the App Trace Roll
This section discusses how to tune the App Trace Roll to fit your needs.

The App Trace Roll is tuned through replacing the XML node fileapp-trace-client.xml.

First, create areplace-app-trace-client.xmlfile:

cd /home/install/site-profiles/4.1/nodes/
cp /home/install/rocks-dist/lan/*/build/nodes/app-trace-client.xml replace-app-trace-client.xml

There are 4 tunable values: COLLECTHOSTLOCAL, COLLECTHOSTSDSC, TRACEDIR and FILESIZE.

• COLLECTHOSTLOCAL- This is the host that trace files are uploaded to when executing ’make -f
/opt/app-trace/collect/Makefile local’. The default value is the private IP address of your frontend.

• COLLECTHOSTSDSC- This is the host that trace files are uploaded to when executing ’make -f
/opt/app-trace/collect/Makefile sdsc’. The default value is thetraces.rocksclusters.orgwhich is a host at SDSC.

• TRACEDIR- This is the directory on the compute node where the trace file is stored. The default value is
/state/partition1.

• FILESIZE- This is the maximum size of the trace file. The default value is 10% of the partition on which
TRACEDIR resides.

After modifying the above values, you can apply the values to the compute nodes by rebuilding the distribution and
reinstalling the compute nodes:

cd /home/install
rocks-dist dist
cluster-fork ’/boot/kickstart/cluster-kickstart ; exit’

6

Chapter 5. Internals

5.1. SystemTap Internals
The focus of this chapter to describe the internals of the mechanisms used in the App Trace Roll.

Read and write system calls are traced using SystemTap1. Below is theTap scriptused to record open, socket, read,
write, lseek and close events:

1 /*
2 * $Id: internals.sgml,v 1.2 2005/11/30 21:48:40 bruno Exp $
3 *
4 * @Copyright@
5 *
6 * Rocks
7 * www.rocksclusters.org
8 * version 4.1 (fuji)
9 *

10 * Copyright (c) 2005 The Regents of the University of California. All
11 * rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * 3. All advertising materials mentioning features or use of this
25 * software must display the following acknowledgement:
26 *
27 * "This product includes software developed by the Rocks
28 * Cluster Group at the San Diego Supercomputer Center and
29 * its contributors."
30 *
31 * 4. Neither the name or logo of this software nor the names of its
32 * authors may be used to endorse or promote products derived from this
33 * software without specific prior written permission. The name of the
34 * software includes the following terms, and any derivatives thereof:
35 * "Rocks", "Rocks Clusters", and "Avalanche Installer".
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
38 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
39 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
40 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
41 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

7

Chapter 5. Internals

43 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
44 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
45 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
46 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
47 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 * @Copyright@
50 *
51 * $Log: internals.sgml,v $
51 * Revision 1.2 2005/11/30 21:48:40 bruno
51 * touch ups
51 *
52 * Revision 1.5 2005/11/29 18:50:54 bruno
53 * needed new method to get file descriptor for i386
54 *
55 * Revision 1.3 2005/11/23 03:47:53 bruno
56 * major overhaul of the systemtap file
57 *
58 * Revision 1.1 2005/11/17 16:55:56 bruno
59 * first rev
60 *
61 *
62 */
63
64 /*
65 * this code is used to put a file into the proc file system that is used
66 * by this systemtap program to determine which programs to trace.
67 *
68 * the file is: /proc/sys/debug/traced-apps
69 *
70 * for example, to trace ’iozone’, after starting this systemtap file,
71 * on the command line execute:
72 *
73 * echo "iozone" > /proc/sys/debug/traced-apps
74 */
75
76 %{
77 #include <linux/sysctl.h>
78
79 /*
80 * a ’handle’ used to deallocate the proc fs table
81 */
82 struct ctl_table_header *app_trace_proc_fs;
83
84 #define MAX_TRACED_APPS_SIZE 1024
85
86
87 char traced_apps[MAX_TRACED_APPS_SIZE] = "";
88 char working_traced_apps[MAX_TRACED_APPS_SIZE];
89
90 static ctl_table app_trace_table[] = {
91 {
92 .ctl_name = 1,

8

Chapter 5. Internals

93 .procname = "traced-apps",
94 .data = &traced_apps,
95 .maxlen = MAX_TRACED_APPS_SIZE,
96 .mode = 0644,
97 .proc_handler = &proc_dostring,
98 .strategy = &sysctl_string,
99 },

100
101 { .ctl_name = 0 }
102 };
103
104 static ctl_table app_trace_root_table[] = {
105 {
106 .ctl_name = CTL_DEBUG,
107 .procname = "debug",
108 .mode = 0555,
109 .child = app_trace_table,
110 },
111
112 { .ctl_name = 0 }
113 };
114 %}
115
116
117 function get_returnvalue:long () %{
118 if (CONTEXT->regs) {
119 #if defined (__x86_64__)
120 THIS->__retvalue = CONTEXT->regs->rax;
121 #elif defined (__i386__)
122 THIS->__retvalue = CONTEXT->regs->eax;
123 #endif
124 } else {
125 THIS->__retvalue = 0;
126 }
127 %}
128
129 /*
130 * get_fd() is called from llseek which is only called from i386 programs.
131 * but, there is an __x86_64__ clause to make sure the program compiles
132 * correctly.
133 */
134 function get_fd:long (fd) %{
135 if (CONTEXT->regs) {
136 #if defined (__x86_64__)
137 THIS->__retvalue = THIS->fd;
138 #elif defined (__i386__)
139 THIS->__retvalue = CONTEXT->regs->ebx;
140 #endif
141 } else {
142 THIS->__retvalue = 0;
143 }
144 %}
145

9

Chapter 5. Internals

146 function is_traced_call:long (name:string) %{
147 char *a;
148 char *b;
149
150 strcpy(working_traced_apps, traced_apps);
151 b = working_traced_apps;
152
153 while ((a = strsep(&b, ","))) {
154 if (!strcmp(a, THIS->name)) {
155 THIS->__retvalue = 1;
156 return;
157 }
158 }
159
160 THIS->__retvalue = 0;
161 %}
162
163 function output_header(op, name, pid) {
164 print(string(gettimeofday_us()) . " op: " . op);
165 print(" execname: " . name);
166 print(" pid: " . pid);
167 }
168
169 probe kernel.function("sys_open").return
170 {
171 if (is_traced_call(execname())) {
172 output_header("open", execname(), string(pid()));
173
174 fd = get_returnvalue();
175 print(" fd: " . string(fd) . "\n");
176 }
177 }
178
179 probe kernel.function("sys_socket").return
180 {
181 if (is_traced_call(execname())) {
182 output_header("socket", execname(), string(pid()));
183
184 fd = get_returnvalue();
185 print(" fd: " . string(fd) . "\n");
186 }
187 }
188
189 probe kernel.function("sys_read")
190 {
191 if (is_traced_call(execname())) {
192 output_header("read", execname(), string(pid()));
193
194 fd = get_fd($fd);
195 print(" fd: " . string(fd));
196 print(" count: " . string($count) . "\n");
197 }
198 }

10

Chapter 5. Internals

199
200 probe kernel.function("sys_write")
201 {
202 if (is_traced_call(execname())) {
203 output_header("write", execname(), string(pid()));
204
205 fd = get_fd($fd);
206 print(" fd: " . string(fd));
207 print(" count: " . string($count) . "\n");
208 }
209 }
210
211 probe kernel.function("sys_lseek")
212 {
213 if (is_traced_call(execname())) {
214 output_header("seek", execname(), string(pid()));
215
216 fd = get_fd($fd);
217 print(" fd: " . string(fd));
218 }
219 }
220
221 /*
222 * llseek is only called on i386
223 */
224 probe kernel.function("sys_llseek")
225 {
226 if (is_traced_call(execname())) {
227 output_header("seek", execname(), string(pid()));
228
229 fd = get_fd($fd);
230 print(" fd: " . string(fd));
231 }
232 }
233
234 probe kernel.function("vfs_llseek").return
235 {
236 if (is_traced_call(execname())) {
237 offset = get_returnvalue();
238 print(" offset: " . string(offset) . "\n");
239 }
240 }
241
242 probe kernel.function("sys_close")
243 {
244 if (is_traced_call(execname())) {
245 output_header("close", execname(), string(pid()));
246
247 fd = get_fd($fd);
248 print(" fd: " . string(fd) . "\n");
249 }
250 }
251

11

Chapter 5. Internals

252
253 function init_proc_fs() %{
254 app_trace_proc_fs = register_sysctl_table(app_trace_root_table, 1);
255 %}
256
257 function deinit_proc_fs() %{
258 unregister_sysctl_table(app_trace_proc_fs);
259 %}
260
261 probe begin
262 {
263 log("trace-io: starting probe");
264 init_proc_fs();
265 }
266
267 probe end
268 {
269 log("trace-io: ending probe");
270 deinit_proc_fs();
271 }
272

Notice inprobe kernel.function("sys_read")(line 189) andprobe kernel.function("sys_write")(line 200) only the
following information is recorded:

• Time the event occurred

• Name of the program that is issuing the system call

• Process Id for the program

• File descriptor the system call will be performed upon

• I/O size (or the absolute offset in the case of seek)

Note that no user data is ever examined.

Here is a snippet from a trace when running the I/O benchmarkiozone:

1133384755854320 op: close execname: iozone pid: 3693 fd: 3
1133384755854365 op: write execname: iozone pid: 3693 fd: 1 count: 8
1133384755854513 op: write execname: iozone pid: 3693 fd: 1 count: 8
1133384755854629 op: open execname: iozone pid: 3693 fd: 3
1133384755854672 op: read execname: iozone pid: 3693 fd: 3 count: 4096
1133384755854710 op: seek execname: iozone pid: 3693 fd: 3 offset: 0

The Tap script above is loaded with the init script/etc/rc.d/init.d/rocks-app-trace. Below is the line that starts the
tracing:

12

Chapter 5. Internals

ulimit -f $FILESIZE && /usr/bin/stap \
-g /opt/app-trace/systemtap/trace-io.stp > \

$TRACEDIR/‘hostname‘-app-trace.out 2>&1 &

5.2. Upload Internals
When a user executes the file upload procedure, the trace file from the compute nodes are copied to a server at
SDSC. The user executesmake -C /opt/app-trace/collect/Makefile sdscand the Makefile has the contents:

TRACEID = $(shell date +%s.%N)

local:
cluster-fork ’/opt/app-trace/bin/collect.sh $(TRACEID) local’

sdsc:
cluster-fork ’/opt/app-trace/bin/collect.sh $(TRACEID) sdsc’

The TRACEID is the unique value that will be used to create a directory on SDSC’s server to hold all the trace
files. It is important to note that this value is just the date (to the nanosecond) and doesn’t contain any
information about the cluster (e.g., there is no IP or MAC address information in TRACEID).

In the Makefile above, file upload is carried out by a script on the compute node called/opt/app-trace/bin/collect.sh.
Note that theTRACEIDis passed to the next stage in the--id parameter.

1 #!/bin/bash
2 #
3 # $Id: internals.sgml,v 1.2 2005/11/30 21:48:40 bruno Exp $
4 #
5 # @Copyright@
6 #
7 # Rocks
8 # www.rocksclusters.org
9 # version 4.1 (fuji)

10 #
11 # Copyright (c) 2005 The Regents of the University of California. All
12 # rights reserved.
13 #
14 # Redistribution and use in source and binary forms, with or without
15 # modification, are permitted provided that the following conditions are
16 # met:
17 #
18 # 1. Redistributions of source code must retain the above copyright
19 # notice, this list of conditions and the following disclaimer.
20 #
21 # 2. Redistributions in binary form must reproduce the above copyright
22 # notice, this list of conditions and the following disclaimer in the
23 # documentation and/or other materials provided with the distribution.

13

Chapter 5. Internals

24 #
25 # 3. All advertising materials mentioning features or use of this
26 # software must display the following acknowledgement:
27 #
28 # "This product includes software developed by the Rocks
29 # Cluster Group at the San Diego Supercomputer Center and
30 # its contributors."
31 #
32 # 4. Neither the name or logo of this software nor the names of its
33 # authors may be used to endorse or promote products derived from this
34 # software without specific prior written permission. The name of the
35 # software includes the following terms, and any derivatives thereof:
36 # "Rocks", "Rocks Clusters", and "Avalanche Installer".
37 #
38 # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
39 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
40 # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
42 # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
43 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
44 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
45 # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
46 # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
47 # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
48 # IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 #
50 # @Copyright@
51 #
52 # $Log: internals.sgml,v $
52 # Revision 1.2 2005/11/30 21:48:40 bruno
52 # touch ups
52 #
53 # Revision 1.3 2005/11/30 01:41:35 bruno
54 # a bit more
55 #
56 # Revision 1.2 2005/11/18 00:54:54 bruno
57 # only upload app trace files
58 #
59 # Revision 1.1 2005/11/17 16:55:56 bruno
60 # first rev
61 #
62 #
63 #
64
65 . /opt/app-trace/conf/variables
66
67 echo "" > /proc/sys/debug/traced-apps
68
69 for i in ‘find $TRACEDIR -type f -name "*app-trace.out*"‘
70 do
71 file $i | grep ’bzip2 compressed’ > /dev/null 2>&1
72 notcompressed=$?
73

14

Chapter 5. Internals

74 if [$notcompressed == 1]
75 then
76 bzip2 --force $i
77 filename=$i.bz2
78 else
79 filename=$i
80 fi
81
82 if [$2 == ’local’]
83 then
84 CHOST=$COLLECTHOSTLOCAL
85 else
86 CHOST=$COLLECTHOSTSDSC
87 fi
88
89 /opt/app-trace/bin/upload.py \
90 --upload-server=$CHOST --filename=$filename --id=$1
91 done
92

For each file in TRACEDIR (line 69), it compresses the file (if not already compressed), then calls
/opt/app-trace/bin/upload.pywhich uses HTTPS POST to copy the compressed file to your frontend (when
executingmake -f /opt/app-trace/collect/Makefile local) or to the the SDSC server (when executingmake -f
/opt/app-trace/collect/Makefile sdsc).

Here is the contents of/opt/app-trace/bin/upload.py:

1 #!/opt/rocks/usr/bin/python
2 #
3 # $Id: internals.sgml,v 1.2 2005/11/30 21:48:40 bruno Exp $
4 #
5 # @Copyright@
6 #
7 # Rocks
8 # www.rocksclusters.org
9 # version 4.1 (fuji)

10 #
11 # Copyright (c) 2005 The Regents of the University of California. All
12 # rights reserved.
13 #
14 # Redistribution and use in source and binary forms, with or without
15 # modification, are permitted provided that the following conditions are
16 # met:
17 #
18 # 1. Redistributions of source code must retain the above copyright
19 # notice, this list of conditions and the following disclaimer.
20 #
21 # 2. Redistributions in binary form must reproduce the above copyright
22 # notice, this list of conditions and the following disclaimer in the
23 # documentation and/or other materials provided with the distribution.
24 #
25 # 3. All advertising materials mentioning features or use of this
26 # software must display the following acknowledgement:

15

Chapter 5. Internals

27 #
28 # "This product includes software developed by the Rocks
29 # Cluster Group at the San Diego Supercomputer Center and
30 # its contributors."
31 #
32 # 4. Neither the name or logo of this software nor the names of its
33 # authors may be used to endorse or promote products derived from this
34 # software without specific prior written permission. The name of the
35 # software includes the following terms, and any derivatives thereof:
36 # "Rocks", "Rocks Clusters", and "Avalanche Installer".
37 #
38 # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
39 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
40 # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
42 # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
43 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
44 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
45 # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
46 # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
47 # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
48 # IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 #
50 # @Copyright@
51 #
52 # $Log: internals.sgml,v $
52 # Revision 1.2 2005/11/30 21:48:40 bruno
52 # touch ups
52 #
53 # Revision 1.1 2005/11/17 16:55:56 bruno
54 # first rev
55 #
56 #
57
58 import getopt
59 import sys
60 import httplib
61 import os
62 import os.path
63
64 boundary = ’------------Rocks-Trace-File-Upload------------’
65
66
67 def file_header(filename):
68 str = ’--’ + boundary + ’\n’
69 str += ’Content-Disposition: form-data; ’
70 str += ’name="filename"; ’
71 str += ’filename="%s"\n\n’ % (os.path.basename(filename))
72 return str
73
74
75 def file_trailer():
76 str = ’\n--’ + boundary + ’\n\n\r\n’

16

Chapter 5. Internals

77 return str
78
79
80 def encode_fields(fields):
81 str = ”
82
83 for (key, value) in fields:
84 str += ’--’ + boundary + ’\n’
85 str += ’Content-Disposition: form-data; ’ + \
86 ’name="%s"\n\n’ % (key)
87 str += value + ’\n’
88
89 return str
90
91
92
93 def send_file(host, req, fields, filename):
94 str_fields = encode_fields(fields)
95 header = file_header(filename)
96 trailer = file_trailer()
97 filesize = os.path.getsize(filename)
98
99 h = httplib.HTTPSConnection(host)

100
101 h.putrequest(’POST’, req)
102
103 h.putheader(’content-type’,
104 ’multipart/form-data; boundary=%s’ % (boundary))
105
106 bodysize = len(str_fields) + len(header) + len(trailer) + filesize
107 h.putheader(’content-length’, ’%d’ % (bodysize))
108
109 h.endheaders()
110
111 #
112 # send the body of the message
113 #
114 h.send(str_fields)
115 h.send(header)
116
117 file = open(filename, ’r’)
118 line = file.readline()
119 while line:
120 h.send(line)
121 line = file.readline()
122 file.close()
123
124 h.send(trailer)
125
126 response = h.getresponse()
127
128 return response
129

17

Chapter 5. Internals

130 #
131 # main
132 #
133
134 #
135 # get the command line arguments
136 #
137 opts, args = getopt.getopt(sys.argv[1:], ”, [’upload-server=’,
138 ’filename=’, ’id=’])
139
140 #
141 # IP address of the node we care about
142 #
143 upload_server = ”
144 filename = ”
145 id = ”
146
147 for c in opts:
148 if c[0] == ’--upload-server’:
149 upload_server = c[1]
150 if c[0] == ’--filename’:
151 filename = c[1]
152 if c[0] == ’--id’:
153 id = c[1]
154
155
156 req = ’/traces/sbin/store-trace.cgi’
157 fields = [(’username’, ’rocks’), (’id’, id)]
158
159 send_file(upload_server, req, fields, filename)

Line 99 shows the HTTPS connection and line 101 shows the POST command.

It’s important to note that all trace files are transferred using a secure link. That is, if an outside program is
eavesdropping on the connection, they will only see ciphertext and not cleartext.

The program/opt/app-trace/bin/upload.pycalls the CGI program/traces/sbin/store-trace.cgion SDSC’s server. The
contents of the CGI is:

1 #!/opt/rocks/usr/bin/python
2
3 import cgi
4 import os
5
6 tracedir = ’/state/partition1/traces/’
7
8
9 def savefile(infile, outfilename):

10 outfile = open(’%s’ % (outfilename), ’w+’)
11
12 if infile:

18

Chapter 5. Internals

13 line = infile.readline()
14 while line:
15 outfile.write(line)
16 line = infile.readline()
17 else:
18 outfile.write(f.value)
19
20 outfile.close()
21 return
22
23 #
24 # main
25 #
26 form = cgi.FieldStorage()
27
28 username = ”
29 filename = ”
30 id = ”
31
32 file = open(’/tmp/store-file.cgi’, ’w+’)
33 for key in form.keys():
34
35 if key == ’username’:
36 username = form.getvalue(key)
37 file.write(’username (%s)\n’ % (username))
38 file.write(’\n’)
39 elif key == ’id’:
40 id = form.getvalue(key)
41 file.write(’id (%s)\n’ % (id))
42 file.write(’\n’)
43 elif key == ’filename’ and form[key].filename:
44 filename = form[key].filename
45
46 file.close()
47
48 if username == ’rocks’ and id != ” and filename != ”:
49 dirname = os.path.join(’/state/partition1/traces/’, id)
50 if not os.path.exists(dirname):
51 os.system(’mkdir -p %s’ % (dirname))
52
53 outfilename = os.path.join(dirname, filename)
54
55 savefile(form[’filename’].file, outfilename)
56
57 print ’Content-type: application/octet-stream’
58 print ’Content-length: %d’ % (len(”))
59 print ”
60 print ”

The CGI above creates a new directory based on theid passed to it byupload.py.

19

Chapter 5. Internals

Again, no cluster-specific information is stored on the SDSC server.

Notes
1. http://sourceware.org/systemtap/

20

Chapter 6. Copyrights

6.1. App Trace
Rocks www.rocksclusters.org version 4.1 (fuji) Copyright (c) 2005 The Regents of the University of California. All
rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. 3. All advertising materials mentioning features or use of this software must
display the following acknowledgement: "This product includes software developed by the Rocks Cluster Group at
the San Diego Supercomputer Center and its contributors." 4. Neither the name or logo of this software nor the
names of its authors may be used to endorse or promote products derived from this software without specific prior
written permission. The name of the software includes the following terms, and any derivatives thereof: "Rocks",
"Rocks Clusters", and "Avalanche Installer". THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

21

	App Trace Roll: Users Guide
	Table of Contents
	Preface
	Chapter 1. Requirements
	1.1. Rocks Version
	1.2. Hardware Requirements
	1.3. Software Requirements

	Chapter 2. Installing the App Trace Roll
	2.1. Adding the Roll
	2.1.1. Adding the Roll to a Running System

	Chapter 3. Using the App Trace Roll
	3.1. Starting and Stopping Tracing on Compute Nodes
	3.2. Analyzing App Trace Data at Your Site
	3.3. Uploading Trace Files to SDSC

	Chapter 4. Tuning the App Trace Roll
	4.1. Tuning the App Trace Roll

	Chapter 5. Internals
	5.1. SystemTap Internals
	5.2. Upload Internals

	Chapter 6. Copyrights
	6.1. App Trace

