

Humanoid Robots Lab

University of Freiburg

ROS for Humanoid Robots

University of Freiburg

Germany

Why Humanoid Robots?

[CMU robotics club]

Why Humanoid Robots?

[DARPA Grand Challenge '12]

Challenges

- Many degrees of freedom
- Free-floating base
- Noisy observations from light-weight sensors
- Motion drift from foot slippage and joint backlash

urdf and tf Standardization

- REP-105: Coordinate Frames for Mobile Platforms
 - map → odom → base_link
- REP-120: Coordinate Frames for Humanoid Robots
 - base_footprint as stable projection on the ground
 - torso link as root of the arms
 - gaze determines viewing direction
 - [l/r]_gripper: end-effectors of the arms
 - [l/r]_sole: end of the leg chains

Manipulation and Kinematics

- arm_navigation wizard works well for single chains
 - Requires static base_link
- kdl for iterative IK on chains
- In the future: Whole-body planning in MoveIt!

Sensing and Perception

[Courtesy of T. Moulard, LAAS]

Localization

- Complex indoor environments and shaking movements require estimation of 6D torso pose
- 3D environment model in OctoMap
- Monte Carlo localization based on laser, IMU, and proprioception
- 3D environment model and raycasting available in octomap_mapping

Localized 6D torso pose

Video: Climbing a Staircase

Video: Walking Down a Ramp

The center of mass is balanced over the support polygon

Footstep Planning

- Humanoids can avoid obstacles by stepping over them
- Plan with discrete set of footstep transitions in a heuristic search
- Available in ROS package footstep_planner using SBPL
 - Anytime capable (ARA*)
 - Efficient replanning (AD*)

[Garimort et al. '11]

Walking Motion Generation

- Task: Determine joint angle trajectory to walk on given footstep locations
- Provided walking controllers
 - For Nao: footsteps or omni-directional velocity
- humanoid_walk stack

[Courtesy of T. Moulard, LAAS]

The NAO Humanoid in ROS

- Basic API in nao_driver (nao_robot stack)
 - Wraps NaoQI API (1.6 1.12) in Python
 - Runs remotely or directly on the robot (with cross-compilation)
- URDF and teleoperation in nao_common stack

Odometry and projected base_footprint frame in nao_remote

NAO Nodes Overview

NAO Nodes Overview

Live Demo

Summary

 Review of suitable ROS packages for humanoid robots

- Manipulation and kinematics working for chains, may improve in the future
- Localization and path planning for a humanoid navigation stack
- Overview of ROS for the Nao humanoid

Thank you!

