Contents

1.1
1.2
1.3

14

1.5

1.6
1.7

1.8

1 Math Libraries in ROOT 3
MathCore Library o e e e e 3
MathMore Library 0 o o o e e e e 4
TMath o e 5
1.3.1 Numerical Constants e 5
1.3.2 Elementary Functions e 6
1.3.3 Statistic Functions Operating on Arrays.. 6
1.3.4 Special and Statistical Functions. L Lo 6
Random Numbers o . o e 7
1.4.1 TRandom e e 7
1.4.2 TRandoml e e e 7
1.4.3 TRandom2 e e 7
1.4.4 TRandom3 L e e e 7
1.4.5 Seeding the Generators L e 8
1.4.6 Examples of Using the Generators o 8
1.4.7 Random Number Distributions 8
1.4.8 UNURAN . . . 9
1.4.9 Performances of Random Numbers L 10
Mathematical Functions oL 10
1.5.1 Special Functions in MathCore 11
1.5.2 Special Functions in MathMore 11
1.5.3 Probability Density Functions (PDF) 13
1.5.4 Cumulative Distribution Functions (CDF) 13
Numerical Algorithms 14
ROOT::Math Function interfaces 14
1.7.1 One-dimensional Function Interfaces 14
1.7.2 Multi-dimensional Function Interfaces oL 15
1.7.3 Parametric Function Interfaces 17
1.7.4 Wrapper Functions o e 18
Numerical Integration e 21
1.8.1 Integration of One-dimensional Functions 22
1.8.2 Ome-dimensional Integration Algorithms L. 23
1.8.3 Multi-dimensional Integration L oL 25
Function Derivation o . L e 26

1.9

CONTENTS

1.10 Numerical Minimization o e 27
1.10.1 Omne-Dimensional Minimization 27
1.10.2 Multi-Dimensional Minimization 28

1.11 ROOT Finder Algorithms 28

1.12 Generic Vectors for 2, 3 and 4 Dimensions (GenVector) L 28
1.12.1 Main Characteristics o e 29
1.12.2 Example: 3D Vector Classes o e 31
1.12.3 Example: 3D Point Classes e 33
1.12.4 Example: LorentzVector Classes it e 35
1.12.5 Example: Vector Transformations 37
1.12.6 Example with External Packages 39

1.13 Linear Algebra: SMatrix Package L 40
1.13.1 Example: Vector Class (SVector) oo i e 40
1.13.2 Example: Matrix Class (SMatrix) o 41
1.13.3 Example: Matrix and Vector Functions and Operators 44
1.13.4 Matrix and Vector Functions e 45

1.14 ROOT Statistics Classes o i e e 46
1.14.1 Classes for Computing Limits and Confidence Levels 46
1.14.2 Specialized Classes for Fitting 46

1.14.3 Multi-variate Analysis Classes 0 e 46

Chapter 1

Math Libraries in ROOT

The aim of Math libraries in ROOT is to provide and to support a coherent set of mathematical and statistical functions.
The latest developments have been concentrated in providing first versions of the MathCore and MathMore libraries,
included in ROOT v5.08. Other recent developments include the new version of MINUIT, which has been re-designed
and re-implemented in the C++ language. It is integrated in ROOT. In addition, an optimized package for describing
small matrices and vector with fixed sizes and their operation has been developed (SMatrix). The structure is shown

in the following picture.

b

Histogram library
=T ,,

) (Statistical Libraries

New Fitter New Stat Tools § SRR
(Significance,
s MLP
Minuit2 -:

(OO Minuit) Extra Libraries

Unuran

Fitting and Minimization

Limit/CL etc..)

FETW

Spectrum Jlf Foam J
2

S ’

(Linear Algebra)
e

\ /

g MathCore

I fi
Functors & interfaces Physrcs Vectors

-

~ MathMore

Random Numbers
Extra algorithms

Basic algorithms Extra Math functions
Math functions TMath [GSL }
J

. S

N

Figure 1.1: Math libraries and packages

1.1 MathCore Library

MathCore provides a collection of functions and C++ classes for numerical computing. This library includes only the
basic mathematical functions and algorithms and not all the functionality required by the physics community. A more
advanced mathematical functionality is provided by the MathMore library. The current set of included classes, which
are provided in the ROOT: :Math namespace are:

o Basic special functions like the gamma, beta and error function.

o Mathematical functions used in statistics, such as the probability density functions and the cumulative distributions
functions (lower and upper integral of the pdf’s).

4 CHAPTER 1. MATH LIBRARIES IN ROOT

o Generic function classes and interfaces for evaluating one-dimensional (ROOT: :Math: : IBaseFunctiononeDim)
and multi-dimensional functions (ROOT: :Math: : IBaseFunctionMultiDim) and parametric function interfaces
for evaluating functions with parameters in one (ROOT::Math::IParametricFunctionOneDim) or multi di-
mensions (ROOT: :Math: : IParametricFunctionMultiDim). A set of user convenient wrapper classes, such as
ROOT: :Math: :Functor is provided for wrapping user-classes in the needed interface, required to use the algorithms
of the ROOT Mathematical libraries.

e Numerical algorithms interfaces and in same cases default implementations for:

— numerical integration;

— numerical differentiation;

— one dimensional root-finding;

— one-dimensional minimization;

— multi-dimensional minimization (only the ROOT: :Math: :Minimizer interface)

o Fitting classes: set of classes for fitting generic data sets. These classes are provided in the namespace ROOT: :Fit.
They are describing separately in the Fitting chapter.

The sets described above is independednt of ROOT libraries and can be built as a set of standalone classes. In addition
MathCore provides the following classes (depending on ROOT [libCore library):

e TMath: namespace with mathematical functions and basic function algorithms.

e TComplex: class for complex numbers.

e Random classes: the base class TRandom and the derived classes TRandom1, TRandom2 and TRandom3, implementing
the pseudo-random number generators.

A detailed description for all MathCore classes is available in the Doxygen online reference documentation.

1.2 MathMore Library

The MathMore library provides an advanced collection of functions and C++ classes for numerical computing. This is
an extension of the functionality provided by the MathCore library. The MathMore library is implemented wrapping in
C++ the GNU Scientific Library (GSL). The current set, provided in the ROOT: :Math namespace include:

o Special mathematical functions (like Bessel functions, Legendre polynomials, etc..)

¢ Additional mathematical functions used in statistics such as probability density functions, cumulative distributions
functions and their inverse which are not in MathCore but present in the GSL library.

e Numerical algorithms for one dimensional functions based on implementation of the GNU Scientific Library
(GSL):

e Numerical integration classes implementing the interface ROOT: :Math: :Integrator which is based on the
Adaptive integration algorithms of QUADPACK

e Numerical differentiation via ROOT: :Math: :GSLDerivator

e Root finder implementing the ROOT: :Math: :RootFinder interface, using different solver algorithms from GSL
o one-dimensional Minimization implementing the interfaceR0O0OT: :Math: : IMinimizer1D

o Interpolation via ROOT: :Math: : Interpolation. All the GSL interpolation types are supported

e Function approximation based on Chebyshev polynomials via the class ROOT: :Math: : Chebyshev

¢ Random number generators and distributions based on GSL using the ROOT: :Math: :Random<Engine_type>
class.

e Polynomial evaluation and root solvers

1.3. TMATH 5

The mathematical functions are implemented as a set of free functions in the namespace ROOT: :Math. The naming
used for the special functions is the same proposed for the C++ standard (see C++ standard extension proposal
document).The MathMore library is implemented wrapping in C+4 the GNU Scientific Library (). Building MathMore
requires a version of GSL larger or equal 1.8. The source code of MathMore is distributed under the GNU General
Public License.

MathMore (and its ROOT Cling dictionary) can be built within ROOT whenever a GSL library is found in the system.
The GSL library and header file location can be specified in the ROOT configure script, by doing:

./configure --with-gsl-incdir=... --with-gsl-libdir=...

MathMore can be built also a stand-alone library (without requiring ROOT) downloding the tar file from the Web at
this link. In this case the library will not contain the dictionary information and therefore cannot be used interactively

More information on the classes and functions present in MathMore is available in the online reference documentation.

1.3 TMath
In the namespace, TMath, a collection of free functions is provided for the following functionality:

o numerical constants (like pi, e, h, etc.);

e trigonometric and elementary mathematical functions;

o functions to work with arrays and collections (e.g. functions to find min and max of arrays);
« statistic functions to work on array of data (e.g. mean and RMS of arrays);

o algorithms for binary search/hashing sorting;

o special mathematical functions like Bessel, Erf, Gamma, etc.;

o statistical functions, like common probability and cumulative (quantile) distributions

e geometrical functions.

For more details, see the reference documentation of TMath at http://root.cern.ch/root/htmldoc/TMath.html.

1.3.1 Numerical Constants

TMath offers a wide range of constants in the form of inline functions. Notice that they are not defined as C/C++
preprocessor macros. This set of functions includes one or more definitions for the following constants:

o Pi.

o Base of natural logarithm.

o Velocity of light.

o Gravitational constant (G).

o Standard acceleration of gravity (g).
e Standard acceleration of Gravity.

e Plank’s contant.

e Boltzmann’s and Steffan-Boltzmann’s constants.
o Avogadro’s number.

e Universal gas constant.

e Molecular weight of dry air.

e Dry air gas constant.

e FEuler-Mascheroni Constant.

e Elementary charge.

http://root.cern.ch/root/htmldoc/TMath.html

6 CHAPTER 1. MATH LIBRARIES IN ROOT

1.3.2 Elementary Functions

A set of miscellaneous elementary mathematical functions is provided along with a set of basic trigonometrical functions.
Some of this functions refer to basic mathematical functions like the square root, the power to a number of the calculus
of a logarithm, while others are used for number treatment, like rounding.

Although there are some functions that are not in the standard C math library (like Factorial), most of the functionality
offered here is just a wrapper of the first ones. Nevertheless, some of the them also offer some security checks or a
better precision, like the trigonometrical functions ASin(x), ACos(x) or ATan(x).

“{.cpp} // Generate a vector with 10 random numbers vector v(10); std::generate(v.begin(), v.end(), rand);

// Find the minumum value of the vector (iterator version) vector::iterator it; it = TMath::LocMin(v.begin(), v.end());
std::cout << *it << std::endl;

// The same with the old-style version int i; i = TMath::LocMin(10, &v[0]); std::cout << v[i] << std::endl; “¢
Another example of these functions can be found in SROOTSYS/tutorials/permute.C.

1.3.3 Statistic Functions Operating on Arrays.

This set of functions processes arrays to calculate:

e Mean.

e Median.

¢ Geometrical mean.

o Sample Standard Deviation (RMS).
e The kth smallest element.

These functions, as the array algorithms, have two different interfaces. An old-style one where the size of the array is
passed as a first argument followed by a pointer to the array itself and a modern C++-like interface that receives two
iterators to it.

““{.cpp} // Size of the array const int n = 100;

// Vector v with random values vector v(n); std::generate(v.begin(), v.end(), rand);

/] Weight vector w vector w(n); std::fill(w.begin(), w.end, 1);

double mean;

// Calculate the mean of the vector // with iterators mean = TMath::Mean(v.begin(), v.end());

// old-style mean = TMath::Mean(n, &v[0]);

// Calculate the mean with a weight vector // with iterators mean = TMath::Mean(v.begin(), v.end(), w.begin());
// old-style mean = TMath::Mean(n, &v[0], &w[0]);

1.3.4 Special and Statistical Functions.

TMath also provides special functions like Bessel, Error functions, Gamma or similar plus statistical mathematical
functions, including probability density functions, cumulative distribution and their inverse.

The majority of the special functions and the statitical distributions are provided also as free functions in the ROOT: :Math
namespace. See one of the next paragraph for the complete description of the functions provided in ROOT: :Math. The
user is encourage to use those versions of the algorithms rather than the ones in TMath.

Functions not present in ROOT: :Math and provided only by TMath are:

e Special functions:

e DiLogarithm

e Struve

o Statistical functions:

e KolmogorovProb

1.4. RANDOM NUMBERS 7

« Voigt function
o LaplaceDist

o Vavilov

The example tutorial GammaFun.C and mathBeta.C in $R00TSYS/tutorials shows an example of use of the ROOT: :Math
special functions

1.4 Random Numbers

In ROOT pseudo-random numbers can be generated using the TRandom classes. 4 different types exist: TRandom,
TRandom1, TRandom2 and TRandom3. All they implement a different type of random generators. TRandom is the base
class used by others. It implements methods for generating random numbers according to pre-defined distributions,
such as Gaussian or Poisson.

1.4.1 TRandom

Pseudo-random numbers are generated using a linear congruential random generator. The multipliers used are the
same of the BSD rand() random generator. Its sequence is:

Tni1 = (ax, + ¢) mod m with a = 1103515245, ¢ = 12345 and m = 231,

This type of generator uses a state of only a 32 bit integer and it has a very short period, 23! ,about 10, which can be
exhausted in just few seconds. The quality of this generator is therefore BAD and it is strongly recommended to NOT
use for any statistical study.

1.4.2 TRandoml

This random number generator is based on the Ranlux engine, developed by M. Liisher and implemented in Fortran by
F. James. This engine has mathematically proven random proprieties and a long period of about 10'7!. Various luxury
levels are provided (1,2,3,4) and can be specified by the user in the constructor. Higher the level, better random
properties are obtained at a price of longer CPU time for generating a random number. The level 3 is the default,
where any theoretical possible correlation has very small chance of being detected. This generator uses a state of 24
32-bits words. Its main disadvantage is that is much slower than the others (see timing table). For more information
on the generator see the following article:

e F.James, “RANLUX: A Fortran implementation of the high quality pseudo-random number generator of Liischer”,
Computer Physics Communication, 79 (1994) 111.

1.4.3 TRandom?2

This generator is based on the maximally equidistributed combined Tausworthe generator by L’Ecuyer. It uses only 3
32-bits words for the state and it has a period of about 1025, It is fast and given its small states, it is recommended for
applications, which require a very small random number size. For more information on the generator see the following
article:

e P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65,
213 (1996), 203-213.

1.4.4 TRandom3

This is based on the Mersenne and Twister pseudo-random number generator, developed in 1997 by Makoto Matsumoto
and Takuji Nishimura. The newer implementation is used, referred in the literature as MT19937. It is a very fast and
very high quality generator with a very long period of 106°°°, The disadvantage of this generator is that it uses a state
of 624 words. For more information on the generator see the following article:

e M. M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-
random number generator”, ACM Trans. on Modeling and Computer Simulations, 8, 1, (1998), 3-20.

TRandom3 is the recommended random number generator, and it is used by default in ROOT using the global gRandom
object (see chapter gRandom).

8 CHAPTER 1. MATH LIBRARIES IN ROOT

1.4.5 Seeding the Generators

The seeds for the generators can be set in the constructor or by using the SetSeed method. When no value is given
the generator default seed is used, like 4357 for TRandom3. In this case identical sequence will be generated every time
the application is run. When the 0 value is used as seed, then a unique seed is generated using a TUUID, for TRandom1,
TRandom2 and TRandom3. For TRandom the seed is generated using only the machine clock, which has a resolution of
about 1 sec. Therefore identical sequences will be generated if the elapsed time is less than a second.

1.4.6 Examples of Using the Generators

The method Rndm() is used for generating a pseudo-random number distributed between 0 and 1 as shown in the
following example:

// use default seed

// (same random numbers will be generated each time)

TRandom3 r; // generate a number in interval J0,1] (0 is excluded)
r.Rndm();

double x[100];

r.RndmArray(100,x); // generate an array of random numbers in]0,1]
TRandom3 rdm(111); // construct with a user-defined seed

// use 0: a unique seed will be automatically generated using TUUID
TRandoml r1(0);

TRandom2 r2(0);

TRandom3 r3(0);

// seed generated using machine clock (different every second)
TRandom r0(0);

1.4.7 Random Number Distributions

The TRandom base class provides functions, which can be used by all the other derived classes for generating random
variates according to predefined distributions. In the simplest cases, like in the case of the exponential distribution, the
non-uniform random number is obtained by applying appropriate transformations. In the more complicated cases,
random variates are obtained using acceptance-rejection methods, which require several random numbers.

TRandom3 r;
// generate a gausstian distributed number with:
// mu=0, sigma=1 (default values)
double x1 = r.Gaus();
double x2 = r.Gaus(10,3); // use mu = 10, sigma = 3;

The following table shows the various distributions that can be generated using methods of the TRandom classes. More
information is available in the reference documentation for TRandom. In addition, random numbers distributed according
to a user defined function, in a limited interval, or to a user defined histogram, can be generated in a very efficient way
using TF1:: GetRandom() or TH1: : GetRandom().

Distributions Description
Double_t Uniform(Double_t x1,Double_t x2) Uniform random numbers between x1,x2
Double_t Gaus(Double_t mu,Double_t sigma) Gaussian random numbers.
Default values: mu=0, sigma=1
Double_t Exp(Double_t tau) Exponential random numbers with mean tau.
Double_t Landau(Double_t mean,Double_t s igma) Landau distributed random numbers.
Default values: mean=0, sigma=1
Double_t BreitWigner (Double_t mean, Breit-Wigner distributed random numbers.
Double_t gamma) Default values mean=0, gamma=1
Int_t Poisson(Double_t mean) Poisson random numbers

Double_t PoissonD(Double_t mean)

Int_t Binomial(Int_t ntot,Double_t prob) Binomial Random numbers

1.4. RANDOM NUMBERS 9

Circle(Double_t &x,Double_t &y,Double_t r) Generate a random 2D point (x,y) in
a circle of radius r
Sphere(Double_t &x,Double_t &y, Generate a random 3D point (x,y,2z) in
Double_t &z,Double_t r) a sphere of radius r
Rannor (Double_t &a,Double_t &b) Generate a pair of Gaussian random

numbers with mu=0 and sigma=1

1.4.8 UNURAN

An interface to a new package, UNU.RAN, (Universal Non Uniform Random number generator for generating
non-uniform pseudo-random numbers) was introduced in ROOT v5.16.

UNU.RAN is an ANSI C library licensed under GPL. It contains universal (also called automatic or black-box)
algorithms that can generate random numbers from large classes of continuous (in one or multi-dimensions), discrete
distributions, empirical distributions (like histograms) and also from practically all standard distributions. An extensive
online documentation is available at the UNU.RAN Web Site http://statmath.wu-wien.ac.at/unuran/

The ROOT class TUnuran is used to interface the UNURAN package. It can be used as following:

o With the UNU.RAN native, string API for pre-defined distributions (see UNU.RAN documentation for the
allowed string values at http://statistik.wu-wien.ac.at/unuran/doc/unuran.html):

TUnuran unr;

// initialize unuran to generate normal random numbers using
// a "arou" method

unr.Init("normal ()", "method=arou");

// sample distributions N times (generate N random numbers)
for (int i = 0; i<N; ++i)
double x = unr.Sample();

e For continuous 1D distribution object via the class TUnuranContDist that can be created for example from a TF1
function providing the pdf (probability density function) . The user can optionally provide additional information
via TUnuranContDist: :SetDomain(min,max) like the domain() for generating numbers in a restricted region.

// 1D case: create a distribution from two TF1 object
// pointers pdfFunc
TUnuranContDist dist(pdfFunc);
// initialize unuran passing the distribution and a string
// defining the method
unr.Init(dist, "method=hinv");
// sample distribution N times (generate N random numbers)
for (int 1 = 0; i < N; ++i)
double x = unr.Sample();

e For multi-dimensional distribution via the class TUnuranMultiContDist, which can be created from a the
multi-dimensional pdf.

// Multi- dimensional case from a TF1 (TF2 or TF3) objects
TUnuranMultiContDist dist(pdfFuncMulti);
// the recommended method for multi-dimensional function ts "hitro"
unr.Init(dist,"method=hitro");
// sample distribution N times (generate N random numbers)
double x[NDIM];
for (int i = 0; i<N; ++i)
unr.SampleMulti(x) ;

e For discrete distribution via the class TUnuranDiscrDist, which can be initialized from a TF1 or from a vector of
probabilities.

http://statmath.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/doc/unuran.html

10

CHAPTER 1. MATH LIBRARIES IN ROOT

// Create distribution from a vector of probabilities
double pv[NSize]l = {0.1,0.2,...};
TUnuranDiscrDist dist(pv,pv+NSize);
// the recommended method for discrete distribution s
unr.Init(dist, "method=dgt");
// sample N times (generate N random numbers)
for (int i = 0; 1 < N; ++i)
int k = unr.SampleDiscr();

e For empirical distribution via the class TUnuranEmpDist. In this case one can generate random numbers from a
set of un-bin or bin data. In the first case the parent distribution is estimated by UNU.RAN using a gaussian
kernel smoothing algorithm. The TUnuranEmpDist distribution class can be created from a vector of data or from
TH1 (using the bins or from its buffer for un-binned data).

// Create distribution from a set of data
// vdata ts an std::vector containing the data
TUnuranEmpDist dist(vdata.begin(),vdata.end());
unr.Init(dist);
// sample N times (generate N random numbers)
for (int i = 0; i<N; ++i)

double x = unr.Sample();

o For some predefined distributions, like Poisson and Binomial, one can use directly a function in the TUnuran
class. This is more convenient in passing distribution parameters than using directly the string interface.

TUnuran unr;

// Initialize unuran to generate nmormal random numbers from the
// Poisson distribution with parameter mu

unr.InitPoisson(mu);

// Sample distributions N times (generate N random numbers)
for (int i = 0; i<N; ++i)
int k = unr.SampleDiscr();

Functionality is also provided via the C++ classes for using a different random number generator by passing a TRandom
pointer when constructing the TUnuran class (by default the ROOT gRandom is passed to UNURAN).

1.4.9 Performances of Random Numbers

Here are the CPU times obtained using the four random classes on an 1xplus machine with an Intel 64 bit architecture
and compiled using gce 3.4:

1

TRandom (ns/call) TRandoml (ns/call) TRandom2 (ns/call) TRandom3 (ns/call)

Rndm () . . 6 9
Gaus () 31 161 35 42
Rannor () 116 216 126 130
Poisson(m-10) 147 1161 162 239
Poisson(m=10) 80 294 89 99
UNURAN

.5 Mathematical Functions

The mathematical functions are present in both MathCore and MathMore libraries. All mathematical functions are
implemented as free functions in the namespace ROOT: :Math. The most used functions are in the MathCore library
while the others are in the MathMore library. The functions in MathMore are all using the implementation of the GNU
Scientific Library (GSL). The naming of the special functions is the same defined in the C4++ Technical Report on

1.5. MATHEMATICAL FUNCTIONS 11

Standard Library extensions. The special functions are defined in the header file Math/SpecFunc.h.

1.5.1 Special Functions in MathCore

e ROOT: :Math: :beta(double x,double y) -evaluates the beta function:

I'(@)C(y)

e double ROOT::Math::erf(double x) - evaluates the error function encountered in integrating the normal

distribution:
erf(x /
\/>

e double ROOT::Math::erfc(double x) - evaluates the complementary error function:

erfe(x) =1—erf(z \F/ e dt

e double ROOT::Math: :tgamma(double x) - calculates the gamma function:

I'(x) :/ t" e tdt
0

1.5.2 Special Functions in MathMore

e double ROOT::Math::assoc_legendre(unsigned 1,unsigned m,double x) -computes the associated Legen-
dre polynomials (with m>=0, 1>=m and |x|<1):

B () = (1— a2z 9

P
dx™ ()

e double ROOT::Math::comp_ellint_1(double k) - calculates the complete elliptic integral of the first kind
(with 0 < k* < 1:
K(k) =

w/2
F(k,7/2) :/ LQ
0 V1 —Ek2sin“0

e double ROOT::Math::comp_ellint_2(double k) - calculates the complete elliptic integral of the second kind
(with 0 < k% < 1):

/2
E(k) = E(k,7/2) = / V1 — k2 sin? 6d6
0

e double ROOT::Math::comp_ellint_3(double n,double k) - calculates the complete elliptic integral of the

third kind (with 0 < k? < 1):
w/2
I(n, k,7/2) :/ d0
0 (1 —-nsin?0)\/1—k2sin?0

o double ROOT::Math::conf_hyperg(double a,double b,double z) - calculates the confluent hyper-geometric
functions of the first kind: -
b
Fi(a;b;2)

e double ROOT::Math::conf_hypergU(double a,double b,double z) - calculates the confluent hyper-geometric
functions of the second kind, known also as Kummer function of the second type. It is related to the confluent
hyper-geometric function of the first kind:

F =0 Fi(a—b+1,2—
Ula,b, 2) = ™ [1 1(a, b, z) 217 Fi(a—b+1, b, z)

sinwh [T(a—b+1) I'(a)

e double ROOT::Math::cyl_bessel_i(double nu,double x) - calculates the modified Bessel function of the first
kind, also called regular modified (cylindrical) Bessel function:
()u+2k

L(z)=i" SR bt/
v(@) =7 — kKIT(v+k+1)

12

CHAPTER 1. MATH LIBRARIES IN ROOT

double ROOT::Math::cyl_bessel_j(double nu,double x) - calculates the (cylindrical) Bessel function of the
first kind, also called regular (cylindrical) Bessel function:
00 1)u+2k

Z kT u+k+ 1)

=0

double ROOT: :Math::cyl_bessel_k(double nu,double x) - calculates the modified Bessel function of the
second kind, also called irregular modified (cylindrical) Bessel function for z > 0, v > 0:

al_,(x)—1,(x) .
. . N Ty for non-integral v
K, (z) = —i**1(J, N = 2 s oo
(z) 5 (J, (ix) + iN(iz)) T Jim 1 — V%wf:(@ for integral v

double ROOT::Math::cyl_neumann(double nu,double x) - calculates the (cylindrical) Bessel function of the
second kind, also called irregular (cylindrical) Bessel function or (cylindrical) Neumann function:

N, (2) = Y () J”CO+;WJ‘”(1) for non-integral v
) =) = _ 1
v v limp — y%ﬂﬂj’“(m for integral v

double ROOT: :Math::ellint_1(double k,double phi) - calculates incomplete elliptic integral of the first kind

(with 0 < k% < 1):
K(k) = F(k,m/2) = /
17k251n

double ROOT: :Math::ellint_2(double k,double phi) - calculates the complete elliptic integral of the second
kind (with 0 < k2 < 1):

/2
E(k) = E(k,7/2) = / V1 — k2 sin? 0d6
0

double ROOT::Math::ellint_3(double n,double k,double phi) - calculates the complete elliptic integral of
the third kind (with 0 < k% < 1):

/2
H(n,k,m):/ —_ -
0 (1—mnsin®0)y/1—k2sin”0

double ROOT: :Math::expint(double x) - calculates the exponential integral:

o -t
Ez‘(:c)z—/ ert

—T

double ROOT::Math: :hyperg(double a,double b,double c,double x) - calculates Gauss’ hyper-geometric
function:

I'(c) i Fla+n)'(b+n)=x

S (D) Metn) ol

n=0

double ROOT::Math::legendre(unsigned 1,double x) - calculates the Legendre polynomials for I > 0, |z| < 1
in the Rodrigues representation:
1 d

Pl(x) 2[[[dI’l(- 1)l

double ROOT: :Math::riemann_zeta(double x) - calculates the Riemann zeta function:
Sope kT for z > 1

((z) = { 9z re—1 gip (%wx_)F(l —z)((1—2) forz<1

double ROOT: :Math: :sph_bessel(unsigned n,double x) - calculates the spherical Bessel functions of the first
kind (also called regular spherical Bessel functions):

) = [3 i s @)

double ROOT: :Math: :sph_neumann(unsigned n,double x) - calculates the spherical Bessel functions of the
second kind (also called irregular spherical Bessel functions or spherical Neumann functions):

(&) = 1) =[5 N o)

1.5. MATHEMATICAL FUNCTIONS 13

1.5.3 Probability Density Functions (PDF)

Probability density functions of various distributions. All the functions, apart from the discrete ones, have the extra
location parameter x0, which by default is zero. For example, in the case of a gaussian pdf, x0 is the mean, mu, of the
distribution. All the probability density functions are defined in the header file Math/DistFunc.h and are part of the
MathCore libraries. The definition of these functions is documented in the reference doc for statistical functions:

double ROOT::Math::beta_pdf (double x,double a, double b);

double ROOT::Math::binomial_ pdf(unsigned int k,double p,unsigned int n);
double ROOT::Math::breitwigner_pdf(double x,double gamma,double x0=0);

double ROOT::Math::cauchy_pdf (double x,double b=1,double x0=0);

double ROOT::Math: :chisquared_pdf (double x,double r,double x0=0);

double ROOT::Math: :exponential_pdf (double x,double lambda,double x0=0);
double ROOT::Math::fdistribution_pdf (double x,double n,double m,double x0=0);
double ROOT::Math::gamma_pdf (double x,double alpha,double theta,double x0=0);
double ROOT::Math::gaussian_pdf (double x,double sigma,double x0=0);

double ROOT::Math::landau_pdf (double x,double s,double x0=0);

double ROOT::Math::lognormal_pdf (double x,double m,double s,double x0=0);
double ROOT::Math: :normal_pdf (double x,double sigma,double x0=0);

double ROOT::Math::poisson_pdf (unsigned int n,double mu);

double ROOT::Math::tdistribution_pdf (double x,double r,double x0=0);

double ROOT::Math::uniform_pdf (double x,double a,double b,double x0=0);

1.5.4 Cumulative Distribution Functions (CDF)

For all the probability density functions, we have the corresponding cumulative distribution functions and their
complements. The functions with extension _cdf calculate the lower tail integral of the probability density function:

while those with the cdf _c extension calculate the upper tail of the probability density function, so-called in statistics
the survival function. For example, the function:

double ROOT::Math::gaussian_cdf (double x,double sigma,double x0=0);

evaluates the lower tail of the Gaussian distribution:

D(z) = /w %e*@’*wo)zﬂ”zdw'
o'e) Vixea

while the function:
double ROOT::Math::gaussian_cdf_c(double x, double sigma, double x0=0);

evaluates the upper tail of the Gaussian distribution:

+oo
D)= [e gy

The cumulative distributions functions are defined in the header file Math/ProbFunc.h. The majority of the CDF’s are
present in the MathCore, apart from the chisquared, fdistribution, gamma and tdistribution, which are in the
MathMore library.

1.5.4.1 Inverse of the Cumulative Distribution Functions(Quantiles)

For almost all the cumulative distribution functions (_cdf) and their complements (_cdf_c) present in the library, we
provide the inverse functions. The inverse of the cumulative distribution function is called in statistics quantile function.
The functions with the extension _quantile calculate the inverse of the cumulative distribution function (lower tail
integral of the probability density function), while those with the quantile_c extension calculate the inverse of the
complement of the cumulative distribution (upper tail integral). All the inverse distributions are in the MathMore
library and are defined in the header file Math/ProbFuncInv.h.

The following picture illustrates the available statistical functions (PDF, CDF and quantiles) in the case of the normal
distribution.

14 CHAPTER 1. MATH LIBRARIES IN ROOT

04F a,l
035k — naemal_pdf [
03} 08¢
GZE:‘ DE-_ il cil
[T morral cdl ¢
02F
015F 0.4
01F 3
3 0.2+
0.05F I
0: L (ATIETETARRRRARRRR RRRRANEE: L 0-) | vl b b e L
54321012 3 4 ; 54321012 3 4 P 0 010.2030405060.70.809 p'l

Figure 1.2: PDF, CDF and quantiles in the case of the normal distribution

1.6 Numerical Algorithms
ROOT provides C++ classes implementing numerical algorithms to solve a wide set of problem, like:

e Evaluation of function derivatives.

e Evaluation of integrals.

o Finding the roots of a function

o Finding the minimum/maximum of a function

In order to use these algorithm the user needs to provide a function. ROOT provides a common way of specifying
them via some interfaces

1.7 ROOT::Math Function interfaces

To get a consistency in the mathematical methods within ROOT, there exists a set of interfaces to define the basic
behaviour of a mathematical function. In order to use the classes presented in this chapter, the mathematical functions
defined by the user must inherit from any of the classes seen in the figure:

IBaseFunctionOneDim IBaseParam IBaseFunctionMultiDim
+operator()(x:double) +SetParaneters (p: double) +operator() (x:double¥)
-DoEval(x:double) [k ZS -DoEval (x:double*)
IGradientFunctionOneDim] . o] B -
IParametricFunctionOneDim IParametricFunctionMultiDim IGradientFunctionMultiDim
+Derivative(x:double) - " -
_DoDerivative(x:double) +operator(){x:double, p:double*) +operator()(x:double*,p:double*) +Derivative(x:double¥, coord:uint)
IParametricGrad FunctionOneDim IParametric GradFunctionMultiDim
+ParameterDerivative(x:double,ipar:uint) +ParametersDerivative(x:double*, ipar:uint)
-DoParameterDerivative(x:double,ipar:uint) -DoParametersDerivative(x:double¥ ipar:uint)

Figure 1.3: ROOT::Math Function interface structure

1.7.1 One-dimensional Function Interfaces

These interfaces are used for numerical algorithms operating only on one-dimensional functions and cannot be applied
to multi-dimensional functions.

1.7. ROOT::MATH FUNCTION INTERFACES 15

For this case the users needs to define a function object which evaluates in one dimension, and the object will have to
derivate from the following;:

e ROOT::Math: :IBaseFunctionOneDim: This class is the most basic function. Provides a method to evaluate the
function given a value (simple double) by implementing double operator() (const double). The user class
defined only needs to reimplement the pure abstract method double DoEval(double x), that will do the work

of evaluating the function at point x.

Example on how to create a class that represents a mathematical function. The user only has to override two methods
from IBaseFunctionOneDim:

#include "Math/IFunction.h"

class MyFunction: public ROOT::Math::IBaseFunctionOneDim

{
double DoEval(double x) const
{
return X*X;
}
ROOT: :Math: : IBaseFunctionOneDim* Clone() const
{
return new MyFunction();
}
};

e ROOT::Math::IGradientFunctionOneDim: Some of the numerical algorithm will need to calculate the derivatives
of the function. In these cases, the user will have to provide the neccesary code for this to happen. The interface
defined in IGradientFunctionOneDim introduced the method double Derivative(double x) that will return
the derivative of the function at the point x. The class inherit by the user will have to implement the abstract
method double DoDerivative(double x), leaving the rest of the class untouched.

Example for implementing a gradient one-dimensional function:
#include "Math/IFunction.h"

class MyGradientFunction: public ROOT::Math::IGradientFunctionOneDim

{
public:
double DoEval(double x) const
{
return sin(x);
}
ROOT: :Math: : IBaseFunctionOneDim* Clone() const
{
return new MyGradientFunction();
}
double DoDerivative(double x) const
{
return -cos(x);
}
};

1.7.2 Multi-dimensional Function Interfaces

The most generic case of a multidimensional function has similar approach. Some examples will be shown next. It
is important to notice, that one dimensional functions can be also implemented through the interfaces that will be
presented here. Nevertheless, the user needs to implement those following the indications of the previous chapter,
for algorithm woring exclusivly on one-dimensional functions. For algorithms working on both one-dimensional and
multi-dimensional functions they should instead use this interface.

16 CHAPTER 1. MATH LIBRARIES IN ROOT

e ROOT: :Math::IBaseFunctionMultiDim: This interface provides the double operator() (const doublex*) that
takes an array of doubles with all the values for the different dimensions. In this case, the user has to provide
the functionality for two different functions: double DoEval(const doublex) and unsigned int NDim(). The
first ones evaluates the function given the array that represents the multiple variables. The second returns the
number of dimensions of the function.

Example of implementing a basic multi-dimensional function:

#include "Math/IFunction.h"

class MyFunction: public ROOT::Math::IBaseFunctionMultiDim

{
public:
double DoEval(const double* x) const
{
return x[0] + sin(x[1]);
}
unsigned int NDim() const
{
return 2;
}
ROOT: :Math: : IBaseFunctionMultiDim* Clone() const
{
return new MyFunction();
}
};

e ROOT::Math::IGradientFunctionMultiDim: This interface offers the same functionality as the base function
plus the calcualtion of the derivative. It only adds the double Derivative(double* x, uint ivar) method for
the user to implement. This method must implement the derivative of the function with respect to the variable
indicated with the second parameter.

Example of implementing a multi-dimensional gradient function

#include "Math/IFunction.h"

class MyGradientFunction: public ROOT::Math::IGradientFunctionMultiDim

{
public:
double DoEval(const double* x) const
{
return x[0] + sin(x[1]);
}
unsigned int NDim() const
{
return 2;
}
ROOT: :Math: : IGradientFunctionMultiDim* Clone() const
{
return new MyGradientFunction();
}

double DoDerivative(const double* x, unsigned int ipar) const
{
if (ipar == 0)
return sin(x[1]);
else

1.7. ROOT::MATH FUNCTION INTERFACES 17

return x[0] + x[1] * cos(x[1]);

};

1.7.3 Parametric Function Interfaces

These interfaces, for evaluating multi-dimensional functions are used for fitting. These interfaces are defined in the
header file Math/IParamFunction.h. See also the documentation of the ROOT: :Fit classes in the Fitting chaper for
more information.

e ROOT: :Math::IParametricFunctionMultiDim: Describes a multi dimensional parametric function. Similarly to
the one dimensional version, the user needs to provide the method void SetParameters(doublex p) as well
as the getter methods const double * Parameters() and uint NPar(). Example of creating a parametric
function:

#include "Math/IFunction.h"
#include "Math/IParamFunction.h"

class MyParametricFunction: public ROOT::Math::IParametricFunctionMultiDim
{
private:

const doublex pars;

public:
double DoEvalPar(const double* x, const doublex p) const
{
return p[0] * x[0] + sin(x[1]) + p[1];
}
unsigned int NDim() const
{
return 2;
}
ROOT: :Math: : IParametricFunctionMultiDim* Clone() const
{
return new MyParametricFunction();
}
const double* Parameters() const
{
return pars;
}
void SetParameters(const doublex p)
{
pars = p;
}
unsigned int NPar() const
{
return 2;
}

};

e ROOT::Math::IParametricGradFunctionMultiDim: Provides an interface for parametric gradient multi-
dimensional functions. In addition to function evaluation it provides the gradient with respect to the parameters,
via the method ParameterGradient (). This interface is only used in case of some dedicated fitting algorithms,
when is required or more efficient to provide derivatives with respect to the parameters. Here is an example:

18 CHAPTER 1. MATH LIBRARIES IN ROOT

#include "Math/IFunction.h"
#include "Math/IParamFunction.h"

class MyParametricGradFunction:
public ROOT::Math::IParametricGradFunctionMultiDim

{
private:
const doublex pars;
public:
double DoEvalPar(const double* x, const doublex p) const
{
return p[0] * x[0] + sin(x[1]) + p[1];
}
unsigned int NDim() const
{
return 2;
}
ROOT: :Math: : IParametricGradFunctionMultiDim* Clone() const
{
return new MyParametricGradFunction() ;
}
const double* Parameters() const
{
return pars;
}
void SetParameters(const doublex p)
{
pars = p;
}
unsigned int NPar() const
{
return 2;
}
double DoParameterDerivative(const double* x, const double* p,
unsigned int ipar) const
{
if (ipar == 0)
return sin(x[1]) + p[1];
else
return p[0] * x[0] + x[1] * cos(x[1]) + pl[i];
}
};

1.7.4 Wrapper Functions

To facilitate the user to insert their own type of function in the needed function interface, helper classes, wrapping the
user interface in the ROOT: :Math function interfaces are provided. this will avoid the user to re-implement dedicated
funcition classes, following the code example shown in the previous paragraphs.

There is one possible wrapper for every interface explained in the previous section. The following table indicates the
wrapper for the most basic ones:

Interface Function Wrapper

ROOT: :Math: :IBaseFunctionOneDim ROOT: :Math: :Functor1D
ROOT: :Math: :IGradientFunctionOneDim ROOT: :Math: :GradFunctori1D

1.7. ROOT::MATH FUNCTION INTERFACES

Interface Function Wrapper

ROOT: :Math: :IBaseFunctionMultiDim ROOT: :Math: :Functor
ROOT: :Math: :IGradientFunctionMultiDim ROOT: :Math: :GradFunctor

Thee functor wrapper are defined in the header file Math/Functor.h.

1.7.4.1 Wrapping One Dimensional Functions

19

The ROOT: :Math: :FunctoriD is used to wrap one-dimensional functions It can wrap all the following types: * A free
C function of type double () (double). * Any C++ callable object implemention double operator() (double).
* A class member function with the correct signature like double Foo::Eval(double). In this case one pass the

object pointer and a pointer to the member function (&Foo: :Eval).
Example:
#include "Math/Functor.h"
class MyFunctioniD {
public:
double operator() (double x) const {
return X*X;

3

double Eval(double x) const { return x+x; }

};

double freeFunctioniD(double x) {
return 2%x;

}
int main()
{
// wrapping a free function
ROOT: :Math: :Functor1lD f1(&freeFunctionlD);
MyFunctionlD myf1;
// wrapping a function object implementing operator()
ROOT: :Math: :FunctorlD £f2(myfl);
// wrapping a class member function
ROOT: :Math: :Functor1D f£3(&myfl,&MyFunctioniD: :Eval);
cout << f1(2) << endl;
cout << £2(2) << endl;
cout << f3(2) << endl;
return O;
}

1.7.4.2 Wrapping One Dimensional Gradient Functions

The ROOT: :Math: : GradFunctor1D class is used to wrap one-dimensional gradient functions. It can be constructed
in three different ways: * Any object implementing both double operator() (double) for the function evaluation
and double Derivative(double) for the function derivative. * Any object implementing any member function like
Foo: :XXX(double) for the function evaluation and any other member function like Foo::YYY(double) for the
derivative. * Any two function objects implementing double operator() (double) . One object provides the

20 CHAPTER 1. MATH LIBRARIES IN ROOT

function evaluation, the other the derivative. One or both function object can be a free C function of type double
() (double).

1.7.4.3 Wrapping Multi-dimensional Functions

The class ROOT: :Math: :Functor is used to wrap in a very simple and convenient way multi-dimensional function
objects. It can wrap all the following types: * Any C++ callable object implementing double operator() (const
double *). * A free C function of type double () (const double *). * A member function with the correct
signature like Foo: :Eval(const double *). In this case one pass the object pointer and a pointer to the member
function (&Foo: :Eval).

The function dimension is required when constructing the functor.

Example of using Functor:

#include "Math/Functor.h"
class MyFunction {

public:
double operator() (const double *x) const {
return x[0]+x[1];

}

double Eval(const double * x) const { return x[0]+x[1]; }
};

double freeFunction(const double * x)
{
return x[0]+x[1];

3

int main()

{
// test directly calling the function object
MyFunction myf;

// test from a free function pointer
ROOT: :Math: :Functor f1(&freeFunction,?2);

// test from function object
ROOT: :Math: :Functor f£2(myf,2);

// test from a member function
ROOT: :Math: :Functor £3(&myf,&MyFunction::Eval,2);

double x[] = {1,2};

cout << f1(x) << endl;
cout << f2(x) << endl;
cout << f3(x) << endl;

return O;

1.7.4.4 Wrapping Multi-dimensional Gradient Functions

The class ROOT: :Math: : GradFunctor is used to wrap in a very C++4 callable object to make gradient functions. It
can be constructed in three different way: * From an object implementing both double operator() (const double
*) for the function evaluation and double Derivative(const double *, int icoord) for the partial derivatives.
* From an object implementing any member function like Foo: : XXX (const double *) for the function evaluation and
any member function like Foo: : XXX (const double *, int icoord) for the partial derivatives. * From an function

1.8. NUMERICAL INTEGRATION 21

object implementing double operator() (const double *) for the function evaluation and another function object
implementing double operator() (const double *, int icoord) for the partial derivatives.

The function dimension is required when constructing the functor.

1.7.4.5 Special case: Wrapping TF1 objects in Parametric Function interfaces

In many cases, the user works with the TF1 class. The mathematical library in ROOT provides some solutions to wrap
these into the interfaces needed by other methods. If the desired interface to wrap is one-dimensional, the class to

use is ROOT: :Math: :WrappedTF1. The default constructor takes a TF1 reference as an argument, that will be wrapped
with the interfaces of a ROOT: :Math: : IParametricGradFunctionOneDim. Example:

#include "TF1.h"
#include "Math/WrappedTF1.h"

int main()

{
TF1 £("Sin Function", "sin(x)+y",0,3);
ROOT: :Math: :WrappedTF1 wf1l(f);
cout << f(1) << endl;
cout << wf1(l) << endl;
return O;
}

For a TF1 defining a multidimensional function or in case we need to wrap in a multi-dimensional function interface, the
class to use is ROOT: :Math: :WrappedMultiTF1. Following the usual procedure, setting the TF1 though the constructor,
will wrap it into a ROOT: :Math: : IParametricGradFunctionMultiDim. Example:

#include "TF1.h"
#include "Math/WrappedMultiTF1.h"

int main()

{
TF2 f£("Sin Function", "sin(x) + y",0,3,0,2);
ROOT: :Math: :WrappedMultiTF1 wfl(f);
double x[] = {1,2};

cout << f(x) << endl;
cout << wfl(x) << endl;

return O;

1.8 Numerical Integration

The algorithms provided by ROOT for numerical integration are implemented following the hierarchy shown
in the next image. ROOT::Math::VirtualIntegrator defines the most basic functionality while the specific
behaviours for one or multiple dimensions are implemented in ROOT::Math::VirtualIntegratorOneDim and
ROOT: :Math: :VirtualIntegratorMultiDim. These interfaces define the integrator functionality with abstract meth-
ods to set the function, to compute the integral or to set the integration tolerance. These methods must be implemented
in the concrete classes existing for the different integration algorithms. The user cannot create directly these virtual
integrator interfaces. He needs to create the ROOT: :Math: : IntegratorOneDim class for integrating one-dimensional
functions and ROOT: :Math: : IntegratorMultiDim for multi-dimensional functions. Through the ROOT Plug-In
Manager, the user can initialize ROOT: :Math: : IntegratorOneDim or ROOT: :Math: : IntegratorMultiDim with any of

22 CHAPTER 1. MATH LIBRARIES IN ROOT

the concrete integration classes without dealing with them directly. These two classes provide the same interface as in
VirtualIntegratorOneDim and VirtualIntegratorMultiDim, but with the possibility to choose in the constructor,
which method will be used to perform the integration.

The method to set the function to be integrated, must be of the function interface type described before.
ROOT: :Math: : IBaseFunctionOneDimFunction is used for ROOT::Math::IBaseFunctionMultiDim and The only
difference between the ROOT::Math::IntegratorOneDim and ROOT::Math::IntegratorMultiDim resides in the
dimensionality of that function and some specific that will be seen afterwards for the one dimensional one.

Virtuallntegrator

+5etRelTolerance(double)
+5etAbsTolerance(double)

+Result()
+ErTror()
+5tatus()
VirtualintegratorOneDim VirtualintegratorMultiDim
+5etFunction(f: IBaseFunctionOnelim&, copy:bool) +SetFunction(f: IBaseFunctionMultiDimd)
+Integral(a:double,b:double) +Integral{const double*, const double®)

) T

GaussintegratorOneDim

AdaptivelntegratorMultiDim

GaussLagendrelntegrator

GSLMCIntegrator

G5Lintegrator

Figure 1.4: ROOT::Math Numerical Integrator classes

The rest of the classes shown above in the diagram are the specialized classes provided. Each one implements a
different method that will be explained in detail. It is important to notice that the two grayed classes (the one which
name starts by GSL) are part of the MathMore library. We will later show in more detail the differences between the
implementations.

1.8.1 Integration of One-dimensional Functions

1.8.1.1 Using ROOT: :Math: :IntegratorOneDim

Here is a code example on how to use the ROOT: :Math: : IntegratorOneDim class (note that the class is defined in
the header file Math/Integrator.h). In this example we create different instance of the class using some of the
available algorithms in ROOT. If no algorithm is specified, the default one is used. The default Integrator together

with other integration options such as relative and absolute tolerance, can be specified using the static method of the
ROOT: :Math: : IntegratorOneDimOptions

#include "Math/Integrator.h"
const double ERRORLIMIT = 1E-3;
double f(double x) {

return Xx;

3

double f2(const double * x) {

1.8. NUMERICAL INTEGRATION 23

return x[0] + x[1];

int testIntegrationiD() {

const double RESULT = 0.5;
int status = 0;

// set default tolerances for all integrators
ROOT: :Math: : IntegratorOneDimOptions: : SetDefaultAbsTolerance(1.E-6);
ROOT: :Math: : IntegratorOneDimOptions: :SetDefaultRelTolerance(1.E-6);

ROOT: :Math: :Functor1D wf (&f);

ROOT: :Math: : Integrator ig(ROOT::Math::IntegrationOneDim: :kADAPTIVESINGULAR) ;
ig.SetFunction(wf);

double val = ig.Integral(0,1);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : Integrator ig2(ROO0T: :Math: :IntegrationOneDim: :kNONADAPTIVE) ;
ig2.SetFunction(wf) ;

val = ig2.Integral(0,1);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : Integrator ig3(wf, ROOT::Math::IntegrationOneDim: :kADAPTIVE) ;
val = ig3.Integral(0,1);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : Integrator ig4(ROOT: :Math::IntegrationOneDim: :kGAUSS) ;
ig4.SetFunction(wf) ;

val = igd.Integral(0,1);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : Integrator ig4(ROOT: :Math: :IntegrationOneDim: :kLEGENDRE) ;
ig4.SetFunction(wf) ;

val = igd.Integral(0,1);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

return status;

1.8.2 One-dimensional Integration Algorithms

Here we provide a brief description of the different integration algorithms, which are also implemented as separate
classes. The algorithms can be instantiated using the following enumeration values:

Enumeration name Integrator class

ROOT: :Math: : IntegratorOneDim: : kGAUSS ROOT: :Math: :GaussianIntegrator
ROOT: :Math: :IntegratorOneDim: : KLEGENDRE ROOT: :Math: : :GausLegendrelIntegrator
ROOT: :Math: :Integration: : kNONADAPTIVE ROOT: :Math: : :GSLIntegrator

ROOT: :Math::Integration: :kADAPTIVE ROOT: :Math:::GSLIntegrator

ROOT: :Math: :Integration: :kADAPTIVESINGULAR ROOT::Math:::GSLIntegrator

24 CHAPTER 1. MATH LIBRARIES IN ROOT

1.8.2.1 ROOT::Math:::GaussIntegrator

It uses the most basic Gaussian integration algorithm, it uses the 8-point and the 16-point Gaussian quadrature
approximations. It is derived from the DGAUSS rountine of the CERNLIB by S. Kolbig. This class
Here is an example of using directly the GaussIntegrator class

#include "TF1.h"
#include "Math/WrappedTF1.h"
#include "Math/GaussIntegrator.h"

int main()

{
TF1 £f("Sin Function", "sin(x)", 0, TMath::Pi());
ROOT: :Math: :WrappedTF1 wfl(f);

ROOT: :Math: :GaussIntegrator ig;

ig.SetFunction(wfl, false);
ig.SetRelTolerance(0.001);

cout << ig.Integral(0, TMath::PiOver2()) << endl;

return O;

1.8.2.2 ROOT::Math::GaussLegendrelntegrator

This class implementes the Gauss-Legendre quadrature formulas. This sort of numerical methods requieres that the
user specifies the number of intermediate function points used in the calculation of the integral. It will automatically
determine the coordinates and weights of such points before performing the integration. We can use the example above,
but replacing the creation of a ROOT: :Math: : GaussIntegrator object with ROOT: :Math: :GaussLegendreIntegrator.

1.8.2.3 ROOT::Math::GSLIntegrator

This is a wrapper for the QUADPACK integrator implemented in the GSL library. It supports several integration
methods that can be chosen in construction time. The default type is adaptive integration with singularity applying a
Gauss-Kronrod 21-point integration rule. For a detail description of the GSL methods visit the GSL user guide This
class implements the best algorithms for numerical integration for one dimensional functions. We encourage the use it
as the main option, bearing in mind that it uses code from the GSL library, wich is provided in the MathMore library
of ROOT.

The interface to use is the same as above. We have now the possibility to specify a different integration algorithm in
the constructor of the ROOT: :Math: : GSLIntegrator class.

ROOT: :Math: :GSLIntegrator ig(ROOT: :Math::Integration: :kADAPTIVE, ROOT::Math::Integration::kGAUSS51); //
ig.SetRelTolerance(l.E-6); // set relative tolerance
ig.SetAbsTolerance(1.E-6); // set absoulte tolerance

The algorithm is controlled by the given absolute and relative tolerance. The iterations are continued until the following
condition is satisfied
absErr <= max(epsAbs, epsRel x Integral)

Where absErr is an estimate of the absolute error (it can be retrieved with GSLIntegrator: :Error()) and Integral is
the estimate of the function integral (it can be obtained with GSLIntegrator: :Result())

The possible integration algorithm types to use with the GSLIntegrator are the following. More information is provided
in the GSL users documentation. * ROOT: :Math: : Integration: :kKNONADAPTIVE : based on gsl_integration_qng. It
is a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscissae to sample the integrand at a maximum
of 87 points. It is provided for fast integration of smooth functions. * ROOT: :Math: : Integration: : kADAPTIVE: based
on gsl_integration_qgag. It is an adaptiva Gauss-Kronrod integration algorithm, the integration region is divided
into subintervals, and on each iteration the subinterval with the largest estimated error is bisected. It is possible to
specify the integration rule as an extra enumeration parameter. The possible rules are * Integration: :kGAUSS15

1.8. NUMERICAL INTEGRATION 25

15 points Gauss-Konrod rule (value = 1) * Integration::kGAUSS21 : 21 points Gauss-Konrod rule (value
= 2) * Integration::kGAUSS31 : 31 points Gauss-Konrod rule (value = 3) * Integration::kGAUSS41 : 41
points Gauss-Konrod rule (value = 4) * Integration::kGAUSS51 : 51 points Gauss-Konrod rule (value = 5) *
Integration: :kGAUSS61 : 61 points Gauss-Konrod rule (value = 6) The higher-order rules give better accuracy for
smooth functions, while lower-order rules save time when the function contains local difficulties, such as discontinuities.
If no integration rule is passed, the 31 points rule is used as default.

e ROOT::Math::Integration::kADAPTIVESINGULAR: based on gsl_integration_qags. It is an integration type
which can be used in the case of the presence of singularities.It uses the Gauss-Kronrod 21-point integration rule.
This is the default algorithm

Note that when using the common ROOT::Math::IntegratorOneDIm class the enumeration type defining the
algorithm must be defined in the namespace ROOT: :Math::IntegrationOneDim (to distinguish from the multi-
dimensional case) and the rule enumeration (or its corresponding integer) can be passed in the constructor of the
ROOT: :Math: :IntegratorOneDIm.

1.8.3 Multi-dimensional Integration

The multi-dimensional integration algorithm should be applied to functions with dimension larger than one. Adaptive
multi-dimensional integration works for low function dimension, while MC integration can be applied to higher
dimensions.

1.8.3.1 Using RO0T: :Math: :IntegratorMultiDim

Here is a code example on how to use the ROOT: :Math: : IntegratorOneDim class (note that the class is defined in the
header file Math/Integrator.h). In this example we create different instance of the class using some of the available
algorithms in ROOT.

#include "Math/IntegratorMultiDim.h"
#include "Math/Functor.h"

double f2(const double * x) {
return x[0] + x[1];

}
int testIntegrationMultiDim() {
const double RESULT =

1
const double ERRORLIMIT
int status = 0;

.0;
= 1E-3;

ROOT: :Math: :Functor wf(&f2,2);
double a[2] = {0,0};
double b[2] = {1,1};

ROOT: :Math: :IntegratorMultiDim ig(ROOT: :Math::IntegrationMultiDim: :kADAPTIVE) ;
ig.SetFunction(wf) ;

double val = ig.Integral(a,b);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : IntegratorMultiDim ig2(ROOT: :Math::IntegrationMultiDim: :kVEGAS) ;
ig2.SetFunction(wf) ;

val = ig2.Integral(a,b);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : IntegratorMultiDim ig3(wf,RO0T: :Math::IntegrationMultiDim: :kPLAIN) ;
val = ig3.Integral(a,b);
std::cout << "integral result is " << val << std::endl;

26 CHAPTER 1. MATH LIBRARIES IN ROOT

status += std::fabs(val-RESULT) > ERRORLIMIT;

ROOT: :Math: : IntegratorMultiDim ig4(wf,RO0T: :Math::IntegrationMultiDim: :kMISER);
val = igd.Integral(a,b);

std::cout << "integral result is " << val << std::endl;

status += std::fabs(val-RESULT) > ERRORLIMIT;

return status;

1.8.3.2 Multi-dimensions Integration Algorithms

Here is the types, that can be specified as enumeration and the corresponding classes

Enumeration name Integrator class

ROOT: :Math: :IntegratorMultiDim: :KADAPTIVE ROOT: :Math::AdaptiveIntegratorMultiDim

ROOT: :Math: :IntegratorMultiDim: : KVEGAS ROOT: :Math: ::GSLMCIntegrator
ROOT: :Math: :IntegratorMultiDim: :kMISER ROOT: :Math: : :GSLMCIntegrator
ROOT: :Math: : IntegratorMultiDim: : kPLAIN ROOT: :Math: : :GSLMCIntegrator

The control parameters for the integration algorithms can be specified using the ROOT: :Math: : IntegratorMultiDimOptions
class. Static methods are provided to change the default values. It is possible to print the list of default control
parameters using the ROOT: :Math: : IntegratorMultiDimOptions: :Print function. Example:

ROOT: :Math: :IntegratorMultiDimOptions opt;
opt.Print();

Integrator Type : ADAPTIVE
Absolute tolerance : 1e-09
Relative tolerance : 1e-09

Workspace size : 100000

(max) function calls : 100000

Depending on the algorithm, some of the control parameters might have no effect.

1.8.3.3 ROOT::Math::AdaptiveIntegratorMultiDim

This class implements an adaptive quadrature integration method for multi dimensional functions. It is described
in this paper Genz, A.A. Malik, An adaptive algorithm for numerical integration over an N-dimensional rectangular
region, J. Comput. Appl. Math. 6 (1980) 295-302. 1t is part of the MathCore library. The user can control the relative
and absolute tolerance and the maximum allowed number of function evaluation.

1.8.3.4 ROOT::Math::GSLMCIntegrator

It is a class for performing numerical integration of a multidimensional function. It uses the numerical integration
algorithms of GSL, which reimplements the algorithms used in the QUADPACK, a numerical integration package written
in Fortran. Plain MC, MISER and VEGAS integration algorithms are supported for integration over finite (hypercubic)
ranges. For a detail description of the GSL methods visit the GSL users guide. Specific configuration options (documented
in the GSL user guide) for the ROOT: :Math: : GSLMCIntegration can be set directly in the class, or when using it via the
ROOT: :Math: : IntegratorMultiDim interface, can be defined using the ROOT: :Math: : IntegratorMultiDimOptions.

1.9 Function Derivation

There are in ROOT only two classes to perform numerical derivation. One of them is in the MathCore library
while the other is in the MathMore wrapping an integration function from the GSL library. * RichardsonDerivator:
Implements the Richardson method for numerical integration. It can calculate up to the third derivative of a function.
* GSLDerivator of MathMore based on GSL.

1.10. NUMERICAL MINIMIZATION 27

1.10 Numerical Minimization

The algorithms provided by ROOT for numerical integration are implemented following the hierarchy shown in
the next image. The left branch of classes are used for one dimensional minimization, while the right one is
used for multidimensional minimization. In the case of multidimensional minimization we have also the classes
TMinuitMinimizer implemented using TMinuit, TFumiliMinimizer implemented using TFumili for least square or
likelihood minimizations. We encourage the use of the GSL algorithms for one dimensional minimization and Minuit2
(or the old versionMinuit) for multi dimensional minimization.

IMinimizer1D Mimimizer

+5etFunction(f: IBaseFunctionMultiDim)
+5etFunctioni(f: IGradientFunctionMultiDim)

7 5

ErentMinimizerlD GSLMinimizer
+SetFunction(f: IBaseFunctionOneDim)

+Minimize()

GSLNLSMinimizer

GSLMinimizerlD
+5etFunction(f:UserFunction)

GSLSimAnMinimizer

MinuitZMinimizer

Figure 1.5: Numerical Minimization classes

1.10.1 One-Dimensional Minimization

These algorithms are for finding the minimum of a one-dimensional minimization function. The function to minimize
must be given to the class implementing the algorithm as a ROOT: :Math: : IBaseFunctionOneDim object. The algorithms
supported are only bracketing algorithm which do not use derivatives information.

Two classes exist. One in the MathCore library implementing the Brent method (not using the derivatives) and one in
the MathMore library implementing several different methods, using in some case the derivatives.

1.10.1.1 ROOT::Math::BrentMinimizeri1D

This class implements the Brent method to minimize one-dimensional function. An interval containing the function
minimum must be provided. Here is an example where we define the function to minimize as a lambda func-
tion (requires C++11). The function to minimize must be given to the class implementing the algorithm as a
ROOT: :Math: : IBaseFunctionOneDim object.

ROOT: :Math: :Functor1D func([](double x){ return 1 + —-4*x + 1x*xx*x; });

ROQOT: :Math: :BrentMinimizer1D bm;

bm.SetFunction(func, -10,10);

bm.Minimize(10,0,0);

cout << "Minimum: f(" << bm.XMinimum() << ") = " <<bm.FValMinimum() << endl;

Note that when setting the function to minimize, one needs to provide the interval range to find the minimum. In the
Minimize call, the maximum number of function calls, the relative and absolute tolerance must be provided.

28 CHAPTER 1. MATH LIBRARIES IN ROOT

1.10.1.2 ROOT::Math::GSLMInimizer1D

This class wraps two different methods from the GSL. The algorithms which can be choosen at construction time are
GOLDENSECTION, which is the simplest method but the slowest and BRENT (the default one) which combines the
golden section with a parabolic interpolation. The algorithm can be chosen as a different enumeration in the constructor:
* ROOT: :Math: :Minimi1D: :kBRENT for the Brent algorithm (default) * ROOT: :Math: :Minim1D: :kGOLDENSECTION for
the golden section algorithm

// this makes class with the default Brent algorithm
ROOT: :Math: :GSLMinimizer1D minBrent;
// this make the class with the Golden Section algorithm
ROOT: :Math: :GSLMinimizer1D minGold(ROOT: :Math: :Minim1D: : kGOLDENSECTION) ;

The interface to set the function and to minimize is the same as in the case of the BrentMinimizeri1D.

1.10.1.3 Using the TF1 class

It is possible to perform the one-dimensional minimization/maximization of a function by using directly the function class
in ROOT, TF1 of the Hist library. The minmization is implemented in TF1 using the BrentMInimizer1D and available
with the class member functions * TF1: : GetMinimum/TF1: :GetMaximum to find the function minimum/maximum value
* TF1::GetMinimumX/TF1: :GetMaximumX to find the x value corresponding at the function minimum.

The interval to search for the minimum (the default is the TF1 range), tolerance and maximum iterations can be
provided as optional parameters of the TF1: :GetMinimum/Maximum functions.

1.10.2 Multi-Dimensional Minimization

All the algorithms for multi-dimensional minimization are implementing the ROOT: :Math: :Minimizer interface and
they can be used in the same way and one can switch between minimizer at run-time. The minimizer concrete class
can be in different ROOT libraries and they can be instantiate using the ROOT plug-in manager. More information on
multi-dimensional minimization is provided in the Fitting Histogram chapter.

1.11 ROOT Finder Algorithms

The function must be given to the class implementing the algorithm as a ROOT: :Math: : IBaseFunctionOneDim object.
Some of the algorithm requires the derivatives of the function. In that case a ROOT: :Math: : IGradientFunctionOneDim
object must be provided.

1.12 Generic Vectors for 2, 3 and 4 Dimensions (GenVector)

GenVector is a package intended to represent vectors and their operations and transformations, such as rotations and
Lorentz transformations, in 3 and 4 dimensions. The 3D space is used to describe the geometry vectors and points,
while the 4D space-time is used for physics vectors representing relativistic particles. These 3D and 4D vectors are
different from vectors of the linear algebra package, which describe generic N-dimensional vectors. Similar functionality
is currently provided by the CLHEP and packages and the ROOT Physics vector classes (See “Physics Vectors”). It
also re-uses concepts and ideas from the CMS Common Vector package. In contrast to CLHEP or the ROOT physics
libraries, GenVector provides class templates for modeling the vectors. The user can control how the vector is internally
represented. This is expressed by a choice of coordinate system, which is supplied as a template parameter when
the vector is constructed. Furthermore, each coordinate system is itself a template, so that the user can specify the
underlying scalar type.

The GenVector classes do not inherit from TObject, therefore cannot be used as in the case of the physics vector
classes in ROOT collections.

In addition, to optimize performances, no virtual destructors are provided. In the following paragraphs, the main
characteristics of GenVector are described. A more detailed description of all the GenVector classes is available also at
http://seal.cern.ch/documents/mathlib/GenVector.pdf

http://seal.cern.ch/documents/mathlib/GenVector.pdf

1.12. GENERIC VECTORS FOR 2, 3 AND 4 DIMENSIONS (GENVECTOR) 29

1.12.1 Main Characteristics
1.12.1.1 Optimal Runtime Performances

We try to minimize any overhead in the run-time performance. We have deliberately avoided the use of any virtual
function and even virtual destructors in the classes. In addition, as much as possible functions are defined as inline.
For this reason, we have chosen to use template classes to implement the GenVector concepts instead of abstract or
base classes and virtual functions. It is then recommended to avoid using the GenVector classes polymorphically and
developing classes inheriting from them.

1.12.1.2 Points and Vector Concept

Mathematically vectors and points are two distinct concepts. They have different transformations, as vectors only
rotate while points rotate and translate. You can add two vectors but not two points and the difference between two
points is a vector. We then distinguish for the 3 dimensional case, between points and vectors, modeling them with
different classes:

e ROOT: :Math: :DisplacementVector2D and ROOT: :Math: :DisplacementVector3D template classes describing 2
and 3 component direction and magnitude vectors, not rooted at any particular point;
e ROOT::Math::PositionVector2D and ROOT: :Math: :PositionVector3D template classes modeling the points in

2 and 3 dimensions.

For the 4D space-time vectors, we use the same class to model them, ROOT: :Math: : LorentzVector, since we have
recognized a limited need for modeling the functionality of a 4D point.

1.12.1.3 Generic Coordinate System

The vector classes are based on a generic type of coordinate system, expressed as a template parameter of the class.
Various classes exist to describe the various coordinates systems:

2D coordinate system classes:

e ROOT::Math::Cartesian2D, based on (x,y);

o ROOT::Math::Polar2D, based on (r,phi);
3D coordinate system classes:

o ROOT::Math::Cartesian3D, based on (x,y,2);
e ROOT::Math::Polar3D, based on (r,theta,phi);
e ROOT::Math::Cylindrical3D, based on (rho,z,phi)

o ROOT::Math::CylindricalEta3D, based on (rho,eta,phi), where eta is the pseudo-rapidity;
4D coordinate system classes:

o ROOT::Math: :PxPyPzE4D, based on based on (px,py,pz,E);
o ROOT: :Math: :PxPyPzM4D, based on based on (px,py,pz,M);
e ROOT::Math::PtEtaPhiE4D, based on based on (pt,eta,phi,E);

o ROOT::Math::PtEtaPhiM4D, based on based on (pt,eta,phi,M);

Users can define the vectors according to the coordinate type, which is the most efficient for their use. Transformations
between the various coordinate systems are available through copy constructors or the assignment (=) operator. For
maximum flexibility and minimize memory allocation, the coordinate system classes are templated on the scalar type.
To avoid exposing templated parameter to the users, typedefs are defined for all types of vectors based on doubles.
See in the examples for all the possible types of vector classes, which can be constructed by users with the available
coordinate system types.

30 CHAPTER 1. MATH LIBRARIES IN ROOT

1.12.1.4 Coordinate System Tag

The 2D and 3D points and vector classes can be associated to a tag defining the coordinate system. This can be used to
distinguish between vectors of different coordinate systems like global or local vectors. The coordinate system tag is a tem-
plate parameter of the ROOT: :Math: :DisplacementVector3D and ROOT: :Math: :PositionVector3D (and also for 2D
classes). A default tag exists for users who do not need this functionality, ROOT: :Math: :DefaultCoordinateSystemTag.

1.12.1.5 Transformations

The transformations are modeled using simple (non-template) classes, using double as the scalar type to avoid too
large numerical errors. The transformations are grouped in rotations (in 3 dimensions), Lorentz transformations and
Poincare transformations, which are translation/rotation combinations. Each group has several members which may
model physically equivalent transformations but with different internal representations. Transformation classes can
operate on all type of vectors by using the operator ()or the operator * and the transformations can be combined via
the operator *. The available transformations are:

« 3D rotation classes

o rotation described by a 3x3 matrix (ROOT: :Math: :Rotation3D)

« rotation described by Euler angles (ROOT: :Math: :EulerAngles)

o rotation described by a direction axis and an angle (ROOT: :Math: : AxisAngle)
o rotation described by a quaternion (ROOT: :Math: :Quaternion)

o optimized rotation around x (ROOT: :Math: :RotationX), y (ROOT: :Math: :RotationY) and z (ROOT: :Math: :RotationZ)
and described by just one angle.

¢ 3D transformation: we describe the transformations defined as a composition between a rotation and a translation
using the class ROOT: :Math: : Transform3D. It is important to note that transformations act differently on vectors
and points. The vectors only rotate, therefore when applying a transformation (rotation + translation) on a
vector, only the rotation operates while the translation has no effect. The Transform3D class interface is similar
to the one used in the CLHEP Geometry package (class).

o Lorentz rotation:

o generic Lorentz rotation described by a 4x4 matrix containing a 3D rotation part and a boost part (class
ROOT: :Math: :LorentzRotation)

e a pure boost in an arbitrary direction and described by a 4x4 symmetric matrix or 10 numbers (class
ROOT: :Math: :Boost)

o boost along the axis:x(ROOT: :Math: :BoostX), y(ROOT: :Math: :BoostY) and z(ROOT: :Math: :BoostZ).

1.12.1.6 Minimal Vector Classes Interface

We have tried to keep the interface to a minimal level by:

o Avoiding methods that provide the same functionality but use different names (like getX() and x()).

e Minimizing the number of setter methods, avoiding methods, which can be ambiguous and can set the vector
classes in an inconsistent state. We provide only methods which set all the coordinates at the same time or set
only the coordinates on which the vector is based, for example SetX() for a Cartesian vector. We then enforce
the use of transformations as rotations or translations (additions) for modifying the vector contents.

e The majority of the functionality, which is present in the CLHEP package, involving operations on two vectors,
is moved in separated helper functions (see ROOT: :Math: :VectorUtil). This has the advantage that the basic
interface will remain more stable with time while additional functions can be added easily.

1.12. GENERIC VECTORS FOR 2, 3 AND 4 DIMENSIONS (GENVECTOR) 31
1.12.1.7 Naming Convention

As part of ROOT, the GenVector package adheres to the prescribed ROOT naming convention, with some (approved)
exceptions, as described here:

e Every class and function is in the ROOT: :Math namespace.

o Member function names start with upper-case letter, apart some exceptions (see the next section about CLHEP
compatibility).

1.12.1.8 Compatibility with CLHEP Vector Classes

e For backward compatibility with CLHEP the vector classes can be constructed from a CLHEP HepVector
or HepLorentzVector, by using a template constructor, which requires only that the classes implement the
accessorsx (), y(O), and z() (and t() for the 4D).

e We provide vector member function with the same naming convention as CLHEP for the most used functions like
x(0),y0 and zQ.

1.12.1.9 Connection to Linear Algebra Package

In some use cases, like in track reconstruction, it is needed to use the content of the vector and rotation classes in
conjunction with linear algebra operations. We prefer to avoid any direct dependency to any linear algebra package.
However, we provide some hooks to convert to and from linear algebra classes. The vector and the transformation
classes have methods which allow to get and set their data members (like SetCoordinates and GetCoordinates)
passing either a generic iterator or a pointer to a contiguous set of data, like a C array. This allows an easy connection
with the linear algebra package, which in turn, allows creation of matrices using C arrays (like the ROOT TMatrix
classes) or iterators (SMatrix classes). Multiplication between linear algebra matrices and GenVector vectors is possible
by using the template free functions ROOT: :Math: :VectorUtil: :Mult. This function works for any linear algebra
matrix, which implements the operator (i, j) and with first matrix element at i=j=0.

1.12.2 Example: 3D Vector Classes

To avoid exposing template parameter to the users, typedef’s are defined for all types of vectors based on dou-
ble’s and float’s. To use them, one must include the header file Math/Vector3D.h. The following typedef’s, de-
fined in the header file Math/Vector3Dfwd.h, are available for the different instantiations of the template class
ROOT: :Math: :DisplacementVector3D:

o ROOT::Math: :XYZVector vector based on x,y,z coordinates (Cartesian) in double precision

e ROOT: :Math: :XYZVectorF vector based on x,y,z coordinates (Cartesian) in float precision

o ROOT::Math: :Polar3DVector vector based on r,theta,phi coordinates (polar) in double precision

o ROOT::Math::Polar3DVectorF vector based on r,theta,phi coordinates (polar) in float precision

o ROOT::Math::RhoZPhiVector vector based on rho,z,phi coordinates (cylindrical) in double precision
e ROOT::Math::RhoZPhiVectorF vector based on rho,z,phi coordinates (cylindrical) in float precision

e ROOT::Math::RhoEtaPhiVector vector based on rho,eta,phi coordinates (cylindrical using eta instead of z)
in double precision

e ROOT::Math: :RhoEtaPhiVectorF vector based on rho,eta,phi coordinates (cylindrical using eta instead of z)
in float precision

32 CHAPTER 1. MATH LIBRARIES IN ROOT

1.12.2.1 Constructors and Assignment

The following declarations are available:

XYZVector vl; //an empty vector (z=0, y=0, 2=0)
XYZVector v2(1,2,3); //vector with z=1, y=2, 2z=3;
Polar3DVector v3(1,PI/2,PI); //vector with r=1, theta=PI/2, phi=PI
RhoEtaPHiVector v4(1,2, PI); //vector with rho=1, eta=2, pht=PI

Note that each vector type is constructed by passing its coordinate representation, so a XYZVector(1,2,3) is different
from a Polar3DVector(1,2,3). In addition, the vector classes can be constructed by any vector, which implements
the accessors x(), y(O and z(). This can be another 3D vector based on a different coordinate system type. It can be
even any vector of a different package, like the CLHEP HepThreeVector that implements the required signature.

XYZVector v1(1,2,3);
RhoEtaPhiVector r2(vl);
CLHEP: :HepThreeVector q(1,2,3);
XYZVector v3(q);

1.12.2.2 Coordinate Accessors

All coordinate accessors are available through the class ROOT: :Math: :DisplacementVector3D:

//returns cartesian components for the cartesian vector vl
v1i.XQ; v1.YQ; v1.20;

//returns cylindrical components for the cartesian wvector vl
vi.Rho(); v1.Eta(); v1.Phi();

//returns cartesian components for the cylindrical wvector 72
r2.X0); r2.YO; r2.20

In addition, all the 3 coordinates of the vector can be retrieved with the GetCoordinates method:

double d[3];

//fill d array with (z,y,z) components of vl
v1.GetCoordinates(d);

//fill d array with (r,eta,phi) components of r2
r2.GetCoordinates(d) ;

std: :vector vc(3);

//fill std::vector with (z,y,z) components of vl
v1l.GetCoordinates(vc.begin(),vc.end());

See the reference documentation of ROOT: :Math: :DisplacementVector3D for more details on all the coordinate
accessors.

1.12.2.3 Setter Methods

One can set only all the three coordinates via:

vl.SetCoordinates(cl,c2,c3); // (z,y,z) for a XYZVector
r2.SetCoordinates(cl,c2,c3); // r,theta,phi for a Polar3DVector
r2.5etXYZ(x,y,2); // 3 cartesian components for Polar3DVector

Single coordinate setter methods are available for the basic vector coordinates, like SetX() for a XYZVector or SetR()
for a polar vector. Attempting to do a SetX() on a polar vector will not compile.

XYZVector vi;

vl.SetX(1); //OK setting = for a Cartesian vector
Polar3DVector v2;

v2.8etX(1); //ERROR: cannot set X for a Polar wvector.
//Method will not compile

v2.8etR(1); //OK setting r for a Polar vector

1.12. GENERIC VECTORS FOR 2, 3 AND 4 DIMENSIONS (GENVECTOR) 33
In addition, there are setter methods from C arrays or iterator

double d[3] = {1.,2.,3.};

XYZVector v;

// set (z,y,z) components of v using values from d
v.SetCoordinates(d) ;

or, for example, from an std: :vector using the iterator

std: :vector w(3);
// set (z,y,z) components of v using values from w
v.SetCoordinates(w.begin() ,w.end());

1.12.2.4 Arithmetic Operations

The following operations are possible between vector classes, even of different coordinate system types: (v1,v2 are any
type of ROOT: :Math: :DisplacementVector3D classes, v3 is the same type of v1; a is a scalar value)

vl += v2;

vl -= v2;

vl = - v2;
vl *= a;

vl /= a;

v2 = a *x vl;
v2 = vl / a;

v2 = vl * a;
v3 = vl + v2;
v3 = vl - v2;

1.12.2.5 Comparison
For v1 and v2 of the same type (same coordinate system and same scalar type):

vl == v2;
vl !'= v2;

1.12.2.6 Dot and Cross Product

We support the dot and cross products, through the Dot () and Cross () method, with any vector (q) implementing
x(),y0 and zQ).

XYZVector vi(x,y,z);
double s = v1.Dot(q);
XYZVector v2 = v1.Cross(q);

Note that the multiplication between two vectors using the operator * is not supported because it is ambiguous.

1.12.2.7 Other Methods

XYZVector u = v1.Unit(Q; //return unit vector parallel to vl

1.12.3 Example: 3D Point Classes

To use all possible types of 3D points one must include the header file Math/Point3D.h. The following type-
def’s defined in the header file Math/Point3Dfwd.h, are available for different instantiations of the template class
ROOT: :Math: :PositionVector3D:

e ROOT::Math::XYZPoint point based on x, y, z coordinates (Cartesian) in double precision

34 CHAPTER 1. MATH LIBRARIES IN ROOT

o ROOT: :Math::XYZPointF point based on x, y, z coordinates (Cartesian) in float precision

o ROOT::Math::Polar3DPoint point based on r, theta, phi coordinates (polar) in double precision

o ROOT::Math::Polar3DPointF point based on r, theta, phi coordinates (polar) in float precision

e ROOT::Math::RhoZPhiPoint point based on rho, z, phi coordinates (cylindrical using z) in double precision
e ROOT::Math::RhoZPhiPointF point based on rho, z, phi coordinates (cylindrical using z) in float precision

e ROOT::Math::RhoEtaPhiPoint point based on rho, eta, phi coordinates (cylindrical using eta instead of z) in
double precision

o ROOT::Math::RhoEtaPhiPointF point based on rho, eta, phi coordinates (cylindrical using eta instead of z) in
float precision

1.12.3.1 Constructors and Assignment
The following declarations are available:

XYZPoint pl; //an empty vector (z=0, y=0, 2=0)
XYZPoint p2(1,2,3); //

Note that each point type is constructed by passing its coordinate representation, so a XYZPoint (1,2,3) is different
from a Polar3DPoint(1,2,3). In addition the point classes can be constructed by any vector, which implements the
accessors x(), y() and z(). This can be another 3D point based on a different coordinate system type or even any
vector of a different package, like the CLHEP HepThreePoint that implements the required signatures.

XYZPoint p1(1,2,3);
RhoEtaPHiPoint r2(vl);
CLHEP: :HepThreePoint q(1,2,3);
XYZPoint p3(a);

1.12.3.2 Coordinate Accessors and Setter Methods

For the points classes we have the same getter and setter methods as for the vector classes. See “Example: 3D Vector
Classes”.

1.12.3.3 Point-Vector Operations

The following operations are possible between points and vector classes: (pl, p2 and p3 are instanti-
ations of the ROOT::Math::PositionVector3D objects with pl and p3 of the same type; v1 and v2 are
ROOT: :Math: :DisplacementVector3D objects).

pl += vi;

pl —= vi;

p3 = pl + vi; // pl and p3 are the same type

p3 = vl + pl; // p3 is based on the same coordinate system as vl
p3 = pl - vi;

p3 = vl - pil;

v2 = pl - p2; // difference between points returns a vector v2

// based on the same coordinate system as pl

Note that the addition between two points is NOT possible and the difference between points returns a vector.

1.12.3.4 Other Operations
Exactly as for the 3D Vectors, the following operations are allowed:

e comparison of points
e scaling and division of points with a scalar

e dot and cross product with any type of vector

1.12. GENERIC VECTORS FOR 2, 3 AND 4 DIMENSIONS (GENVECTOR) 35

1.12.4 Example: LorentzVector Classes
As in the 3D case, typedef’s are defined for user convenience. and can be used by including the header file
Math/Vector4D.h. The following typedef’s, defined in the header file Math/Vector4Dfwd.h, are available for the

different instantiations of the template class ROOT: :Math: : LorentzVector:

o ROOT::Math::XYZTVector vector based on x, y, z, t coordinates (Cartesian) in double precision

o ROOT::Math::XYZTVectorF vector based on x, y, z, t coordinates (Cartesian) in float precision

o ROOT::Math::PtEtaPhiEVector vector based on pt(rho), eta, phi and E(t) coordinates in double precision
e ROOT::Math: :PtEtaPhiMVector vector based on pt(rho), eta, phi and M(t) coordinates in double precision

e ROOT::Math: :PxPyPzMVector vector based on px, py, pz and M(mass) coordinates in double precision

The metric used for all the LorentzVector is (-=,-,=,+) .

1.12.4.1 Constructors and Assignment
The following declarations are available:

// create an empty vector (z=0, y=0, 2z=0, t=0)

XYZTVector vl;
// vector with z=1, y=2, 2=3, t=4
XYZTVector v2(1,2,3,4);

// vector with pt=1, eta=2, phi=PI, E=5
PtEtaPhiEVector v3(1,2,PI,5);

Note that each type of vector is constructed by passing its coordinate representation, so a XYZTVector(1,2,3,4) is
different from a PtEtaPhiEVector(1,2,3,4). In addition, the Vector classes can be constructed by any vector, which
implements the accessors x(), y(), z() and t().

This can be another ROOT: :Math: :LorentzVector based on a different coordinate system or any vector of a different
package, like the CLHEP HepLorentzVector that implements the required signature.

XYZTVector v1(1,2,3,4);
PtEtaPhiEVector v2(vl);
CLHEP: :HepLorentzVector q(1,2,3,4);
XYZTVector v3(q);

1.12.4.2 Coordinate Accessors
All the same coordinate accessors are available through the interface of ROOT: :Math: :LorentzVector. For example:

//returns cartesian components for the cartestian wvector vl
v1.XO; v1.X0; v1.20; v1.TO;

//returns cartesian components for the cylindrical wvector v2
v2.Px(); v2.Py(Q); v2.Pz(); v2.EQ;

//returns other components for the cartestian vector vl
vi.Pt(); vi.Eta(Q); v1.Phi(); v1.MQO

In addition, all 4 vector coordinates can be retrieved with the GetCoordinates method:

double d[4];

//fill d array with (z,y,z,t) components of vl
v1.GetCoordinates(d);

//fill d array with (pt,eta,pht,e) components of v2
v2.GetCoordinates(d) ;

std: :vector w(4);

//fill std::vector with (z,y,z,t)
v1l.GetCoordinates(w.begin() ,w.end());

//components of vl

To get information on all the coordinate accessors see the ROOT: :Math: :LorentzVector reference documentation.

36 CHAPTER 1. MATH LIBRARIES IN ROOT
1.12.4.3 Setter Methods

One can set only all the three coordinates via:

//sets the (z,y,z,t) for a XYZTVector
v1.SetCoordinates(cl,c2,c3,cd);

//sets pt,eta,phi,e for a PtEtaPhiEVector
v2.SetCoordinates(cl,c2,c3,cd);

//sets cartesian components for PtEtaPhiEVector
v2.SetXYZ(x,y,z,t);

Single coordinate setter methods are available for the basic vector coordinates, like SetX () for a XYZTVector or SetPt ()
for a PtEtaPhiEVector. Attempting to do a SetX() on a non-Cartesian vector will not compile.

XYZTVector vl;

v1.8etX(1); //OK setting = for a cartesian vector

PtEtaPhiEVector v2;

v2.8etX(1); //ERROR: cannot set X for a non-cartesian
//vector. Method will not comptile.

v2.SetR(1) // OK setting Pt for a PtEtaPhiEVector wvector

In addition, there are setter methods from C arrays or iterators.

double d[4] = {1.,2.,3.,4.};

XYZTVector v;

//set (z,y,z,t) components of v using values from d
v.SetCoordinates(d);

or for example from an std: :vectorusing the iterators

std::vector w(4);
//set (z,y,z,t) components of v using values from w
v.SetCoordinates(w.begin() ,w.end());

1.12.4.4 Arithmetic Operations

The following operations are possible between Lorentz vectors classes, even of different coordinate system types: (v
andw are two Lorentz vector of the same type, gis a generic Lorentz vector implementing x(), y(), z() and t(), and a
is a generic scalar type: double, float, int, etc.) .

v += q;
v -= q;
v = -q;
v *= a;
v /= a;
W =v+q;
w=v-gq;
W=V k% a;
W =a * v;
w=v/ a;

1.12.4.5 Comparison

< <
-1

Il
s =

1.12. GENERIC VECTORS FOR 2, 3 AND 4 DIMENSIONS (GENVECTOR) 37

1.12.4.6 Other Methods

a = v.Dot(q); //dot product in metric(+,+,+,-) of 2 LorentzVectors

XYZVector s = v.Vect() //return the spatial components (z,y,z)

v.Beta(); //return beta and gamma value (vector must

v.Gamma() // be time-like otherwise result is meaningless)

XYZVector b = v.BoostToCM(); //return boost wector which will bring
//the Vector in its mas frame (P=0)

1.12.5 Example: Vector Transformations

Transformation classes are grouped in rotations (in three dimensions), Lorentz transformations and Poincarre transfor-
mations, which are translation/rotation combinations. Each group has several members which may model physically
equivalent transformations but with different internal representations. All the classes are non-template and use double
precision as the scalar type. The following types of transformation classes are defined:

3D rotations:

e ROOT::Math: :Rotation3D, rotation described by a 3x3 matrix of doubles

o ROOT::Math::EulerAngles rotation described by the three Euler angles (phi, theta and psi) following the
GoldStein definition.

e ROOT::Math::RotationZYX rotation described by three angles defining a rotation first along the Z axis, then
along the rotated Y’ axis and then along the rotated X" axis.

o ROOT::Math::AxisAngle, rotation described by a vector (axis) and an angle
o ROOT::Math::Quaternion, rotation described by a quaternion (4 numbers)
e ROOT::Math::RotationX, specialized rotation along the X axis

e ROOT::Math::RotationY, specialized rotation along the Y axis

e ROOT::Math::RotationZ, specialized rotation along the Z axis
3D transformations (rotations + translations)

o ROOT::Math::Transform3D, (rotations and then translation) described by a 3x4 matrix (12 double numbers)

o ROOT::Math::Translation3D (only translation) described by a 3D Vector
Lorentz rotations and boosts

o ROOT::Math::LorentzRotation, 4D rotation (3D rotation plus a boost) described by a 4x4 matrix

o ROOT::Math: :Boost, a Lorentz boost in an arbitrary direction and described by a 4x4 symmetrix matrix (10
numbers)

e ROOT::Math: :BoostX, a boost in the X axis direction
e ROOT::Math: :BoostY, a boost in the Y axis direction

e ROOT::Math: :BoostZ, a boost in the Z axis direction

1.12.5.1 Constructors

All rotations and transformations are default constructible (giving the identity transformation). All rotations are
constructible taking a number of scalar arguments matching the number (and order of components).

Rotation3D rI; //a summy rotation (Identity matriz)

RotationX rX(PI); //a RotationX with an angle PI

EulerAngles rE(phi,theta,psi); //an Euler rotation with phi,
//theta,pst angles

XYZVector u(ux,uy,uz);

AxisAngle rA(u,delta); //a rotation based on direction wu,
//angle delta

38 CHAPTER 1. MATH LIBRARIES IN ROOT

In addition, all rotations and transformations (other than the axial rotations) and transformations are constructible
from (begin,end) iterators or from pointers behave like iterators.

double datal9];

//create a rotation from a rotation matriz
Rotation3D r(data,data+9);

std: :vector w(12);

//create Transform3D from std::vector content
Transform3D t(w.begin(),w.end());

All rotations, except the axial rotations, are constructible and assigned from any other type of rotation (including the
axial):

//create a rotation 3D from a rotation along X axis of angle PI
Rotation3D r(ROOT::Math::RotationX(PI));

//construct an Euler rotation from A Rotation3D
EulerAngles r2(r);

//assign an Azis rotation from an Euler Rotation
AxisAngle r3; r3 = r2;

Transform3D (rotation + translation) can be constructed from a rotation and a translation vector:

Rotation3D r;
XYZVector v,

Transform3D ti1(r,v); //construct from rotation and then
//translation

Transform3D t2(v,r); //construct inverse from first translation
//then rotation

Transform3D t3(r); //construct from only a rotation
//(zero translation)

Transform3D t4(v); //construct from only translation

// (identity rotation)

1.12.5.2 Operations

All transformations can be applied to vector and points using the operator * or using the operator()

XYZVector vi(...);

Rotation3D r(...);

XYZVector v2 = r*vl; //rotate vector vl using r
v2 = r(vl); //equivalent

Transformations can be combined using the operator *. Rotation, translation and Transform3D classes can be all
combined with the operator *. The result of a combination of a rotation and a translation will be a Transform3D class.
Note that the rotations are not commutative, the order is then important.

Rotation3D ri1(...);

Rotation3D r2(...);

Rotation3D r3 = r2*rl; //a combine rotation r3 by
//applying first rl then r2

We can combine rotations of different types, like Rotation3D with any other type of rotations. The product of two
different axial rotations returns a Rotation3D:

RotationX rx(1.);
RotationY ry(2.);
Rotation3D r = ry * rx; //rotation along X and then Y azis

1.12. GENERIC VECTORS FOR 2, 3 AND 4 DIMENSIONS (GENVECTOR) 39

It is also possible to invert all the transformation or return their inverse:

Rotation3D ri1(...);

rl.Invert(); //invert the rotation modifying its content

Rotation3D r2 =rl.Inverse(); //return the inverse in a new
//rotation class

We have used rotation as examples, but all these operations can be applied to all the transformation classes.

1.12.5.3 Set/GetComponents Methods

Common methods to all transformations are Get and SetComponents. They can be used to retrieve all the scalar
values on which the transformation is based.

RotationX rx;

rx.SetComponents(1.); //set agle of the X rotation
double d[9] = {........ };

Rotation3D r;

r.SetComponents(d,d+9) ; //set 9 components of 3D rotation

double d[16];

LorentzRotation 1r;

1lr.GetComponents(d,d+16); //get 16 components of a LorentzRotation
TMatrixD(3,4) m;

Transform3D t;

t.GetComponens (m) ; //fill 3z4 matriz with components of t

TheGetComponents and SetComponents methods can be used with a signature based iterators or by using any foreign
matrix which implements the operator (i, j) or a different signatures depending on the transformation type. For more
details on all methods see the reference documentation of any specific transformation class.

1.12.6 Example with External Packages
1.12.6.1 Connection to Linear Algebra Classes

It is possible to use the vector and rotation classes together with the linear algebra classes and to set and get the
contents of any 3D or 4D vector from a linear algebra vector class which implements an iterator or something which
behaves like an iterator. For example a pointer to a C array (doublex) behaves like an iterator. It is then assumed that
the coordinates, like (x,y,z) will be stored contiguously.

TVectorD r2(N); //ROOT Linear Algebra Vector containing
//many vectors

XYZVector v2;

//construct vector from z=r[INDEX], y=r[INDEX+1], z=r[INDEX+2]

v2.SetCoordinates (&r2 [INDEX] ,&r2[index]+3);

To fill a linear algebra vector from a 3D or 4D vector, with GetCoordinates() one can get the internal coordinate
data.

HepVector c(3); //CLHEP Linear algebra vector
//fill HepVector c with c[0]=z, c[1]=y, c[2]=z
v2.GetCoordinates (&c[0] ,&c[index]+3)

or using TVectorD:

double *datal3];

v2.GetCoordinates(data,data+3);

TVectorD ri1(3,data); //create o new Linear Algebra vector
//copying the data

In the case of transformations, constructor and method to set/get components exist with linear algebra matrices. The
requisite is that the matrix data are stored, for example in the case of a Lorentz rotation, from (0,0) thru (3,3)

TMatrixD(4,4) m;
LorentzRotation r(m); //create Lorentz T

40 CHAPTER 1. MATH LIBRARIES IN ROOT

1.12.6.2 Connection to Other Vector Classes

The 3D and 4D vectors of the GenVector package can be constructed and assigned from any vector which satisfies the
following requisites:

e for 3D vectors implementing the x(), y() and z() methods

« for Lorentz vectors implementing the x(), y(), z() and t() methods.

CLHEP: :Hep3Vector hv;

XYZVector vl(hv); //create 3D wector from
//CLHEP 3D Vector

HepGeom: :Point3D hp;

XYZPoint pl(hp); //create a 3D p

1.13 Linear Algebra: SMatrix Package

The ROOT Linear algebra package is documented in a separate chapter (see “Linear Algebra in ROOT”). SMatrix
is a C4++ package, for high performance vector and matrix computations. It has been introduced in ROOT v5.08.
It is optimized for describing small matrices and vectors and It can be used only in problems when the size of the
matrices is known at compile time, like in the tracking reconstruction of physics experiments. It is based on a C4++
technique, called expression templates, to achieve an high level optimization. The C+4 templates can be used to
implement vector and matrix expressions such that these expressions can be transformed at compile time to code which
is equivalent to hand optimized code in a low-level language like FORTRAN or C (see for example T. Veldhuizen,
Expression Templates, C++ Report, 1995).

The SMatrix has been developed initially by T. Glebe in Max-Planck-Institut, Heidelberg, as part of the HeraB analysis
framework. A subset of the original package has been now incorporated in the ROOT distribution, with the aim to
provide a stand-alone and high performance matrix package. The API of the current package differs from the original
one, in order to be compliant to the ROOT coding conventions.

SMatrix contains the generic ROOT: :Math: :SMatrix and ROOT: :Math: : SVector classes for describing matrices and
vectors of arbitrary dimensions and of arbitrary type. The classes are templated on the scalar type and on the size, like
number of rows and columns for a matrix . Therefore, the matrix/vector dimension has to be known at compile time.
An advantage of using the dimension as template parameters is that the correctness of dimension in the matrix/vector
operations can be checked at compile time.

SMatrix supports, since ROOT v5.10, symmetric matrices using a storage class (ROOT: :Math: :MatRepSym) which
contains only the N*(N+1) /2 independent element of a NxN symmetric matrix. It is not in the mandate of this package
to provide complete linear algebra functionality. It provides basic matrix and vector functions such as matrix-matrix,
matrix-vector, vector-vector operations, plus some extra functionality for square matrices, like inversion and determinant
calculation. The inversion is based on the optimized Cramer method for squared matrices of size up to 6x6.

The SMatrix package contains only header files. Normally one does not need to build any library. In the ROOT
distribution a library, 1ibSmatrix is produced with the C++ dictionary information for squared and symmetric
matrices and vectors up to dimension 7 and based on Double_t, Float_t and Double32_t. The following paragraphs
describe the main characteristics of the matrix and vector classes. More detailed information about the SMatrix classes
API is available in the online reference documentation.

1.13.1 Example: Vector Class (SVector)

The template class ROOT: :Math: : SVector represents n-dimensional vectors for objects of arbitrary type. This class
has 2 template parameters, which define at compile time, its properties: 1) type of the contained elements (for example
float or double); 2) size of the vector. The use of this dictionary is mandatory if one want to use Smatrix in Cling and
with I/0.

1.13.1.1 Creating a Vector

The following constructors are available to create a vector:

o Default constructor for a zero vector (all elements equal to zero).

1.13. LINEAR ALGEBRA: SMATRIX PACKAGE 41

o Constructor (and assignment) from a vector expression, like v=p*q+w. Due to the expression template technique,
no temporary objects are created in this operation.

o Constructor by passing directly the elements. This is possible only for vectors up to size 10.

e Constructor from an iterator copying the data referred by the iterator. It is possible to specify the begin and end
of the iterator or the begin and the size. Note that for the Vector the iterator is not generic and must be of type
T*, where T is the type of the contained elements.

In the following example we assume that we are using the namespace ROOT: :Math

//create an empty wvector of size 3 (v[0]=v[1]=v[2]=0)
SVector<double,3> v;

double d[3] = {1,2,3};

SVector<double,3> v(d,3); //create a vector from a C array

1.13.1.2 Accessing and Setting Methods

The single vector elements can be set or retrieved using the operator[i], operator (i) or the iterator interface. Notice
that the index starts from zero and not from one as in FORTRAN. Also no check is performed on the passed index.
The full vector elements can be set also by using the SetElements function passing a generic iterator.

double x = m(i); // return the i-th element
x = *(m.begin(O+i); // return the i-th element
v[0] = 1; // set the first element
v(1l) = 2; // set the second element
*(v.begin()+3) = 3; // set the third element

std: :vector<double> w(3);

// set vector elements from a std::vector<double>::iterator
v.SetElements (w.begin() ,w.end());

In addition there are methods to place a sub-vector in a vector. If the size of the sub-vector is larger than the vector
size a static assert (a compilation error) is produced.

SVector>double,N> v;

SVector>double,M> w;

// M <= N otherwise a compilation error is obtained later
// place a vector of size M starting from

// element ioff, vlioff+i]=w[i]

v.Place_at(w,ioff);

// return a sub-vector of size M starting from

// vltoffl: wlit]=v[toff+i]

w = v.Sub < SVector>double,M> > (ioff);

For the vector functions see later in the Matrix and Vector Operators and Functions paragraph.

1.13.2 Example: Matrix Class (SMatrix)

The template class ROOT: :Math: :SMatrix represents a matrix of arbitrary type with nrows x ncol dimension. The
class has 4 template parameters, which define at compile time, its properties:

e type of the contained elements, T, for example float or double;

e number of rows;

e number of columns;

o representation type. This is a class describing the underlined storage model of the Matrix. Presently exists only
two types of this class:

42

CHAPTER 1. MATH LIBRARIES IN ROOT

e ROOT: :Math: :MatRepStd for a general nrows x ncols matrix. This class is itself a template on the contained
type T, the number of rows and the number of columns. Its data member is an array T [nrows*ncols] containing
the matrix data. The data are stored in the row-major C convention. For example, for a matrix M, of size 3x3,
the data {a0,al,...,a8} are stored in the following order:

ap a1 a2
M = az a4 as
ag a7 as

e ROOT::Math: :MatRepSym for a symmetric matrix of size NxN. This class is a template on the contained type and
on the symmetric matrix size N. It has as data member an array of type T of size N*(N+1) /2, containing the lower
diagonal block of the matrix. The order follows the lower diagonal block, still in a row-major convention. For
example for a symmetric 3x3 matrix the order of the 6 independent elements {a0,al,...,a5} is:

apg ai asg
M = al as Qg
az a4 as

1.13.2.1 Creating a Matrix

The following constructors are available to create a matrix:

o Default constructor for a zero matrix (all elements equal to zero).
¢ Constructor of an identity matrix.

o Copy constructor (and assignment) for a matrix with the same representation, or from a different one when
possible, for example from a symmetric to a general matrix.

o Constructor (and assignment) from a matrix expression, like D=A*B+C. Due to the expression template technique,
no temporary objects are created in this operation. In the case of an operation like A=A*B+C, a temporary object
is needed and it is created automatically to store the intermediary result in order to preserve the validity of this
operation.

e Constructor from a generic STL-like iterator copying the data referred by the iterator, following its order. It
is both possible to specify the begin and end of the iterator or the begin and the size. In case of a symmetric
matrix, it is required only the triangular block and the user can specify whether giving a block representing the
lower (default case) or the upper diagonal part.

Here are some examples on how to create a matrix. We use typedef’s in the following examples to avoid the full
C++ names for the matrix classes. Notice that for a general matrix the representation has the default value,
ROOT: :Math: :MatRepStd, and it is not needed to be specified. Furthermore, for a general square matrix, the number
of column may be as well omitted.

// typedef definitions used in the following declarations
typedef ROOT::Math::SMatrix<double,3> SMatrix33;
typedef ROOT: :Math::SMatrix<double,2> SMatrix22;
typedef ROOT::Math::SMatrix<double,3,3,

ROOT: :Math: :MatRepSym<double,3>> SMatrixSym3;

typedef ROOT::Math::SVector>double,2> SVector2;
typedef ROOT::Math::SVector>double,3> SVector3;
typedef ROOT::Math::SVector>double,6> SVector6;
SMatrix33 m0; // create a zero 3z3 matric

// create an 3z3 identity matric
SMatrix33 i = ROOT::Math::SMatrixIdentity();

double alo] = {1,2,3,4,5,6,7,8,9}; // input matriz data
// create a matriz using the al[] data
SMatrix33 m(a,9); // this will produce the 3z3 matriz

// (1 2 3)
// (4 5 6)
// « 7 8 9)

1.13. LINEAR ALGEBRA: SMATRIX PACKAGE 43
Example to fill a symmetric matrix from an std: :vector:

std: :vector<double> v(6);
for (int i = 0; i<6; ++i) v[i] = double(i+1);
SMatrixSym3 s(v.begin(),v.end()) // this will produce the
// symmetric matric
/7 ¢ 1 2 4)
/7 (2 3 5)
/7 ¢ 4 5 6)
//create a general matriz from a symmetric matriz (the opposite
// will not compile)
SMatrix33 m2 = s;

1.13.2.2 Accessing and Setting Methods

The matrix elements can be set using the operator() (irow,icol), where irow and icol are the row and column
indexes or by using the iterator interface. Notice that the indexes start from zero and not from one as in FORTRAN.
Furthermore, all the matrix elements can be set also by using the SetElements function passing a generic iterator. The
elements can be accessed by the same methods as well as by using the function ROOT: :Math: : SMatrix: :apply. The
apply (i) has exactly the same behavior for general and symmetric matrices; in contrast to the iterator access methods
which behave differently (it follows the data order).

SMatrix33 m;

m(0,0) = 1; // set the element in first row and first column
*(m.begin()+1) = 2; // set the second element (0,1)

double d[9]={1,2,3,4,5,6,7,8,9};

m.SetElements(d,d+9) ; // set the d[] walues in m

double x = m(2,1); // return the element in 3

x = m.apply(7); // return the 8-th element (row=2,col=1)

x = *(m.begin(O+7); // return the 8-th element (row=2,col=1)

// symmetric matrices

//(note the difference in behavior between apply and the iterators)
*(m.begin()+4) // return the element (row=2,col=1)
m.apply(7); // returns again the (row=2,col=1) element

X
X

There are methods to place and/or retrieve ROOT: :Math: : SVector objects as rows or columns in (from) a matrix.
In addition one can put (get) a sub-matrix as another ROOT: :Math: : SMatrix object in a matrix. If the size of the
sub-vector or sub-matrix is larger than the matrix size a static assert (a compilation error) is produced. The non-const
methods are:

SMatrix33 m;

SVector2 v2(1,2);

// place a wvector in the first row from
// element (0,1) : m(0,1)=v2[0]
m.Place_in_row(v2,0,1);

// place the vector in the second column from
/7 (0,1) : m(0,1) = v2[0]

m.Place in_col(v2,0,1);

SMatrix22 m2;

// place m2 in m starting from the

// element (1,1) : m(1,1) = m2(0,0)
m.Place_at(m2,1,1);

SVector3 v3(1,2,3);

// set v3 as the diagonal elements

// of m : m(i,t) = v3[i] for t=0,1,2
m.SetDiagonal (v3)

The const methods retrieving contents (getting slices of a matrix) are:

a=9{1,2,3,4,5,6,7,8,9};
SMatrix33 m(a,a+9);

44 CHAPTER 1. MATH LIBRARIES IN ROOT

SVector3 irow = m.Row(0); // return as vector the first row
SVector3 jcol = m.Col(1); // return as vector the second column

// return a slice of the first row from

// (0,1): r2[0]= m(0,1); r2[1]=m(0,2)
SVector2 r2 = m.SubRow<SVector2> (0,1);
// return a slice of the second column from
// (0,1): c2[0] = m(0,1); c2[1] = m(1,1)
SVector2 c2 = m.SubCol<SVector2> (1,0);

// return a sub-matriz 2z2 with the upper left corner at(1,1)
SMatrix22 subM = m.Sub<SMatrix22> (1,1);

// return the diagonal element in a SVector
SVector3 diag = m.Diagonal();

// return the upper(lower) block of the matriz m
SVector6 vub = m.UpperBlock(); // wub = [1, 2, 3,
SVector6 vlb = m.LowerBlock(); // wlb [1, 4, 5,

5, 6, 9]
7,8, 9]

1.13.2.3 Linear Algebra Matrix Functions (Inversion, Determinant)

Only limited linear algebra functionality is available for SMatrix. It is possible for squared matrices NxN, to find the
inverse or to calculate the determinant. Different inversion algorithms are used if the matrix is smaller than 6x6 or if
it is symmetric. In the case of a small matrix, a faster direct inversion is used. For a large (N>6)symmetric matrix
the Bunch-Kaufman diagonal pivoting method is used while for a large (N>6) general matrix an LU factorization is
performed using the same algorithm as in the CERNLIB routine dinv.

// Invert a NzN matriz.

// The inverted matriz replaces the existing one if the

// result is successful

bool ret = m.Invert(); // return the inverse matriz of m.

// If the inversion fails ifail is different than zero 222
int ifail = O;
ifail = m.Inverse(ifail);

// determinant of a square matriz - calculate the determinant
// modyfing the matriz content and returns it if the calculation
// was successful

double det;

bool ret = m.Det(det);

// calculate determinant by using a temporary matriz; preserves
// matriz content
bool ret = n.Det2(det);

1.13.3 Example: Matrix and Vector Functions and Operators
1.13.3.1 Matrix and Vector Operators

The ROOT: :Math: : SVector and ROOT: :Math: : SMatrix classes define the following operators described below. The m1,
m2, m3 are vectors or matrices of the same type (and size) and a is a scalar value:

ml == m2 // returns whether ml is equal to m2
// (element by element comparison)

ml !'= m2 // returns whether ml is NOT equal to m2
// (element by element comparison)

ml < m2 // returns whether ml is less than m2
// (element wise comparison)

ml > m2 // returns whether ml is greater than m2

1.13. LINEAR ALGEBRA: SMATRIX PACKAGE 45

// (element wise comparison)

// in the following ml and m3 can be general and m2 symmetric,
// but nmot wvice-versa

ml += m2 // add m2 to ml

ml -= m2 // subtract m2 to ml
m3 = ml + m2 // addition

ml - m2 // subtraction

// Multiplication and division via a scalar value a

m3 = a*ml; m3 = mi*a; m3 = ml/a;

Vector-Vector multiplication: The operator * defines an element by element multiplication between vectors.
For the standard vector-vector algebraic multiplication returning a scalar, vTv (dot product), one must use the
ROOT: :Math: :Dot function. In addition, the Cross (only for vector sizes of 3), ROOT: :Math: :Cross, and the
Tensor product, ROOT: :Math: : TensorProd, are defined.

Matrix - Vector multiplication: The operator * defines the matrix-vector multiplication: y; = > M ;. The
operation compiles only if the matrix and the vectors have the right sizes.

//M is a NlzN2 matriz, = is a N2 size vector, y is a N1 size vector
y=M=x*x

Matrix - Matrix multiplication: The operator * defines the matrix-matrix multiplication: C; ; =", A; B ;-

// A is a N1zN2 matriz, B is a N2zN3 matriz and C is a N1zN3 matriz
C=A%B

The operation compiles only if the matrices have the right size. In the case that A and B are symmetric matrices, C is a
general one, since their product is not guaranteed to be symmetric.

1.13.4 Matrix and Vector Functions

The most used matrix functions are:

e ROOT::Math: :Transpose (M) returns the transpose matrix MT
e ROOT::Math::Similarity(v,M) returns the scalar value resulting from the matrix-vector product vIMv

e ROOT::Math::Similarity(U,M) returns the matrix resulting from the product: U M UT. If M is symmetric, the
returned resulting matrix is also symmetric

e ROOT::Math::SimilarityT(U,M) returns the matrix resulting from the product: UT M U. If M is symmetric, the
returned resulting matrix is also symmetric

The major vector functions are:

e ROOT::Math: :Dot(v1l,v2) returns the scalar value resulting from the vector dot product

e ROOT::Math::Cross(vl,v2) returns the vector cross product for two vectors of size 3. Note that the Cross
product is not defined for other vector sizes

e ROOT::Math: :Unit(v) returns unit vector. One can use also the v.Unit () method.
e ROOT: :Math: :TensorProd(v1l,v2) returns a general matrix Mof size N1xN2 resulting from the tensor product

between the vector v1 of size N1 and v2 of size N2:

For a list of all the available matrix and vector functions see the SMatrix online reference documentation.

46 CHAPTER 1. MATH LIBRARIES IN ROOT

1.13.4.1 Matrix and Vector I/0

One can print (or write in an output stream) Vectors and Matrices) using the Print method or the << operator:

// m is a SMatriz or a SVector object
m.Print(std::cout);
std::cout << m << std::endl;

In the ROOT distribution, the Cling dictionary is generated for SMatrix and SVector for for Double_t, Float_t and
Double32_t up to dimension 7. This allows the possibility to store them in a ROOT file.

1.14 ROOT Statistics Classes

1.14.1 Classes for Computing Limits and Confidence Levels

TFeldmanCousins class calculates the CL upper/lower limit for a Poisson process using the Feldman-Cousins method
(as described in PRD V57 #7, p3873-3889). No treatment is provided in this method for the uncertainties in the signal
or the background.

TRolke computes confidence intervals for the rate of a Poisson process in the presence of background and efficiency,
using the profile likelihood technique for treating the uncertainties in the efficiency and background estimate. The
signal is always assumed to be Poisson; background may be Poisson, Gaussian, or user-supplied; efficiency may be
Binomial, Gaussian, or user-supplied. See publication at Nucl. Instrum. Meth. A551:493-503,2005.

TLimit class computes 95% C.L. limits using the Likelihood ratio semi-Bayesian method (method; see e.g. T. Junk,
NIM A434, p. 435-443, 1999). It takes signal background and data histograms wrapped in a TLimitDataSource as
input, and runs a set of Monte Carlo experiments in order to compute the limits. If needed, inputs are fluctuated
according to systematic.

1.14.2 Specialized Classes for Fitting

TFractionFitter fits Monte Carlo (MC) fractions to data histogram (a la HMCMLL, R. Barlow and C. Beeston, Comp.
Phys. Comm. 77 (1993) 219-228). It takes into account both data and Monte Carlo statistical uncertainties through a
likelihood fit using Poisson statistics. However, the template (MC) predictions are also varied within statistics, leading
to additional contributions to the overall likelihood. This leads to many more fit parameters (one per bin per template),
but the minimization with respect to these additional parameters is done analytically rather than introducing them as
formal fit parameters. Some special care needs to be taken in the case of bins with zero content.

TMultiDimFit implements multi-dimensional function parameterization for multi-dimensional data by fitting them to
multi-dimensional data using polynomial or Chebyshev or Legendre polynomial

TSpectrum contains advanced spectra processing functions for 1- and 2-dimensional background estimation, smoothing,
deconvolution, peak search and fitting, and orthogonal transformations.

RooFit is a complete toolkit for fitting and data analysis modeling (see the RooFit User Guide at ftp://root.cern.ch/root/doc/RooF:
29.pdf)

TSplot to disentangle signal from background via an extended maximum likelihood fit and with a tool to access the
quality and validity of the fit producing distributions for the control variables. (see M. Pivk and F.R. Le Diberder,
Nucl. Inst. Meth.A 555, 356-369, 2005).

1.14.3 Multi-variate Analysis Classes

TMultiLayerPerceptron is a Neural Network class (see for more details the chapter “Neural Networks”).
TPrincipal provides the Principal Component Analysis.
TRobustEstimator is a robust method for minimum covariance determinant estimator (MCD).

TMVA is a package for multivariate data analysis (see http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf the
User’s Guide).

http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf

	Math Libraries in ROOT
	MathCore Library
	MathMore Library
	TMath
	Numerical Constants
	Elementary Functions
	Statistic Functions Operating on Arrays.
	Special and Statistical Functions.

	Random Numbers
	TRandom
	TRandom1
	TRandom2
	TRandom3
	Seeding the Generators
	Examples of Using the Generators
	Random Number Distributions
	UNURAN
	Performances of Random Numbers

	Mathematical Functions
	Special Functions in MathCore
	Special Functions in MathMore
	Probability Density Functions (PDF)
	Cumulative Distribution Functions (CDF)

	Numerical Algorithms
	ROOT::Math Function interfaces
	One-dimensional Function Interfaces
	Multi-dimensional Function Interfaces
	Parametric Function Interfaces
	Wrapper Functions

	Numerical Integration
	Integration of One-dimensional Functions
	One-dimensional Integration Algorithms
	Multi-dimensional Integration

	Function Derivation
	Numerical Minimization
	One-Dimensional Minimization
	Multi-Dimensional Minimization

	ROOT Finder Algorithms
	Generic Vectors for 2, 3 and 4 Dimensions (GenVector)
	Main Characteristics
	Example: 3D Vector Classes
	Example: 3D Point Classes
	Example: LorentzVector Classes
	Example: Vector Transformations
	Example with External Packages

	Linear Algebra: SMatrix Package
	Example: Vector Class (SVector)
	Example: Matrix Class (SMatrix)
	Example: Matrix and Vector Functions and Operators
	Matrix and Vector Functions

	ROOT Statistics Classes
	Classes for Computing Limits and Confidence Levels
	Specialized Classes for Fitting
	Multi-variate Analysis Classes

