
Contents

1 Linear Algebra in ROOT 3

1.1 Overview of Matrix Classes . 3

1.2 Matrix Properties . 5

1.2.1 Accessing Properties . 5

1.2.2 Setting Properties . 6

1.3 Creating and Filling a Matrix . 6

1.4 Matrix Operators and Methods . 8

1.4.1 Arithmetic Operations between Matrices . 8

1.4.2 Arithmetic Operations between Matrices and Real Numbers . 8

1.4.3 Comparisons and Boolean Operations . 8

1.4.4 Matrix Norms . 9

1.4.5 Miscellaneous Operators . 9

1.5 Matrix Views . 10

1.5.1 View Operators . 10

1.5.2 View Examples . 12

1.6 Matrix Decompositions . 12

1.6.1 Tolerances and Scaling . 14

1.6.2 Condition number . 14

1.6.3 LU . 15

1.6.4 Bunch-Kaufman . 15

1.6.5 Cholesky . 16

1.6.6 QRH . 16

1.6.7 SVD . 16

1.7 Matrix Eigen Analysis . 16

1.8 Speed Comparisons . 17

1

2 CONTENTS

Chapter 1

Linear Algebra in ROOT

The linear algebra package is supposed to give a complete environment in ROOT to perform calculations like equation
solving and eigenvalue decompositions. Most calculations are performed in double precision. For backward compatibility,
some classes are also provided in single precision like TMatrixF, TMatrixFSym and TVectorF. Copy constructors exist
to transform these into their double precision equivalent, thereby allowing easy access to decomposition and eigenvalue
classes, only available in double precision.

The choice was made not to provide the less frequently used complex matrix classes. If necessary, users can always
reformulate the calculation in 2 parts, a real one and an imaginary part. Although, a linear equation involving complex
numbers will take about a factor of 8 more computations, the alternative of introducing a set of complex classes in this
non-template library would create a major maintenance challenge.

Another choice was to fill in both the upper-right corner and the bottom-left corner of a symmetric matrix. Although
most algorithms use only the upper-right corner, implementation of the different matrix views was more straightforward
this way. When stored only the upper-right part is written to file.

For a detailed description of the interface, the user should look at the root reference guide at: http://root.cern.ch/root/
Reference.html

1.1 Overview of Matrix Classes

The figure below shows an overview of the classes available in the linear algebra library,libMatrix.so. At the
center is the base class TMatrixDBase from which three different matrix classes, TMatrixD, TMatrixDSym and
TMatrixDFSparse derive. The user can define customized matrix operations through the classes TElementActionD
and TElementsPosActionD.

Reference to different views of the matrix can be created through the classes on the right-hand side, see “Matrix Views”.
These references provide a natural connection to vectors.

Matrix decompositions (used in equation solving and matrix inversion) are available through the classes on the left-hand
side (see “Matrix Decompositions”). They inherit from the TDecompBase class. The Eigen Analysis is performed
through the classes at the top, see “Matrix Eigen Analysis”. In both cases, only some matrix types can be analyzed.
For instance, TDecompChol will only accept symmetric matrices as defined TMatrixDSym. The assignment operator
behaves somewhat different than of most other classes. The following lines will result in an error:

TMatrixD a(3,4);
TMatrixD b(5,6);
b = a;

It required to first resize matrix b to the shape of a.

TMatrixD a(3,4);
TMatrixD b(5,6);
b.ResizeTo(a);
b = a;

3

http://root.cern.ch/root/Reference.html
http://root.cern.ch/root/Reference.html

4 CHAPTER 1. LINEAR ALGEBRA IN ROOT

Figure 1.1: Overview of matrix classes

1.2. MATRIX PROPERTIES 5

1.2 Matrix Properties

A matrix has five properties, which are all set in the constructor:

• precision - float or double. In the first case you will use the TMatrixF class family, in the latter case the
TMatrixD one;

• type - general (TMatrixD), symmetric (TMatrixDSym) or sparse (TMatrixDSparse);

• size - number of rows and columns;

• index - range start of row and column index. By default these start at zero;

• sparse map - this property is only relevant for a sparse matrix. It indicates where elements are unequal zero.

1.2.1 Accessing Properties

The following table shows the methods to access the information about the relevant matrix property:

Method Descriptions
Int_t GetRowLwb () row lower-bound index
Int_t GetRowUpb () row upper-bound index
Int_t GetNrows () number of rows
Int_t GetColLwb () column lower-bound index
Int_t GetColUpb () column upper-bound index
Int_t GetNcols () number of columns
Int_t GetNoElements () number of elements, for a dense matrix this equals: fNrows x

fNcols
Double_t GetTol () tolerance number which is used in decomposition operations
Int_t *GetRowIndexArray () for sparse matrices, access to the row index of fNrows+1 entries
Int_t *GetColIndexArray () for sparse matrices, access to the column index of fNelems entries

The last two methods in this table are specific to the sparse matrix, which is implemented according to the Harwell-
Boeing format. Here, besides the usual shape/size descriptors of the matrix like fNrows, fRowLwb, fNcols and fColLwb,
we also store a row index, fRowIndex and column index, fColIndex for the elements unequal zero:

fRowIndex[0,..,fNrows]: Stores for each row the index range of the elements in the data and
column array

fColIndex[0,..,fNelems-1]: Stores the column number for each data element != 0.

The code to print all matrix elements unequal zero would look like:

TMatrixDSparse a;
const Int_t *rIndex = a.GetRowIndexArray();
const Int_t *cIndex = a.GetColIndexArray();
const Double_t *pData = a.GetMatrixArray();
for (Int_t irow = 0; irow < a.getNrows(); irow++) {

const Int_t sIndex = rIndex[irow];
const Int_t eIndex = rIndex[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {

const Int_t icol = cIndex[index];
const Double_t data = pData[index];
printf("data(%d,%d) = %.4en",irow+a.GetfRowLwb(),
icol+a.GetColLwb(),data);

}
}

6 CHAPTER 1. LINEAR ALGEBRA IN ROOT

1.2.2 Setting Properties

The following table shows the methods to set some of the matrix properties. The resizing procedures will maintain the
matrix elements that overlap with the old shape. The optional last argument nr_zeros is only relevant for sparse
matrices. If supplied, it sets the number of non-zero elements. If it is smaller than the number overlapping with the old
matrix, only the first (row-wise)nr_zeros are copied to the new matrix.

Method Descriptions

SetTol (Double_t tol) set the tolerance number
ResizeTo (Int_t nrows,Int_t ncols,
Int_t nr_nonzeros=-1)

change matrix shape to nrows x ncols. Index will
start at zero

ResizeTo(Int_t row_lwb,Int_t row_upb,
Int_t col_lwb,Int_t col_upb,
Int_t nr_nonzeros=-1)

change matrix shape to
row_lwb:row_upb x col_lwb:col_upb

SetRowIndexArray (Int_t *data) for sparse matrices, set the row index. The array
data should contains at leastfNrows+1 entries
column lower-bound index

SetColIndexArray (Int_t *data) for sparse matrices, set the column index. The
array data should contains at least fNelems entries

SetSparseIndex (Int_t nelems new) allocate memory for a sparse map of nelems_new
elements and copy (if exists) at most nelems_new
matrix elements over to the new structure

SetSparseIndex (const TMatrixDBase &a) copy the sparse map from matrix a Note that this
can be a dense matrix!

SetSparseIndexAB (const TMatrixDSparse &a, const
TMatrixDSparse &b)

set the sparse map to the same of the map of
matrix a and b

The second half of the table is only relevant for sparse matrices. These methods define the sparse structure. It should
be clear that a call to any of these methods has to be followed by a SetMatrixArray (. . .) which will supply the
matrix data, see the next chapter “Creating and Filling a Matrix”.

1.3 Creating and Filling a Matrix

The matrix constructors are listed in the next table. In the simplest ones, only the number of rows and columns is
given. In a slightly more elaborate version, one can define the row and column index range. Finally, one can also define
the matrix data in the constructor. In Matrix Operators and Methods we will encounter more fancy constructors that
will allow arithmetic operations.

TMatrixD(Int_t nrows,Int_t ncols)
TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)
TMatrixD(Int_t nrows,Int_t ncols,const Double_t *data, Option_t option= "")
TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
const Double_t *data,Option_t *option="")

TMatrixDSym(Int_t nrows)
TMatrixDSym(Int_t row_lwb,Int_t row_upb)
TMatrixDSym(Int_t nrows,const Double_t *data,Option_t *option="")
TMatrixDSym(Int_t row_lwb,Int_t row_upb,const Double_t *data, Option_t *opt="")

TMatrixDSparse(Int_t nrows,Int_t ncols)
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb, Int_t col_upb)
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr_nonzeros,Int_t *row,Int_t *col,Double_t *data)

If only the matrix shape is defined in the constructor, matrix data has to be supplied and possibly the sparse structure.
In “Setting Properties” was discussed how to set the sparse structure.

Several methods exist to fill a matrix with data:

1.3. CREATING AND FILLING A MATRIX 7

SetMatrixArray(const Double_t*data,Option_t*option=""), copies the array data. If option="F", the array fills
the matrix column-wise else row-wise. This option is only implemented for TMatrixD and TMatrixDSym. It is expected
that the array data contains at least fNelems entries.

SetMatrixArray(Int_t nr,Int_t *irow,Int_t *icol,Double_t *data), is only available for sparse matrices. The
three arrays should each contain nr entries with row index, column index and data entry. Only the entries with
non-zero data value are inserted!

operator()or operator[], these operators provide the easiest way to fill a matrix but are in particular for a sparse
matrix expensive. If no entry for slot (i,j) is found in the sparse index table it will be entered, which involves some
memory management! Therefore, before invoking this method in a loop it is wise to set the index table first through a
call to the SetSparseIndex method.

SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source), the matrix to be inserted at position
(row_lwb,col_lwb) can be both, dense or sparse.

Use(...) allows inserting another matrix or data array without actually copying the data. Next table shows the
different flavors for the different matrix types.

Use(TMatrixD &a)
Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,Double_t *d ata)
Use(Int_t nrows,Int_t ncols,Double_t *data)

Use(TMatrixDSym &a)
Use(Int_t nrows,Double_t *data)
Use(Int_t row_lwb,Int_t row_upb,Double_t *data)

Use(TMatrixDSparse &a)
Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,Int_t nr_no nzeros,
Int_t *pRowIndex,Int_t *pColIndex,Double_t *pData)
Use(Int_t nrows,Int_t ncols,Int_t nr_nonzeros,Int_t *pRowIndex,
Int_t *pColIndex,Double_t *pData)

Below follow a few examples of creating and filling a matrix. First we create a Hilbert matrix by copying an array.

TMatrixD h(5,5);
TArrayD data(25);
for (Int_t = 0; i < 25; i++) {

const Int_t ir = i/5;
const Int_t ic = i%5;
data[i] = 1./(ir+ic);

}
h.SetMatrixArray(data.GetArray());

We also could assign the data array to the matrix without actually copying it.

TMatrixD h; h.Use(5,5,data.GetArray());
h.Invert();

The array data now contains the inverted matrix. Finally, create a unit matrix in sparse format.

TMatrixDSparse unit1(5,5);
TArrayI row(5),col(5);
for (Int_t i = 0; i < 5; i++) row[i] = col[i] = i;
TArrayD data(5); data.Reset(1.);
unit1.SetMatrixArray(5,row.GetArray(),col.GetArray(),data.GetArray());

TMatrixDSparse unit2(5,5);
unit2.SetSparseIndex(5);
unit2.SetRowIndexArray(row.GetArray());
unit2.SetColIndexArray(col.GetArray());
unit2.SetMatrixArray(data.GetArray());

8 CHAPTER 1. LINEAR ALGEBRA IN ROOT

1.4 Matrix Operators and Methods

It is common to classify matrix/vector operations according to BLAS (Basic Linear Algebra Subroutines) levels, see
following table:

BLAS level operations example floating-point operations
1 vector-vector xTy n

2 matrix-vector matrix Ax n2
3 matrix-matrix AB n3

Most level 1, 2 and 3 BLAS are implemented. However, we will present them not according to that classification
scheme it is already boring enough.

1.4.1 Arithmetic Operations between Matrices

Description Format Comment

element
wise sum

C=A+B
A+=B
Add (A,alpha,B)
TMatrixD(A,TMatrixD::kPlus,B)

overwrites A
A = A+ αB constructor

element wise subtraction C=A-B A-=B
TMatrixD(A,TMatrixD::kMinus,B)

overwrites A
constructor

matrix multiplication C=A*B
A*=B
C.Mult(A,B)

overwrites A

TMatrixD(A,TMatrixD::kMult,B) constructor of A.B

TMatrixD(A, TMatrixD::kTransposeMult,B) constructor of AT .B

TMatrixD(A, TMatrixD::kMultTranspose,B) constructor of A.BT

element wise multiplication
element wise division

ElementMult(A,B)
ElementDiv(A,B)

A(i,j)*= B(i,j)
A(i,j)/= B(i,j)

1.4.2 Arithmetic Operations between Matrices and Real Numbers

Description Format Comment
element wise sum C=r+A C=A+r A+=r overwrites A
element wise subtraction C=r-A C=A-r A-=r overwrites A
matrix multiplication C=r*A C=A*r A*=r overwrites A

1.4.3 Comparisons and Boolean Operations

The following table shows element wise comparisons between two matrices:

Format Output Description
A == B Bool_t equal to
A != B
A > B
A >= B
A < B
A <= B

matrix
matrix
matrix
matrix
matrix

Not equal
Greater than
Greater than or equal to
Smaller than
Smaller than or equal to

1.4. MATRIX OPERATORS AND METHODS 9

AreCompatible(A,B)
Compare(A,B)
VerifyMatrixIdentity(A,B,verb, maxDev)

Bool_t
Bool_t

Compare matrix properties
return summary of comparison
Check matrix identity within maxDev
tolerance

The following table shows element wise comparisons between matrix and real:

Format Output Description
A == r
A != r
A > r
A >= r
A < r
A <= r

Bool_t
Bool_t
Bool_t
Bool_t
Bool_t
Bool_t

equal to
Not equal
Greater than
Greater than or equal to
Smaller than
Smaller than or equal to

VerifyMatrixValue(A,r,verb, maxDev) Bool_t Compare matrix value with r within
maxDev tolerance

1.4.4 Matrix Norms

Format Output Description
A.RowNorm()
A.NormInf()
A.ColNorm()
A.Norm1()
A.E2Norm()
A.NonZeros()
A.Sum()
A.Min()
A.Max()

Double_t
Double_t
Double_t
Double_t
Double_t
Int_t
Double_t
Double_t
Double_t

norm induced by the infinity vector norm, maxi
∑

i |Aij |
maxi

∑
i |Aij |

norm induced by the 1 vector norm, maxj
∑

i |Aij |
maxj

∑
i |Aij |

Square of the Euclidean norm,∑
ji(A2

ij)
number of elements unequal zero∑

ji(Aij)
minij (Aij)
maxij (Aij)

A.NormByColumn (v,"D")
A.NormByRow (v,"D")

TMatrixD
TMatrixD

Aij/ = νi, divide each matrix column by vector v. If
the second argument is “M”, the column is multiplied.
Aij/ = νj , divide each matrix row by vector v. If the
second argument is “M”, the row is multiplied.

1.4.5 Miscellaneous Operators

Format Output Description
A.Zero() TMatrixX Aij = 0
A.Abs() TMatrixX Aij = |Aij |
A.Sqr() TMatrixX Aij = A2

ij

A.Sqrt() TMatrixX Aij =
√

(Aij)
A.UnitMatrix() TMatrixX Aij = 1 for i ==j else 0
A.Randomize
(alpha,beta,seed)

TMatrixX Aij = (β − α)
⋃

(0, 1) + α a random matrix is generated
with elements uniformly distributed between α and β

A.T() TMatrixX Aij = Aji

A.Transpose(B) TMatrixX Aij = Bji

A.Invert(&det) TMatrixX Invert matrix A. If the optional pointer to the Double_t
argument det is supplied, the matrix determinant is
calculated.

A.InvertFast(&det) TMatrixX like Invert but for matrices i =(6x6)a faster but less
accurate Cramer algorithm is used

10 CHAPTER 1. LINEAR ALGEBRA IN ROOT

A.Rank1Update(v,alpha) TMatrixX Perform with vector v a rank 1 operation on the matrix:
A = A+ α.ν.νT

A.RandomizePD(alpha,beta,seed)‘ TMatrixX Aij = (β − α)
⋃

(0, 1) + α a random symmetric
positive-definite matrix is generated with elements
uniformly distributed between α and β

Output TMatrixX indicates that the returned matrix is of the same type as A, being TMatrixD, TMatrixDSym or
TMatrixDSparse. Next table shows miscellaneous operations for TMatrixD.

Format Output Description
A.Rank1Update(v1,v2,alpha) TMatrixD Perform with vector v1 and v2, a rank 1

operation on the matrix: A = A+ α.ν.ν2T

1.5 Matrix Views

Another way to access matrix elements is through the matrix-view classes, TMatrixDRow, TMatrixDColumn,
TMatrixDDiag and TMatrixDSub (each has also a const version which is obtained by simply appending const to the
class name). These classes create a reference to the underlying matrix, so no memory management is involved. The
next table shows how the classes access different parts of the matrix:

class view
TMatrixDRow const(X,i) TMatrixDRow(X,i) 

x00 x0n

xi0 ... xij ... xin

xn0 xnn


TMatrixDColumn const(X,j)
TMatrixDColumn(X,j)


x00 x0j x0n

...
xij

...
xn0 xnj xnn


TMatrixDDiag const(X) TMatrixDDiag(X) 

x00 x0n

...
...

...
xn0 xnn


TMatrixDSub const(X,i,l,j,k)
TMatrixDSub(X,i,l,j,k)


x00 x0n

xij ... xik

xlj ... xlk

xn0 xnn



1.5.1 View Operators

For the matrix views TMatrixDRow, TMatrixDColumn and TMatrixDDiag, the necessary assignment operators are
available to interact with the vector class TVectorD. The sub matrix view TMatrixDSub has links to the matrix classes
TMatrixD and TMatrixDSym. The next table summarizes how the access individual matrix elements in the matrix
views:

Format Comment
TMatrixDRow(A,i)(j) TMatrixDRow(A,i)[j] element Aij

TMatrixDColumn(A,j)(i) TMatrixDColumn(A,j)[i] element Aij

1.5. MATRIX VIEWS 11

TMatrixDDiag(A(i) TMatrixDDiag(A[i] element Aij

TMatrixDSub(A(i) TMatrixDSub(A,rl,rh,cl,ch)(i,j) element Aij

element Arl+i,cl+j

The next two tables show the possible operations with real numbers, and the operations between the matrix views:

Description Format Comment
assign real TMatrixDRow(A,i) = r row i

TMatrixDColumn(A,j) = r column j
TMatrixDDiag(A) = r matrix diagonal
TMatrixDSub(A,i,l,j,k) = r sub matrix

add real TMatrixDRow(A,i) += r row i

TMatrixDColumn(A,j) += r column j
TMatrixDDiag(A) += r matrix diagonal
TMatrixDSub(A,i,l,j,k) +=r sub matrix

multiply with real TMatrixDRow(A,i) *= r row i

TMatrixDColumn(A,j) *= r column j
TMatrixDDiag(A) *= r matrix diagonal
TMatrixDSub(A,i,l,j,k) *= r sub matrix

Description Format Comment

TMatrixDRow(A,i1) +=
TMatrixDRow const(B,i2)

add row i2 to row i1

add matrix slice TMatrixDColumn(A,j1) +=
TMatrixDColumn const(A,j2)

add column j2 to column j1

TMatrixDDiag(A) += TMatrixDDiag
const(B)

add B diagonal to A diagonal

TMatrixDRow(A,i1) *=
TMatrixDRow const(B,i2)

multiply row i2 with row i1 element wise

TMatrixDColumn(A,j1) *=
TMatrixDColumn const(A,j2)

multiply column j2 with column j1 element
wise

multiply matrix slice TMatrixDDiag(A) *= TMatrixDDiag
const(B)

multiply B diagonal with A diagonal
element wise

TMatrixDSub(A,i1,l1,j1,k1) *=
TMatrixDSub(B,i2,l2,j2,k2)

multiply sub matrix of A with sub matrix
of B

TMatrixDSub(A,i,l,j,k) *= B multiply sub matrix of A with matrix of B

In the current implementation of the matrix views, the user could perform operations on a symmetric matrix that
violate the symmetry. No checking is done. For instance, the following code violates the symmetry.

TMatrixDSym A(5);
A.UnitMatrix();
TMatrixDRow(A,1)[0] = 1;
TMatrixDRow(A,1)[2] = 1;

12 CHAPTER 1. LINEAR ALGEBRA IN ROOT

1.5.2 View Examples

Inserting row i1into rowi2 of matrix A can easily accomplished through:

TMatrixDRow(A,i1) = TMatrixDRow(A,i2)

Which more readable than:

const Int_t ncols = A.GetNcols();
Double_t *start = A.GetMatrixArray();
Double_t *rp1 = start+i*ncols;
const Double_t *rp2 = start+j*ncols;
while (rp1 < start+ncols) *rp1++ = *rp2++;

Check that the columns of a Haar -matrix of order order are indeed orthogonal:

const TMatrixD haar = THaarMatrixD(order);
TVectorD colj(1<<order);
TVectorD coll(1<<order);
for (Int_t j = haar.GetColLwb(); j <= haar.GetColUpb(); j++) {

colj = TMatrixDColumn_const(haar,j);
Assert(TMath::Abs(colj*colj-1.0) <= 1.0e-15);

for (Int_t l = j+1; l <= haar.GetColUpb(); l++) {
coll = TMatrixDColumn_const(haar,l);
Assert(TMath::Abs(colj*coll) <= 1.0e-15);

}
}

Multiplying part of a matrix with another part of that matrix (they can overlap)

TMatrixDSub(m,1,3,1,3) *= m.GetSub(5,7,5,7);

1.6 Matrix Decompositions

The linear algebra package offers several classes to assist in matrix decompositions. Each of the decomposition methods
performs a set of matrix transformations to facilitate solving a system of linear equations, the formation of inverses as
well as the estimation of determinants and condition numbers. More specifically the classes TDecompLU, TDecompBK,
TDecompChol, TDecompQRH and TDecompSVD give a simple and consistent interface to the LU, Bunch-Kaufman, Cholesky,
QR and SVD decompositions. All of these classes are derived from the base class TDecompBase of which the important
methods are listed in next table:

Method Action

Bool_t Decompose() perform the matrix decomposition
Double_t Condition() calculate ||A||1 ||A-1||1, see “Condition

number”
void Det(Double_t &d1,Double_t &d2) the determinant is d1 2d2 . Expressing the

determinant this way makes under/over-flow
very unlikely

Bool_t Solve(TVectorD &b) solve Ax=b; vectorb is supplied through the
argument and replaced with solution x

TVectorD Solve(const TVectorD &b,Bool_t &ok) solve Ax=b; x is returned
Bool_t Solve(TMatrixDColumn &b) solve Ax=column(B,j);column(B,j) is

supplied through the argument and replaced
with solution x

Bool_t TransSolve(TVectorD &b) solve ATx = b; vector b is supplied through
the argument and replaced with solution x

1.6. MATRIX DECOMPOSITIONS 13

TVectorD TransSolve(const TVectorD b, Bool_t &ok) solve ATx = b; vector x is returned
Bool_t TransSolve(TMatrixDColumn &b) solve ATx=column(B,j); column(B,j) is

supplied through the argument and replaced
with solution x

Bool_t MultiSolve(TMatrixD &B) solve ATx = b;. matrix B is supplied through
the argument and replaced with solution X

void Invert(TMatrixD &inv) call to MultiSolve with as input argument
the unit matrix. Note that for a matrix (m x n)
- A with m > n, a pseudo-inverse is calculated

TMatrixD Invert() call to MultiSolve with as input argument
the unit matrix. Note that for a matrix (m x n)
- A with m > n, a pseudo-inverse is calculated

Through TDecompSVD and TDecompQRH one can solve systems for a (m x n) - A with m>n. However, care has to be taken
for methods where the input vector/matrix is replaced by the solution. For instance in the method Solve(b), the
input vector should have length m but only the first n entries of the output contain the solution. For the Invert(B)
method, the input matrix B should have size (m x n) so that the returned (m x n) pseudo-inverse can fit in it.

The classes store the state of the decomposition process of matrix A in the user-definable part of TObject::fBits, see
the next table. This guarantees the correct order of the operations:

kMatrixSet
kDecomposed
kDetermined
kCondition
kSingular

A assigned
A decomposed, bit kMatrixSet must have been set.
det A calculated, bit kDecomposed must have been set.
||A||1 ||A-1||1 is calculated bit kDecomposed must have been set.
A is singular

The state is reset by assigning a new matrix through SetMatrix(TMatrixD &A) for TDecompBK and TDecompChol
(actually SetMatrix(TMatrixDSym &A) and SetMatrix(TMatrixDSparse &A) for TMatrixDSparse).

As the code example below shows, the user does not have to worry about the decomposition step before calling a solve
method, because the decomposition class checks before invoking Solve that the matrix has been decomposed.

TVectorD b = ..;
TMatrixD a = ..;
.
TDecompLU lu(a);
Bool_t ok;
lu.Solve(b,ok);

In the next example, we show again the same decomposition but now performed in a loop and all necessary steps are
manually invoked. This example also demonstrates another very important point concerning memory management! Note
that the vector, matrix and decomposition class are constructed outside the loop since the dimensions of vector/matrix
are constant. If we would have replaced lu.SetMatrix(a) by TDecompLU lu(a), we would construct/deconstruct the
array elements of lu on the stack.

TVectorD b(n);
TMatrixD a(n,n);
TDecompLU lu(n);
Bool_t ok;
for (....) {

b = ..;
a = ..;
lu.SetMatrix(a);
lu.Decompose();
lu.Solve(b,ok);

}

14 CHAPTER 1. LINEAR ALGEBRA IN ROOT

1.6.1 Tolerances and Scaling

The tolerance parameter fTol (a member of the base class TDecompBase) plays a crucial role in all operations of the
decomposition classes. It gives the user a tool to monitor and steer the operations its default value is ε where 1 + ε = 1.

If you do not want to be bothered by the following considerations, like in most other linear algebra packages, just set
the tolerance with SetTol to an arbitrary small number. The tolerance number is used by each decomposition method
to decide whether the matrix is near singular, except of course SVD that can handle singular matrices. This will be
checked in a different way for any decomposition. For instance in LU, a matrix is considered singular in the solving
stage when a diagonal element of the decomposed matrix is smaller than fTol. Here an important point is raised. The
Decompose() method is successful as long no zero diagonal element is encountered. Therefore, the user could perform
decomposition and only after this step worry about the tolerance number.

If the matrix is flagged as being singular, operations with the decomposition will fail and will return matrices or vectors
that are invalid. If one would like to monitor the tolerance parameter but not have the code stop in case of a number
smaller than fTol, one could proceed as follows:

TVectorD b = ..;
TMatrixD a = ..;
.
TDecompLU lu(a);
Bool_t ok;
TVectorD x = lu.Solve(b,ok);
Int_t nr = 0;
while (!ok) {

lu.SetMatrix(a);
lu.SetTol(0.1*lu.GetTol());
if (nr++ > 10) break;
x = lu.Solve(b,ok);

}
if (x.IsValid())
cout << "solved with tol =" << lu.GetTol() << endl;
else
cout << "solving failed " << endl;

The observant reader will notice that by scaling the complete matrix by some small number the decomposition will
detect a singular matrix. In this case, the user will have to reduce the tolerance number by this factor. (For CPU time
saving we decided not to make this an automatic procedure).

1.6.2 Condition number

The numerical accuracy of the solution x in Ax = b can be accurately estimated by calculating the condition number k
of matrix A, which is defined as:

k = ||A||1||A−1||1 where ||A||1 = max
j

(
∑

i |Aij |)

A good rule of thumb is that if the matrix condition number is 10n, the accuracy in x is 15 - n digits for double
precision.

Hager devised an iterative method (W.W. Hager, Condition estimators, SIAM J. Sci. Stat. Comp., 5 (1984), pp. 311-316)
to determine ||A−1||1 without actually having to calculate A−1. It is used when calling Condition().

A code example below shows the usage of the condition number. The matrix A is a (10x10) Hilbert matrix that is
badly conditioned as its determinant shows. We construct a vector b by summing the matrix rows. Therefore, the
components of the solution vector x should be exactly 1. Our rule of thumb to the 2.1012 condition number predicts
that the solution accuracy should be around

15 - 12 = 3

digits. Indeed, the largest deviation is 0.00055 in component 6.

TMatrixDSym H = THilbertMatrixDSym(10);
TVectorD rowsum(10);
for (Int_t irow = 0; irow < 10; irow++)
for (Int_t icol = 0; icol < 10; icol++)

1.6. MATRIX DECOMPOSITIONS 15

rowsum(irow) += H(irow,icol);
TDecompLU lu(H);
Bool_t ok;
TVectorD x = lu.Solve(rowsum,ok);
Double_t d1,d2;
lu.Det(d1,d2);
cout << "cond:" << lu.Condition() << endl;
cout << "det :" << d1*TMath:Power(2.,d2) << endl;
cout << "tol :" << lu.GetTol() << endl;
x.Print();
cond:3.9569e+12
det :2.16439e-53
tol :2.22045e-16
Vector 10 is as follows

1
0 |1
1 |1
2 |0.999997
3 |1.00003
4 |0.999878
5 |1.00033
6 |0.999452
7 |1.00053
8 |0.999723
9 |1.00006

1.6.3 LU

Decompose an nxn matrix A.

PA = LU

P permutation matrix stored in the index array fIndex: j=fIndex[i] indicates that row j and rowishould be swapped.
Sign of the permutation, −1n, where n is the number of interchanges in the permutation, stored in fSign.

L is lower triangular matrix, stored in the strict lower triangular part of fLU. The diagonal elements of L are unity
and are not stored.

U is upper triangular matrix, stored in the diagonal and upper triangular part of fU.

The decomposition fails if a diagonal element of fLU equals 0.

1.6.4 Bunch-Kaufman

Decompose a real symmetric matrix A

A = UDUT

D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks Dk.
U is product of permutation and unit upper triangular matrices:

U = Pn-1Un-1· · ·PkUk· · · where k decreases from n - 1 to 0 in steps of 1 or 2. Permutation matrix Pk is stored
in fIpiv. Uk is a unit upper triangular matrix, such that if the diagonal block Dk is of order s (s = 1, 2), then

Uk =

 1 v 0
0 1 0
0 0 1


k − s s n− k

k − s
s

n− k

If s = 1, Dk overwrites A(k, k), and v overwrites A(0: k - 1, k).
If s = 2, the upper triangle of Dk overwrites A(k-1, k-1), A(k-1,k), and A(k, k), and v overwrites A(0 : k - 2, k - 1 : k).

16 CHAPTER 1. LINEAR ALGEBRA IN ROOT

1.6.5 Cholesky

Decompose a symmetric, positive definite matrix A

A = UTU

U is an upper triangular matrix. The decomposition fails if a diagonal element of fU<=0, the matrix is not positive
negative.

1.6.6 QRH

Decompose a (m xn) - matrix A with m >= n.

A = QRH

Q orthogonal (m x n) - matrix, stored in fQ;

R upper triangular (n x n) - matrix, stored in fR;

H (n x n) - Householder matrix, stored through;

fUp n - vector with Householder up’s;

fW n - vector with Householder beta’s.

The decomposition fails if in the formation of reflectors a zero appears, i.e. singularity.

1.6.7 SVD

Decompose a (m x n) - matrix A with m >= n.

A = USVT

U (m x m) orthogonal matrix, stored in fU;

S is diagonal matrix containing the singular values. Diagonal stored in vector fSig which is ordered so that fSig[0]
>= fSig[1] >= ... >= fSig[n-1];

V (n x n) orthogonal matrix, stored in fV.

The singular value decomposition always exists, so the decomposition will (as long as m >= n) never fail. If m < n,
the user should add sufficient zero rows to A, so that m == n. In the SVD, fTol is used to set the threshold on the
minimum allowed value of the singular values: min singular = fTol maxi(Sii).

1.7 Matrix Eigen Analysis

Classes TMatrixDEigen and TMatrixDSymEigen compute eigenvalues and eigenvectors for general dense and symmetric
real matrices, respectively. If matrix A is symmetric, then A = V.D.V T , where the eigenvalue matrix D is diagonal
and the eigenvector matrix V is orthogonal. That is, the diagonal values of D are the eigenvalues, and V.V T = I,
where I - is the identity matrix. The columns of V represent the eigenvectors in the sense that A.V = V.D. If A is
not symmetric, the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex
eigenvalues, a+i*b, in 2-by-2 blocks, [a,b;-b,a]. That is, if the complex eigenvalues look like:


u+ iv
. u− iv
. . a+ ib . . .
. . . a− ib . .
. . . . x .
. y



1.8. SPEED COMPARISONS 17

then D looks like: 
u v
−v u
. . a b . .
. . . −b a .
. . . . x .
. y


This keeps V a real matrix in both symmetric and non-symmetric cases, and A.V = V.D. The matrix V may be badly
conditioned, or even singular, so the validity of the equation A = V.D.V −1 depends upon the condition number of V .
Next table shows the methods of the classes TMatrixDEigen and TMatrixDSymEigen to obtain the eigenvalues and
eigenvectors. Obviously, MatrixDSymEigen constructors can only be called with TMatrixDSym:

Format Output Description
eig.GetEigenVectors () TMatrixD eigenvectors for both TMatrixDEigen and

TMatrixDSymEigen

eig.GetEigenValues () TVectorD eigenvalues vector for TMatrixDSymEigen

eig.GetEigenValues() TMatrixD eigenvalues matrix for TMatrixDEigen

eig.GetEigenValuesRe () TVectorD real part of eigenvalues for TMatrixDEigen

eig.GetEigenValuesIm () TVectorD imaginary part of eigenvalues for
TMatrixDEigen

Below, usage of the eigenvalue class is shown in an example where it is checked that the square of the singular values of
a matrix c are identical to the eigenvalues of cT . c:

const TMatrixD m = THilbertMatrixD(10,10);
TDecompSVD svd(m);
TVectorD sig = svd.GetSig(); sig.Sqr();
// Symmetric matrix EigenVector algorithm
TMatrixDSym mtm(TMatrixDBase::kAtA,m);
const TMatrixDSymEigen eigen(mtm);
const TVectorD eigenVal = eigen.GetEigenValues();
const Bool_t ok = VerifyVectorIdentity(sig,eigenVal,1,1.-e-14);

1.8 Speed Comparisons

Speed of four matrix operations have been compared between four matrix libraries, GSL CLHEP, ROOT v3.10 and ROOT
v4.0. Next figure shows the CPU time for these four operations as a function of the matrix size:

1. A*B The execution time is measured for the sum of A * Bsym, Bsym* A and A * B. Notice the matrix_size3
dependence of execution time. CLHEP results are hampered by a poor implementation of symmetric matrix
multiplications. For instance, for general matrices of size 100x100, the time is 0.015 sec. while A * Bsym takes
0.028 sec and Bsym* A takes 0.059 sec.

Both GSL and ROOT v4.0 can be setup to use the hardware-optimized multiplication routines of the BLAS libraries. It
was tested on a G4 PowerPC. The improvement becomes clearly visible around sizes of (50x50) were the execution
speed improvement of the Altivec processor becomes more significant than the overhead of filling its pipe.

2. A−1 Here, the time is measured for an in-place matrix inversion.

Except for ROOT v3.10, the algorithms are all based on an LUfactorization followed by forward/back-substitution. ROOT
v3.10 is using the slower Gaussian elimination method. The numerical accuracy of the CLHEP routine is poor:

• up to 6x6 the numerical imprecise Cramer multiplication is hard-coded. For instance, calculating U=H*H-1, where
H is a (5x5) Hilbert matrix, results in off-diagonal elements of 10−7 instead of the 10−13 using an LUaccording to
Crout.

18 CHAPTER 1. LINEAR ALGEBRA IN ROOT

• scaling protection is non-existent and limits are hard-coded, as a consequence inversion of a Hilbert matrix for
sizes>(12x12) fails. In order to gain speed the CLHEP algorithm stores its permutation info of the pivots points
in a static array, making multi-threading not possible.

GSL uses LU decomposition without the implicit scaling of Crout. Therefore, its accuracy is not as good. For instance
a (10x10) Hilbert matrix has errors 10 times larger than the LU Crout result. In ROOT v4.0, the user can choose
between the Invert() and IvertFast() routines, where the latter is using the Cramer algorithm for sizes<7x7. The
speed graph shows the result for InvertFast().

3. A*x=b the execution time is measured for solving the linear equation A*x=b. The same factorizations are used
as in the matrix inversion. However, only 1 forward/back-substitution has to be used instead of msize as in
the inversion of (msize x msize) matrix. As a consequence the same differences are observed but less amplified.
CLHEP shows the same numerical issues as in step the matrix inversion. Since ROOT3.10 has no dedicated
equation solver, the solution is calculated through x=A-1*b. This will be slower and numerically not as stable.

4. (AT ∗ A)−1 ∗ AT timing results for calculation of the pseudo inverse of matrix a. The sequence of operations
measures the impact of several calls to constructors and destructors in the C++ packages versus a C library like
GSL.

Figure 1.2: Speed comparison between the different matrix packages

	Linear Algebra in ROOT
	Overview of Matrix Classes
	Matrix Properties
	Accessing Properties
	Setting Properties

	Creating and Filling a Matrix
	Matrix Operators and Methods
	Arithmetic Operations between Matrices
	Arithmetic Operations between Matrices and Real Numbers
	Comparisons and Boolean Operations
	Matrix Norms
	Miscellaneous Operators

	Matrix Views
	View Operators
	View Examples

	Matrix Decompositions
	Tolerances and Scaling
	Condition number
	LU
	Bunch-Kaufman
	Cholesky
	QRH
	SVD

	Matrix Eigen Analysis
	Speed Comparisons

