Contents

1 ROOT/Qt Integration Interfaces

1.1

1.2

3
Qt-ROOT Implementation of TVirtualX Interface (BNL) 3
1.1.1 Imstallation oL 3
1.1.2 Applications 4
1.1.3 TQtWidget Class, Qt Signals / Slots and TCanvas Interface 11
GSI QtROOT . . . e 13
1.2.1 Create a New Project in the Designer 15
1.2.2 main() 15

CONTENTS

Chapter 1

ROOT/Qt Integration Interfaces

1.1 Qt-ROOT Implementation of TVirtualX Interface (BINL)

Qt-ROOT implementation of TVirtualX (Qt-layer) is to provide a convenient way of creating the complex end-user
applications that require both Qt GUI and ROOT features. The primary goal is to allow “embedding” the ROOT
classes like TCanvas and TPad into the arbitrary Qt widgets and using it seamlessly with other Qt-based components
and Qt-based third party libraries. TGQt ROOT class, a Qt-based implementation of TVirtualX interface is an optional
ROOT component. The implementation was developed and is supported by the collaboration at Brookhaven National
Laboratory.

1.1.1 Installation
1.1.1.1 Qt Package Installation and Configuration

ROOT Qt-layer requires a “good” properly configured Qt package version. To install it, one has to:

1. Make sure the adequate version of Qt system. Even though Qt ROOT implementation theoretically can work with
any Qt release version 3.xx, we found the earlier versions of the package not reliable and recommend installing
the Qt version 3.3 or higher. The package was tested against Qt 4.3 also (Qt 4.3 and higher versions contain
some features introduced by TrollTech to back the ROOT applications).

2. Check the Qt package configuration and its compilation options are consistent with those used to compile and
install ROOT alone. For Qt 3.x, we recommend configuring Qt as follows:

./configure -thread -no-xft -qt-gif -no-exeptions

I.e. one is required to build the Qt version with the “thread” support and with “no exceptions”. Generally, you are
free to select the remaining Qt options like the types of the different image formats provided etc. You can check the Qt
installation parameters by looking up the file:

more $QTDIR/config.status

No special flag for Qt 4.3 build and higher have been set yet to make QtRoot working.

3. Attention. The Qt port for 4.3 and above versions should be considered as an experimental one. Most examples
in this manual are for Qt version 3.3 and they need to be adjusted for Qt 4.3.x.

1.1.1.2 Qt-layer Installation

The Qt-layer is included into the ROOT distribution kit. To install it one has to configure ROOT. The installation
does not change any other components of the ROOT package. It produces several extra-shared libraries that may be
dynamically loaded into the ROOT session at start time with the regular ROOT plug-in mechanism to replace the
“native” GUI interface. To install Qt-layer one should follow the ROOT installation procedure providing the QTDIR
environment variable points to the proper version of Qt system. Many Linux flavors come with the pre-installed Qt.
May sure you are not going to pick the obsolete version.

4 CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

% cd root

% ./configure <target> --enable-qt
% gmake

% gmake install

1.1.1.3 Qt Main C++4 Classes Cling Dictionary

The ROOT Cling dictionary allows to call the Qt main classes directly from the ROOT command prompt is an optional
component and it is not created during the “Qt-layer installation”. To build / re-build the Qt main classes ROOT
dictionary one can invoke the make

% cd root
% gmake qtcint

The dictionary contains so-called Qt main classes as defined by TrollTech on the Web page: http://doc.trolltech.com/3.
3/mainclasses.html. The dictionary is NOT loaded automatically and it should be loaded by the user ROOT macro as
needed.

1.1.1.4 Qt-layer Configuration

Any ROOT-based application should be configured to use Qt-layer using ROOT “Environment Setup”. The correct
QTDIR environment variable to locate the proper version of Qt package should be provided as well. There are several
ways to customize the ROOT setup environment to activate Qt-layer.

Look up at $RO0TSYS/etc/system.rootrc. Find there the definition of Gui.Backend and Gui.Factory:

GUI specific settings
Gui.Backend: native
Gui.Factory: native

Now you can either edit the file $RO0TSYS/etc/system.rootrc or provide your own custom .rootrc redefine the
options:

GUI specific settings
Gui.Backend: qt
Gui.Factory: qt

If you need to switch often from native layer to qt one back and force you may find convenient to define the type of
GUTI using some external environment variable defining options indirectly:

GUI specific settings
Gui.Backend: $(GUI)
Gui.Factory: $(GUID)

The last step is to make sure your LD_LIBRARY_PATH variable point to the $QTDIR/1ib directory. Optionally, you can

define the Qt Widget “look and feel” using the option Gui.Style option. The number of different styles to choose

from is defined by your local Qt installation. Usually you can choose from “window”, “motif”, “cde”, “motifplus”,
O P14 W ” W

“platinum”, “sgi”, “compact”, “windowsxp”, “aqua” or “macintosh”. For example, the option defined below will force
the “windows” look and feel on any platform.

Qt GUI style setting
Gui.Style: windows

The default style is so-called “native” style. That is defined by the current application environment.

1.1.2 Applications

As soon as you customize ROOT “Environment Setup” to use Qt-layer you can start any ROOT session or stand-alone
ROOT-based applications and ... even though your applications will be using the Qt package you should not see any
difference. This merely means if the only thing you want to do is just use ROOT or some ROOT-based stand-alone
application “as is” then you probably do not need to switch to Qt-layer and should skip this section entirely. It is
recommended you communicate the lower graphical layer via the generic TVirtualX interface provided by the global
gVirtualX.

http://doc.trolltech.com/3.3/mainclasses.html
http://doc.trolltech.com/3.3/mainclasses.html

1.1. QT-ROOT IMPLEMENTATION OF TVIRTUALX INTERFACE (BNL) 5

1.1.2.1 Qt-based ROOT Applications

“ROOT application” is the application that either instantiates the ROOT TApplication / TRint class and enters
the ROOT event loop or is the shared library that can be loaded into the already running ROOT application via
TSystem: :Load method or via ROOT plug-in mechanism. You must neither initialize Qt QApplication nor enter the
Qt event loop. Qt-layer takes care about these two steps. What you need is to instantiate the Qt object of your choice
and to keep playing ROOT rules.

#include <TRint.h>

#include <qpushbutton.h>

int main(int argc, char **argv) {
// Create an interactive ROOT application
TRint *theApp = new TRint("Rint", &argc, argv);
// Create Qt object within ROOT application
QPushButton hello("Hello world!", 0);
hello.resize(100, 30);
hello.show();
// and enter the ROOT event loop...
theApp—>Run() ;

Under UNIX, you can build the stand-alone ROOT HelloWord Qt-based application with the command

g+t+ “root-config --cflags --glibs® -I$QTDIR/include -L$QTDIR/1lib
-lqt-mt HelloWord.cxx -o HelloWord

1.1.2.2 ROOT-based Qt Applications

“Qt application” is the application that either instantiates the Qt QApplication and enters the Qt event loop or is the
shared library that can be loaded into the already running Qt application via Qt plug-in mechanism. You must neither
initialize ROOT TApplication / TRint nor enter the ROOT event loop. Qt-layer takes care about both of these steps.
What you need is just to instantiate the embedded and regular ROOT objects of your choice and keep playing Qt rules.
ROOT-based Qt applications treat the “native” style of the ROOT Gui.Backend and Gui.Factory parameters as “qt”.
For example,

// Minimal ROOT based (t example
#include <qapplication.h>
#include "TGraph.h"

#include "TQtWidget.h"

#include "TCanvas.h"

int main(int argc, char x*argv) {

QApplication *app = new QApplication(argc, argv);
TQtWidget *MyWidget= new TQtWidget (0, "MyWidget");
// Create any other Qt-widget here
MyWidget->show() ;

MyWidget->GetCanvas ()->cd () ;

TGraph *mygraph;

float x[3] = {1,2,3};

float y[3] = {1.5, 3.0, 4.5};

mygraph = new TGraph(3,x,y);
mygraph->SetMarkerStyle (20) ;

mygraph->Draw ("AP") ;
MyWidget->GetCanvas () ->Update () ;

app—>exec() ;

return O;

The code above can be converted into the running application using qmake, TrollTech provided, build utility. As soon
as you have qmake project file HelloCanvas.pro:

6 CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

Automatically generated by gmake (1.07a) Sun Jun 26 02:03:47 2005
Adjusted by hand to include $RO0TSYS/include/rootcling.pri file

TEMPLATE = app thread
CONFIG -= moc
INCLUDEPATH += .

include "by hand" the gmake include file from

ROOT distribution to define

1. include path to the ROOT system header files

2. the list of the ROOT shared libraries to link
Qt application against of

3. gmake rules to generate ROOT/Cint dictionaries

include ("$(ROOTSYS) /include/rootcling.pri™)

Input
SOURCES += HelloCanvas.cxx

You can get the running ROOT-based Qt application with the Unix shell commands:

gmake HelloCanvas.pro
make
HelloCanvas

1.1.2.3 Qt Project for Creation of ROOT Shared Libraries with Qt Components and ROOT Dictio-
naries

It is possible and desirable to create the ROOT-based Qt application with TrollTech provided gmake utility. To do
that one should include one qmake include file, namely, $R00TSYS/include/rootcling.priwith one extra line in the
project file (as the example above has revealed). The include file defines all necessary components one needs to compile
and link the healthy Qt application against of the ROOT shared libraries. It contains the qmake rules to create the
ROOT/Cling dictionary from the list of the provided header files.

For example, we may convert the stand-alone Qt-based ROOT application above into C++ class with RootCint
dictionary, that one loads into the interactive ROOT session and invokes interactively. This task requires four simple
files.

1. Class dictionary definition file LinkDef .h:

#ifdef __CLING__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functioms;

#pragma link C++ class TMy(QButton;

#endif
2. Class header file TMyQButton.h:

#ifndef ROOT_TMyQButton
#define ROOT_TMyQButton
#include "Rtypes.h"

class (QPushButton;
class TVirtualPad;

class TMyQButton {
private:
QPushButton *fMyButton;

1.1. QT-ROOT IMPLEMENTATION OF TVIRTUALX INTERFACE (BNL) 7

public:
TMyQButton(const char*name="");
virtual ~TMyQButton();
void SetSize(UInt_t w, Ulnt_t h);
void Show(Bool_t show=KTRUE) ;
void SetText(const char *text);
void SetOn(Bool_t on=KTRUE) ;
void SetStyle(const char * style);
};
#endif

3. Class implementation file TMyQButton. cxx:

#include "TMyQButton.h"
#include <gpushbutton.h>

// This class allow you to create and manipulate the {PushButton
// tinteractively
TMyQButton: : TMyQButton(const char *name) {
// Create @t QPushButton interactively
fMyButton = new QPushButton(name,0);
}

TMyQButton: : ~TMyQButton() { delete fMyButton; }

void TMyQButton::SetSize(UInt_t w, UInt_t h) {
// Resize the @t button
fMyButton->resize(w,h) ;
}
void TMyQButton::Show(Bool_t show) {
// Show / hide the button
if (show) fMyButton->show();
else fMyButton->hide() ;
}
void TMyQButton::SetText(const char *text) {
// Set / change the button text
fMyButton->setText (text) ;
}
void TMyQButton::SetOn(Bool_t on) {
fMyButton->setOn(on) ;
}
void TMyQButton::SetStyle(const char * style) {
// Set button's look and feel
// The possible styles are defined by the local Qt installation.
// For ezample the possible style can be: "window", "motif",
// "cde","sgi", "motifplus”, "platinum”, "compact"”, "windowszp",
// "aqua", "macintosh”
fMyButton->setStyle(style);

4. gmake project file MyQButton.pro:

TEMPLATE = 1ib d11 thread
Input

HEADERS += TMyQButton.h
SOURCES += TMy(QButton.cxx

CREATE_ROOT_DICT_FOR_CLASSES = $$HEADERS LinkDef.h
include ("$(ROOTSYS) /include/rootcling.pri")

At this point, you are ready to produce the class-shared library with the ROOT/Cling dictionary by invoking two shell
commands (as above):

8 CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

gqmake MyQButton.pro
make

In addition, get you class into the interactive Root session:
root[] gSystem->Load("lib

Please, pay your attention that class implementation does not contain any Qt system initialization call. Since
the above example is a ROOT application, do not forget, one needs the .rootrc file to assign “qt” value for the
optionsGui.Backend and Gui.Factory.

Note: Do not mix the ROOT GUI and Qt GUI API within the same class implementation.

1.1.2.4 Using Qt “Designer” to Create Qt GUI with Embedded ROOT Objects

Qt package is equipped with Qt designer - a powerful tool to create the high quality, robust GUI interfaces for your
applications. It is possible and desirable to use this utility to create the ROOT-based Qt GUI. To do that one should
add the $RO0TSYS/include/rootcling.pri in the project file generated by designer and configure Qt designer to use
the so-called “custom widget” defined by $RO0TSYS/include/TQtWidget.cw. The file defines the custom TQtWidget
Qt widget to back the embedded TCanvas objects. To customize your designer start designer and select “Edit Custom
Widget” menu:

ot Designer by Trolltech

File Edit Project Search Ioolsl Layout Preview Window Help
[9 [<NoProject> /| X Pointer F2 INEEREEE m\
||T* = %H A? ¥ Connect Signal/Slots F3
ﬂl éE Tab Qrder F4 | o A
Common ... ™ %y Set Buddy F12 Objects IMembers |
PushButton Buttons Name | Class
ﬁ RadioButton Containers
CheckBox
ButtonGroup Views
ListBox Database
LineEdit Input =
SpinBox Display P
TextEdit Custom ™ @ Edit Custom Widgets... [l s e .
ComboBox Configure Toolbox... Pipatiss I Slansllney
 TextLabel > = || Property | Value
b Spacer
| =

Buttons
Containers
Views N
Database .
Input N
Display N
Custom Wi...~

Opens a dialog to add and change custom widgets

Open “Edit Custom Widget” dialog and load the TQtWidget (“embedded” TCanvas) widget definition into the designer.
One should do this at once. Designer will remember the last configuration and will be restoring it for all subsequent
designer sessions.

1.1. QT-ROOT IMPLEMENTATION OF TVIRTUALX INTERFACE (BNL) 9

€ Edit Custom Widgets X]
SRR | New Widget Definition | Signals | Slots | Properties |
Delete Widget Class: ITQTWidget

Headerfile: | TQtWidget.h .| Local

Pixmap: Iﬁﬂ aud

Size Hint: |—1 i“-'l il

Size Policy Preferred jl Preferred 7

_| Container Widget

< and Descriptions...P
= Save Descriptions...l

Help |

A

Now, you can create your shining GUI interface that contains TCanvas / TPad object with all features of these famous
ROOT classes.

We strongly recommend you to read the “Quick Start” section of the Qt designer manual http://doc.trolltech.com/3.
3/designer-manual.html. One can find further information, the examples of the working ROOT-based Qt projects
including all examples of this section as well as the list of the references and publications on the Qt project Web site
http://root.bnl.gov

1.1.2.5 Using Qt Class Library from the ROOT C++ Interpreter

Since the Qt package is a regular C++ class library to use it within ROOT C++ interpreter environment one should
either load the dedicated RootCint dictionary or apply ACLiC mode.

For example, the following ROOT interactive session is to popup the “Open File” Qt dialog box and print out the file
name selected by the user via the dialog.

root[] gSystem->Load("qtcint");
root[] cout << QFileDialog::getOpenFileName() << endl;

The ROOT session:

root[] gSystem->Load("qtcint");

root[] QPrinter p;

root[] p.setup(); // Display the Gt "Setup printer” dialog box
root[] Int_t id = gPad->GetPixmapID();

root[] QPixmap *pix = (QPixmap *) (TGQt::iwid(id));

root[] QPainter pnt(&p);

root[] pnt.drawPixmap(0,0,*pix);

is to display the Qt “Setup Printer” dialog and use QPrinter object to print the current TPad image to the selected
printer. To use the more complex Qt-related code one is advised to apply “ACLiC - Automatic Compiler of Libraries
for Cling” (see Cling the C++ Interpreter). For example:

#ifndef __CLING__

include <qfiledialog.h>
include <gstringlist.h>
include <gstring.h>
#endif

void FileDialog() {

http://doc.trolltech.com/3.3/designer-manual.html
http://doc.trolltech.com/3.3/designer-manual.html
http://root.bnl.gov

10

ot Designer by Trolltech

File Edit Project Search Tools Layout Preview Window

CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

|0 § @ <NoProject> /| [i2Ay | KB B[4

2]

Common ... ™
Buttons ™
Containers .
Views
Database .
Input ™
Display S

Cia TQtWidget

m ROOT (Ot inside)

project] for using ROOT with Gt layer.
Click the histograms from the Listview to
draw them onto the 1d or 2d canvases on
the right pane. You can also use the slider

http://root.bnl.gov

Name | Type |

TQtWidget

[_ ... x
Objects IMembers |
Name Class
LI pixmapL... QLabel
msplitter4 QSplitter
g“'zszistView1 QListView
Oframed |QFrame
QSplitter
TQtWidget
... TQiWidget
QComboBox

- Properties ISignal Handlers |

TQtwidget Property | Value J
name [tQtWidget1 =«
EItH- enabled True
' sizePolicy Preferred/Pre...
minimumSize [[0,0]
maximumSize |[32767, 3276...

paletteForegr...

paletteBackg...

paletteBackg...

palette

backgroundQ...

WidgetOrigin

font

Helvetica-10

[Ready

1.1. QT-ROOT IMPLEMENTATION OF TVIRTUALX INTERFACE (BNL) 11

// This ts small ACLIC wrapper to use @t 3.3 (FileDialog class
// See: http://doc.trolltech.com/3.3/qfiledtalog.html#getOpenFileNames
// To use, invoke ACLiC from the ROOT prompt:
// root [] .x FileDtalog .C++
QStringlist files = QFileDialog::getOpenFileNames ();
QStringlist::Iterator it = files.begin();
while (it != files.end()) {
printf ("Next file selected: %sn", (const char *)(xit));
++it;

With the ROOT ACLiC session:

root [0] .x FileDialog.C++

Info in <TUnixSystem::ACLiC>: creating shared library macros/./FileDialog_C.so
Next file selected: macros/QtFileDialog.C

Next file selected: macros/QtMultiFileDialog.C

Next file selected: macros/QtMultiFileDialog_C.so

Next file selected: macros/QtPrintDialog.C

Next file selected: macros/QtPrintDialog_C.so

Lookin: |4 ratch0/public/ROOT/exper/RootTalk/26.03.2006 7| 4= £F | B &

B FilcDialog.C

B Fi=Dialog_Cs

File name: IzDiaIcg.C" "FileDialog_C.so" "setup_root_cern_5.10.b.csh” Cpen
File type: IAII Files (*) j Cancel

the Qt generated “Open File Dialog” pops up and prints out the list of the selected files.

1.1.3 TQtWidget Class, Qt Signals / Slots and TCanvas Interface

TQtWidget is a QWidget with the QPixmap double buffer. It is designed to back the ROOT TCanvasImp class interface
and it can be used as a regular Qt Widget to create Qt-based GUI with the embedded TCanvas objects. It was
mentioned the class can used as a “custom widget” to create the advanced GUI with the TrollTech “designer” utility.

To do that TQtWidget class can emit the set of the “Qt signals” and it is equipped with the collection of the dedicated
“Qt slots”.

1.1.3.1 TQtWidget Public Qt Slots

TQtWidget class inherits all slots of its base QWidget class (see: http://doc.trolltech.com/3.3/qwidget.html). In
addition, it is in possession of two groups of the dedicated slots.

http://doc.trolltech.com/3.3/qwidget.html

12 CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

virtual void cd();
virtual void cd(int subpadnumber);

Make the associated TCanvas/TPad the current one, the proxy interface to the embedded TCanvas::cd() and
TCanvas::cd(int subpadnumber) methods.

virtual bool Save(const QString &fileName) const

virtual bool Save(const char *fileName) const

virtual bool Save(const QString &fileName,const char *format,
int quality=60) const

virtual bool Save(const char *fileName,const char *format,
int quality=60) const

The slots are to save the double buffer of the TQtWidget object using the default or specified save format. The default
save format is defined either by the “known” file extension or by the “default” file format.

The default format can be changed by TQtWidget: :SetSaveFormat method and it is set to be “PNG” at the class
constructor.

1.1.3.2 TQtWidget Qt Signals

The class object emits the different signals that can be used to create the sophisticated GUI applications.

The signal CanvasPainted() is emitted to notify the GUI that the double buffer of the widget has been filled and
buffer has been painted onto the screen. In the other words, this signal means that all TObject objects of the embedded
TCanvas have been visualized on the screen. The signal:

Saved(bool ok)
is emitted to notify the GUI that a TCanvas has been saved into the file:
RootEventProcessed(TObject *selected, unsigned int event, TCanvas *c)

This signal notifies the Qt framework that the Qt mouse/keyboard event has been process by ROOT. The
signal is disabled by default, i.e. the connected slot is not called unless the signal is explicitly enabled with
TQtWidget: :EnableSignalEvents method.

For example, to create a custom response to the mouse crossing of a TCanvas, you need to connect the
RootEventProsecced signal with your gt slot. The next piece of the code demonstrates that:

connect (tQtWidget,SIGNAL (RootEventProcessed (TObject *,
unsigned int, TCanvas *)),
this,SLOT(CanvasEvent (TObject *, unsigned int, TCanvas *)));

void qtrootexamplel::CanvasEvent(TObject *obj, unsigned int event,
TCanvas *)
{
TQtWidget *tipped = (TQtWidget *)sender();
const char *objectInfo = obj->GetObjectInfo(tipped->GetEventX(),
tipped->GetEventY());
QString tipText ="You have ";
if (tipped == tQtWidgetl)
tipText +="clicked";
else
tipText +="passed";
tipText += " the object <";
tipText += obj->GetName();
tipText += "> of class ";
tipText += obj->ClassName();
tipText += " : ";
tipText += objectInfo;

QWhatsThis: :display(tipText)

1.2. GSI QTROOT 13

1.2 GSI QtROOT

The Qt Interface developed at Darmstadt GSI is a lightweight interface that enables the user to write a Qt 3 application,
which can use ROOT. The Native Qt 4 support is planned and will be available in the near future. Furthermore,
existing Qt 3 Application can use this interface to have almost full access to the Root functionality (see “Create the
Main file for the project” below). Using this interface a full access to both ROOT and Qt widgets is possible in one
application.

An Embedded Root canvas can be set inside any Qt widget by C++ calls or using the Qt designer. To use the Qt 3.x
designer to make ROOT applications with Qt GUI’s follow the steps described below:

1) Add the TQRootCanvas to the Qt Designer:

Start the designer
e In the designer menu choose tools->custom->Edit Custom Widget

¢ In the Edit Custom Widget window choose “Load Description”

From GSI Qt-Root interface directory load the file “TQRootCanvas.cw”

i@ - 6t Designer by Trolitech IBEE]
Eile Edit Project Search Tools Layout Preview Window Help

D& @Frerd]o o bajlear—|+
INECHIEER PIJJDID-JJOI%

Properties |§|gnaIHandIers |

pon S EEE ofa 1@§IM‘

T2 Edit Custom Widgets

Definition ISignaIs | siots | Properties |

New Widget
i Delete Widget | Class: |TQF~:00tCanvas

Headerfile: |t00|s.|’[:|troot_mt-"tqroutcanvas.h ||Global j

Fixmap: J \l J
Sige Hint: |- H |- 4

Size Policy |F'referred j |F'referred j

[T Container Widget

Widgets | Sourc Load Descriptinns...l

Mame 1l | ﬂ Save Descriptions...l

Help |

Edit custom widgets...
2l |

Now you will see the TQRootCanvas in the Class field, you will also see all other parameters, signals, slots and properties
of the TQRootCanvas.

Now we are ready use the TQRootCanvas within the Qt 3.x designer.

14

1]

Help |

My Widget

Delete Widget

Load Descriptions... |

»| Save Descriptinns...l

CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

hackgroundrigin
haseSize

caption

cursar

enabled
focusFolicy

font

eometry

icon

iconText

Type =
Booal
BackgroundQrigin
Size

String

Cursar

Bool

FocusPolicy

Faont

Rect

Pixmap

String Rd

= Pruper’[yl Delete F'rn:upertyl

Froperty Marme:

acceptDrops

Type: IEIcu:uI vI

Cloze |

4

1]

Help |

Mew Widget

Delete Widget

Load Descriptions... |

_>| Save Descriptinns...l

Access *

cloze()

constPalishi)
deletelLater))

hide()

iconify ()

[ower ()

move(const GPaoint&)
move(int,inf)

polishi

raisef

public
public
public
public
public
public
public
public
public
public

nublic hd

Mew Slot | Delete Slot |

Slot: |clearFocusd

ACCess: Ipuhlin: vI

Close |

4

1.2. GSI QTROOT 15

1.2.1 Create a New Project in the Designer

1). Choose “File->New”
2). Select C++ Project

4). In the project settings (Project->Setting from the designer main window) select the C++ tab. Add ROOT and
GSI Qt-Root libraries into the Libs entry field. For example:

Create the Project in a directory of your choice.

-L(ROOTSYS)/lib -1Core -1Cint -1Hist -1Graf -1Graf3d -1Gpad -1Tree -1Rint -1Postscript -1Matrix
-1Physics -1lnsl -1m -1dl -rdynamic -lqtgsi

Add $(ROOTSYS) /include into Includepath entry field.

[~ Project Settings

Settings | Eiles |C++

Template: app vI

Config: alh j |qt warh_on debug thread

Libis: @y =| [FL$ROOTSYSHib ~ICare ~ICint - IHist - 1Graf - 1Graf3d -IGpad - IT

Defines: @n =]
Includepath: [(all =] fROOTSYS)include

Help (] Cancel

|

These setting will be saved in project.pro file and gqmake will generate the Makefile according to them.

Now you can create your own widgets in the designer and add them to the project.

1.2.2 main()

The main file should look like:

#include "TQtApplication.h"
#include "TQtRootApplication.h"
#include "MyWidgetl.h"
int main(int argc, char ** argv){
TQRootApplication a(argc, argv, 0);
TQApplication app("uno",&argc,argv);
MyWidgetl *w = new Mywidgetl;
w->show () ;
a.connect(&a, SIGNAL(lastWindowClosed()), &a, SLOT(quit()));
return a.exec();

16 CHAPTER 1. ROOT/QT INTEGRATION INTERFACES

Qt Designer by Trolltech [=][D][3]

Eile Edit Project Search Tools Layout Preview Window Help

|0 @ Bwroetees] | o o | & B [@T ||+ [en B 58 via £ 35 10| 10|
[k o ig JJIIFFHJD.DIHJUI%HJ[E[EH[E\
EoEEEEEET AIHEE-.HJ

Propeties |§|gnaIHandIers |

Mame | Type
Property I\-"alue Hew ItemI i I
name |TQRoOtCanyass
enahled True
geometry [308, 11, 210, 267]
sizePolicy Preferred/Freferraed/0/0
minimum3ize [o,0]
maximumsize [32767, 32767]
paletteForegroundColor |
paletteBackgroundColor | NENEGEE
paletteBackgroundPixmap

palette | |
backgroundOrigin widgetOrigin

font helvetica-a
cursor Arraw

Widgets ISnurce |

Mame Class
] My Widgett QWidget
{ TQARoOtCanvas
GListView
...... e j= Glider QSlider
...... @ Dial GiDial
...... GTimeEdiﬂ QTimeEdit

...... SpinElmﬂ Q5pinBox

|Heady
L

	ROOT/Qt Integration Interfaces
	Qt-ROOT Implementation of TVirtualX Interface (BNL)
	Installation
	Applications
	TQtWidget Class, Qt Signals / Slots and TCanvas Interface

	GSI QtROOT
	Create a New Project in the Designer
	main()

