
Contents

1 Example Analysis 3

1.1 Explanation . 3

1.2 Script . 6

1

2 CONTENTS

Chapter 1

Example Analysis

This chapter is an example of a typical physics analysis. Large data files are chained together and analyzed using the
TSelector class.

1.1 Explanation

This script uses four large data sets from the H1 collaboration at DESY Hamburg. One can access these data sets (277
Mbytes) from the ROOT web site at: ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this example cannot be produced using smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

• Using TTree::Draw:

• This is very convenient and efficient for small tasks. A TTree::Draw call produces one histogram at the time.
The histogram is automatically generated. The selection expression may be specified in the command line.

• Using the TTreeViewer:

• This is a graphical interface to TTree::Draw with the same functionality.

• Using the code generated by TTree::MakeClass:

• In this case, the user creates an instance of the analysis class. They have the control over the event loop and can
generate an unlimited number of histograms.

• Using the code generated by TTree::MakeSelector: Like for the code generated by TTree::MakeClass, the
user can do complex analysis. However, they cannot control the event loop. The event loop is controlled by
TTree::Process called by the user. This solution is illustrated by the code below. The advantage of this method
is that it can be run in a parallel environment using PROOF (the Parallel Root Facility).

A chain of four files (originally converted from PAW ntuples) is used to illustrate the various ways to loop on ROOT data
sets. Each contains a ROOT Tree named “h42”. The class definition in h1analysis.h has been generated automatically
by the ROOT utility TTree::MakeSelector using one of the files with:

h42->MakeSelector("h1analysis");

This produces two files: h1analysis.h and h1analysis.C. A skeleton of h1analysis.C file is made for you to customize.
The h1analysis class is derived from the ROOT class TSelector. The following members functions of h1analyhsis (i.e.
TSelector) are called by the TTree::Process method.

• Begin: This function is called every time a loop over the tree starts. This is a convenient place to create your
histograms.

• Notify(): This function is called at the first entry of a new tree in a chain.

• ProcessCut: This function is called at the beginning of each entry to return a flag true if the entry must be
analyzed.

3

ftp://root.cern.ch/root/h1analysis/

4 CHAPTER 1. EXAMPLE ANALYSIS

• ProcessFill: This function is called in the entry loop for all entries accepted by Select.

• Terminate: This function is called at the end of a loop on a TTree. This is a convenient place to draw and fit
your histograms.

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time();

Step A: create a TChain with the four H1 data files. The chain can be created by executed this short script h1chain.C
below. $H1 is a system symbol pointing to the H1 data directory.

{
TChain chain("h42");
chain.Add("$H1/dstarmb.root");
//21330730 bytes, 21920 events
chain.Add("$H1/dstarp1a.root");
//71464503 bytes, 73243 events
chain.Add("$H1/dstarp1b.root");
//83827959 bytes, 85597 events
chain.Add("$H1/dstarp2.root");
//100675234 bytes, 103053 events

}

Run the above script from the command line:

root[] .x h1chain.C

Step B: Now we have a directory containing the four data files. Since a TChain is a descendent of TTree we can call
TChain::Process to loop on all events in the chain. The parameter to the TChain::Process method is the name of
the file containing the created TSelector class (h1analysis.C).

root[] chain.Process("h1analysis.C")

Step C : Same as step B, but in addition fill the event list with selected entries. The event list is saved to a file “elist.root”
by the TSelector::Terminate method. To see the list of selected events, you can do elist->Print("all"). The
selection function has selected 7525 events out of the 283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("h1analysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the file in elist.root generated by step C.

root[] chain.Process("h1analysis.C","useList")

Step E : The above steps have been executed with the interpreter. You can repeat the steps B, C, and D using ACLiC
by replacing “h1analysis.C” by “h1analysis.C+” or “h1analysis.C++”.

Step F: If you want to see the differences between the interpreter speed and ACLiC speed start a new session, create
the chain as in step 1, then execute

root[] chain.Process("h1analysis.C+","useList")

The commands executed with the four different methods B, C, D and E produce two canvases shown below:

1.1. EXPLANATION 5

6 CHAPTER 1. EXAMPLE ANALYSIS

1.2 Script

This is the h1analsysis.C file that was generated by TTree::MakeSelector and then modified to perform the analysis.

#include "h1analysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"

const Double_t dxbin = (0.17-0.13)/40; // Bin-width
const Double_t sigma = 0.0012;
TEventList *elist = 0;
Bool_t useList, fillList;
TH1F *hdmd;
TH2F *h2;

//___
Double_t fdm5(Double_t *xx, Double_t *par)
{

Double_t x = xx[0];
if (x <= 0.13957) return 0;
Double_t xp3 = (x-par[3])*(x-par[3]);
Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,par[1])
+ par[2]/2.5066/par[4]*TMath::Exp(-xp3/2/par[4]/par[4]));
return res;

}

//___
Double_t fdm2(Double_t *xx, Double_t *par)
{

Double_t x = xx[0];
if (x <= 0.13957) return 0;
Double_t xp3 = (x-0.1454)*(x-0.1454);
Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,0.25)
+ par[1]/2.5066/sigma*TMath::Exp(-xp3/2/sigma/sigma));
return res;

}

//___
void h1analysis::Begin(TTree *tree)
{
// function called before starting the event loop
// -it performs some cleanup
// -it creates histograms
// -it sets some initialization for the event list

//initialize the Tree branch addresses
Init(tree);

//print the option specified in the Process function
TString option = GetOption();
printf("Starting h1analysis with process option: %sn",option.Data());

//Some cleanup in case this function had already been executed
//Delete any previously generated histograms or functions
gDirectory->Delete("hdmd");
gDirectory->Delete("h2*");
delete gROOT->GetFunction("f5");
delete gROOT->GetFunction("f2");

1.2. SCRIPT 7

//create histograms
hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17);
h2 = new TH2F("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6);

//process cases with event list
fillList = kFALSE;
useList = kFALSE;
fChain->SetEventList(0);
delete gDirectory->GetList()->FindObject("elist");

// case when one creates/fills the event list
if (option.Contains("fillList")) {

fillList = kTRUE;
elist = new TEventList("elist","selection from Cut",5000);

}
// case when one uses the event list generated in a previous call
if (option.Contains("useList")) {

useList = kTRUE;
TFile f("elist.root");
elist = (TEventList*)f.Get("elist");
if (elist) elist->SetDirectory(0);
//otherwise the file destructor will delete elist
fChain->SetEventList(elist);

}
}
//___
Bool_t h1analysis::ProcessCut(Int_t entry)
{ // Selection function to select D* and D0.

//in case one event list is given in input,
//the selection has already been done.
if (useList) return kTRUE;
// Read only the necessary branches to select entries.
// return as soon as a bad entry is detected
b_md0_d->GetEntry(entry);
if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE;
b_ptds_d->GetEntry(entry);
if (ptds_d <= 2.5) return kFALSE;
b_etads_d->GetEntry(entry);
if (TMath::Abs(etads_d) >= 1.5) return kFALSE;
b_ik->GetEntry(entry); ik--;
//original ik used f77 convention starting at 1
b_ipi->GetEntry(entry);
ipi--;
b_ntracks->GetEntry(entry);
b_nhitrp->GetEntry(entry);
if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
b_rend->GetEntry(entry);
b_rstart->GetEntry(entry);
if (rend[ik]-rstart[ik] <= 22) return kFALSE;
if (rend[ipi]-rstart[ipi] <= 22) return kFALSE;
b_nlhk->GetEntry(entry);
if (nlhk[ik] <= 0.1) return kFALSE;
b_nlhpi->GetEntry(entry);
if (nlhpi[ipi] <= 0.1) return kFALSE;
b_ipis->GetEntry(entry);
ipis--;
if (nlhpi[ipis] <= 0.1) return kFALSE;
b_njets->GetEntry(entry);
if (njets < 1) return kFALSE;

// if option fillList, fill the event list
if (fillList) elist->Enter(fChain->GetChainEntryNumber(entry));

8 CHAPTER 1. EXAMPLE ANALYSIS

return kTRUE;
}

//___
void h1analysis::ProcessFill(Int_t entry)
{ // Function called for selected entries only

// read branches not processed in ProcessCut
b_dm_d->GetEntry(entry);
//read branch holding dm_d
b_rpd0_t->GetEntry(entry);
//read branch holding rpd0_t
b_ptd0_d->GetEntry(entry);
//read branch holding ptd0_d //continued...
//fill some histograms
hdmd->Fill(dm_d);
h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);

}

//___
void h1analysis::Terminate()
{ // Function called at the end of the event loop

//create the canvas for the h1analysis fit
gStyle->SetOptFit();
TCanvas *c1 = new TCanvas("c1","h1analysis analysis",10,10,800,600);
c1->SetBottomMargin(0.15);
hdmd->GetXaxis()->SetTitle("m_{K#pi#pi}-m_{K#pi}[GeV/c^{2}]");
hdmd->GetXaxis()->SetTitleOffset(1.4);

//fit histogram hdmd with function f5 using
//the loglikelihood option
TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5);
f5->SetParameters(1000000,.25,2000,.1454,.001);
hdmd->Fit("f5","lr");

//create the canvas for tau d0
gStyle->SetOptFit(0);
gStyle->SetOptStat(1100);
TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600);
c2->SetGrid();
c2->SetBottomMargin(0.15);

// Project slices of 2-d histogram h2 along X ,
// then fit each slice with function f2 and make a
// histogram for each fit parameter.
// Note that the generated histograms are added
// to the list of objects in the current directory.

TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2);
f2->SetParameters(10000,10);
h2->FitSlicesX(f2,0,0,1,"qln");
TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
h2_1->GetXaxis()->SetTitle("#tau[ps]");
h2_1->SetMarkerStyle(21);
h2_1->Draw();
c2->Update();
TLine *line = new TLine(0,0,0,c2->GetUymax());
line->Draw();

// save the event list to a Root file if one was produced
if (fillList) {

1.2. SCRIPT 9

TFile efile("elist.root","recreate");
elist->Write();

}
}

	Example Analysis
	Explanation
	Script

