Contents

1 Object Ownership

1.1 Ownership by Current Directory (gDirectory)

1.2 Ownership by the Master TROOT Object (SROOT) o i it

1.2.1 The Collection of Specials
1.2.2 Access to the Collection Contents . . .
1.3 Ownership by Other Objects
1.4 Ownership by the User
1.4.1 The kCanDelete Bit
1.4.2 The kMustCleanup Bit

< NS, TS TS, SRS U N JCR U

CONTENTS

Chapter 1

Object Ownership

An object has ownership of another object if it has permission to delete it. Usually a collection or a parent object
such as a pad holds ownership. To prevent memory leaks and multiple attempts to delete an object, you need to know
which objects ROOT owns and which are owned by you.

The following rules apply to the ROOT classes.

o Histograms, trees, and event lists created by the user are owned by current directory (gDirectory). When the
current directory is closed or deleted the objects it owns are deleted.

o The TROOT master object (gROOT) has several collections of objects. Objects that are members of these collections
are owned by gROOT see “Ownership by the Master TROOT Object (gROOT).

o Objects created by another object, for example the function object (e.g.TF1) created by the TH1: :Fitmethod is
owned by the histogram.

e An object created by DrawCopy methods, is owned by the pad it is drawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe each rule and user ownership
in more detail.

1.1 Ownership by Current Directory (gDirectory)

When a histogram, tree, or event list (TEventList) is created, it is added to the list of objects in the current directory
by default. You can get the list of objects in a directory and retrieve a pointer to a specific object with the GetList
method. This example retrieves a histogram.

THIF *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. It looks in memory, and is
implemented in all ROOT collections. You can change the directory of a histogram, tree, or event list with the
SetDirectory method. Here we use a histogram for an example, but the same applies to trees and event lists.

h->SetDirectory(newDir) ;

You can also remove a histogram from a directory by using SetDirectory(0). Once a histogram is removed from the
directory, it will not be deleted when the directory is closed. It is now your responsibility to delete this histogram once
you have finished with it. To change the default that automatically adds the histogram to the current directory, you
can call the static function:

TH1::AddDirectory (kFALSE) ;

Not all histograms created here after will be added to the current directory. In this case, you own all histogram objects
and you will need to delete them and clean up the references. You can still set the directory of a histogram by calling
SetDirectory once it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are deleted.

4 CHAPTER 1. OBJECT OWNERSHIP

1.2 Ownership by the Master TROOT Object (gROOT)

The master object gROOT, maintains several collections of objects. For example, a canvas is added to the collection of
canvases and it is owned by the canvas collection.

TSeqCollection* fFiles List of TFile

TSeqCollection* fMappedFiles List of TMappedFile
TSeqCollection* fSockets List of TSocket and TServerSocket
TSeqCollection* fCanvases List of TCanvas

TSeqCollection* fStyles List of TStyle

TSeqCollection* fFunctions List of TF1, TF2, TF3
TSeqCollection* fTasks List of TTask

TSeqCollection* fColors List of TColor

TSeqCollection* fGeometries List of geometries
TSeqCollection* fBrowsers List of TBrowser

TSeqCollection* fSpecials List of special objects
TSeqCollection* fCleanups List of recursiveRemove collections

These collections are also displayed in the root folder of the Object Browser. Most of these collections are self
explanatory. The special cases are the collections of specials and cleanups.

1.2.1 The Collection of Specials

This collection contains objects of the following classes: TCutG, TMultiDimFit, TPrincipal, TChains. In addition it
contains the gHtml object, gMinuit objects, and the array of contours graphs (TGraph) created when calling the Draw
method of a histogram with the "CONT, LIST" option.

1.2.2 Access to the Collection Contents

The current content for a collection listed above can be accessed with the corresponding gRO0T->GetList0f method
(for example gROOT->GetListO0fCanvases). In addition, gROOT->GetListOfBrowsables returns a collection of all
objects visible on the left side panel in the browser. See the image of the Object Browser in the next figure.

% RODT Object Browser _ [O] %]

Eile Miew Qpfions

29 root - | Egl“,?

| &ll Folders | Cantents of “/roat"
| oot [Browsers] Canvases

1 home spanacek] Classes (] Clearups
(IROOT Files [Colors (] Functions
|:| Geometries |:| Handlers

[MapFiles (_JROOT Files
(] Sockets (] Specials
|:| Streamer info |:| Styles

|:| Tasks

15 Obijects. | Coubaly linked list i

Figure 1.1: The ROOT Object Browser

1.3. OWNERSHIP BY OTHER OBJECTS 5

1.3 Ownership by Other Objects

When an object creates another, the creating object is the owner of the created one. For example:
myHisto->Fit ("gaus")

The call to Fit copies the global TF1 Gaussian function and attaches the copy to the histogram. When the histogram is
deleted, the copy is deleted also.

When a pad is deleted or cleared, all objects in the pad with the kCanDelete bit set are deleted automatically. Currently
the objects created by the DrawCopy methods, have the kCanDelete bit set and are therefore owned by the pad.

1.4 Ownership by the User

The user owns all objects not described in one of the above cases. TObject has two bits, kCanDelete and kMustCleanup,
that influence how an object is managed (in TObject::fBits). These are in an enumeration in TObject.h. To set
these bits do:

MyObject->SetBit (kCanDelete)
MyObject->SetBit (kMustCleanup)

The bits can be reset and tested with the TObject: :ResetBit and TObject: :TestBit methods.

1.4.1 The kCanDelete Bit

The gROOT collections (see above) own their members and will delete them regardless of the kCanDelete bit. In all
other collections, when the collection Clear method is called (i.e. TList::Clear()), members with the kCanDelete
bit set, are deleted and removed from the collection. If the kCanDelete bit is not set, the object is only removed from
the collection but not deleted.

If a collection Delete (TList: :Delete()) method is called, all objects in the collection are deleted without considering
the kCanDelete bit. It is important to realize that deleting the collection (i.e. delete MyCollection), DOES NOT
delete the members of the collection.

If the user specified MyCollection->SetOwner () the collection owns the objects and delete MyCollection will delete
all its members. Otherwise, you need to:

// delete all member objects in the collection
MyCollection->Delete() ;

// and delete the collection object
delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and the user can set it for any object. For example,
the user must manage all graphics primitives. If you want TCanvas to delete the primitive you created you have to set
the kCanDelete bit.

The kCanDelete bit setting is displayed with TObject::1s(). The last number is either 1 or 0 and is the kCanDelete
bit.

root[] TCanvas MyCanvas("MyCanvas")
root[] MyCanvas.Divide(2,1)
root[] MyCanvas->cd(MyCanvas_1)

root[] hstat.Draw() // hstat is an existing THIF
root[] MyCanvas->cd(MyCanvas_2)
root[] hstat.DrawCopy() // DrawCopy sets the kCanDelete bit

(class TH1%)0x88e73f8
root[] MyCanvas.ls()
Canvas Name=MyCanvas ...
TCanvas ... Name= MyCanvas ...
TPad ... Name= MyCanvas_1 ...

6 CHAPTER 1. OBJECT OWNERSHIP

TFrame

0BJ: THIF hstat Event Histogram : 0
TPaveText ... title

TPaveStats ... stats
TPad ... Name= MyCanvas_2

TFrame

0BJ: THIF hstat Event Histogram : 1
TPaveText ... title

TPaveStats ... stats

1.4.2 The kMustCleanup Bit

When the kMustCleanup bit is set, the object destructor will remove the object and its references from all collections
in the clean up collection (gROOT: :fCleanups). An object can be in several collections, for example if an object is in a
browser and on two canvases. If the kMustCleanup bit is set, it will be removed automatically from the browser and
both canvases when the destructor of the object is called.

The kMustCleanup bit is set:

o When an object is added to a pad (or canvas) in TObject: : AppendPad.

e« When an object is added to a TBrowser with TBrowser: : Add.

e When an object is added to a TFolder withTFolder: :Add.

e When creating an inspector canvas with TInspectCanvas: : Inspector.

e When creating a TCanvas.

e When painting a frame for a pad, the frame’s kMustCleanup is set in TPad: :PaintPadFrame

The user can add their own collection to the collection of clean ups, to take advantage of the automatic garbage
collection. For example:

// create two list
TList #*myListl, *myList2;

// add both to of clean ups
gRO0T->GetList0fCleanUps () ->Add (myList1);
gRO0OT->GetList0fCleanUps () ->Add (myList2) ;

// assuming myObject is in myListl and myList2, when calling:
delete myObject;

// the object is deleted from both lists

	Object Ownership
	Ownership by Current Directory (gDirectory)
	Ownership by the Master TROOT Object (gROOT)
	The Collection of Specials
	Access to the Collection Contents

	Ownership by Other Objects
	Ownership by the User
	The kCanDelete Bit
	The kMustCleanup Bit

