RSACONFERENCE ASIA PACIFIC 2013

ACCELERATING THE ANALYST WORKFLOW: LEARNING FROM INVESTIGATIVE ACTIONS

Dennis Moreau RSA, The Security Division of EMC

Samir Saklikar RSA, The Security Division of EMC

Session ID: CLE-W01

Session Classification: Intermediate

Security in knowledge

Agenda

- Motivation
- Requirements on the tool
- ► A PoC implementation
- Conclusions and Directions

- The Problem

RSACONFERENCE ASIA PACIFIC 2013

Motivation — Improve Analytic Workflows

Inefficiencies

- Investigation/response status updates are disruptive
- Manual management of forensic artifacts is error prone
- Analytic/investigative process documentation is tedious
- Retrospective recall is incomplete, limiting improvement and team/organizational learning

Opportunities

- Demonstrated behavior as a basis for ongoing trust – as sharing expands
- Documented response as part of response service delivery
- Community analytic and investigative pattern learning

Approach — Analyst Activity Charts

- Discovery
 - Monitor and track all actions done by analyst while handling an incident
- Documentation
 - Document into data-sequential flow, tracking dead-ends and iterations
- Attestation
 - Time-based cryptographic hashes for attestable proof of records
- Automation
 - Convert charts into workflows, and automate as much possible

Video Demo

- "Red October" [targeting MS Excel/Word exploits for cyber-espionage]
- Analysis on www.malware.lu

What data should be recorded?

- Tools
 - SIEM events, Packet Capture, Sandboxes, Reversing tools, custom scripts, ~ to notepad.exe
- Input artifacts
 - ▶ Log data, Packet stream, binaries, clipboard buffers, memory dumps, registry
- Analyst Inputs
 - Key-presses, commands, mouse-clicks
 - Network and File system activity from workstation
- Intermediate data files
 - ► IDB files, extracted packets, binaries
- Output artifacts/Results
 - ► File-based output, Screen-based output, Human-derived outputs

Recording Inputs and Analyst commands

- Recording Input artifacts
 - Can link into existing incident/case management system
 - Can also be tracked separately
- Collecting Analyst commands/inputs
 - Windows Tap into the Command prompt shell
 - ▶ Enable Telnet into windows system; Enable logging in putty
 - Enable time-stamps in the prompt (\$P:\$T\$G)
 - Linux –

```
export PROMPT_COMMAND='RETRN_VAL=$?;logger -p local6.debug
"#$(history 1 | sed "s/^[ ]*[0-9]\+[ ]*//" )"'

vi /etc/syslog-ng/syslog
[...]
destination d_usercommands{ file("/var/log/usercommands.log"); }
```

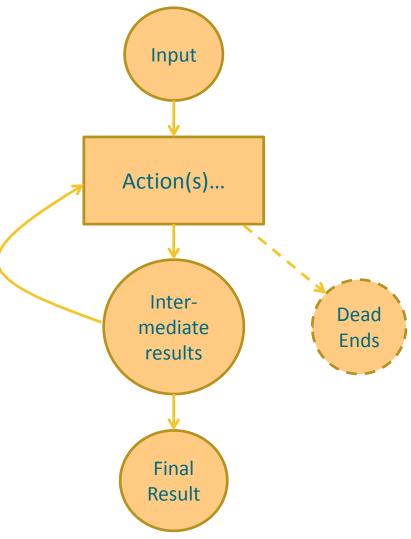

Monitor the file-system, clipboard, graphical applications

Python (watchdog package) or inotify-tools on linux

```
watchmedo log -patterns ="*.log" -ignore-directories -
recursive .
inotifywait -qmr --timefmt "%X" -o ~/inotifywait.log --format
"%T#%w#%f#%e" .
```

- Python-based clipboard monitor for text copies
 - Pyperclip http://coffeeghost.net/src/pyperclip.py
 - Simple polling works
- Tracking currently selected graphical applications

```
xprop -id $(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f
2) '\t$0' _OB_APP_NAME | cut -f 2
```



Monitor network and reversing activity

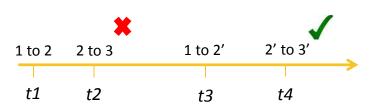
- Everyone has a favorite here
- Wireshark, Netmon, Bro etc. to log and extract files
- Fiddler2 http://www.fiddler2.com/fiddler2/
 - Filters to remove irrelevant domains (google-analytics.com, youtube.com)
 - Export files and session data (json format)
 - Parse to extract requests and uploads and responses.
- Netwitness Investigator freeware
- IDA Pro CollabREate Plugin
 - Multiple IDA instances sync with a CollabREate server
 - Dynamic updates are pushed since last user session
 - Track IDB changes

Documentation (normalized representation)

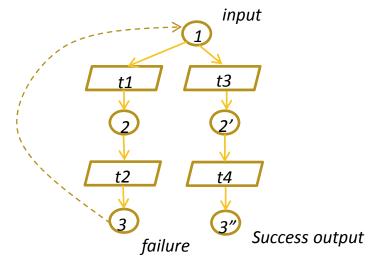
- Chart
 - <Input-data, analyst-actions, output-results, time>...
- <Input-data>
 - <log-data, network-data, endpointdata, binary-data, prior-results,...>
- <analyst-actions>
 - <tools-used, services-invoked, keypresses, mouse-clicks, commands,...>
- <output-results>
 - <modified-network-data, modifiedendpoint-data, modified-binarydata, results, final-resolution,...>

Normalizing the Data

- Pre-Processing the Data
 - Time-stamps of all User Actions, File Access, GUI applications
 - Unique Identifiers of Files, data objects by hashing the content/filename
 - Unique Identifiers for actions (commands, UI interactions) based on time
 - Using "vi" at different times will result in different action nodes.
 - Avoid commonly used tools to be become high-edge single nodes.
 - Different invocations of a tool may have been used for different purposes (with different parameters/options)
- Normalize to a common format
 - Nodes in a graph structure, represent both actions and artifacts
 - Node = {id, label, time, command/artifact uri/content}



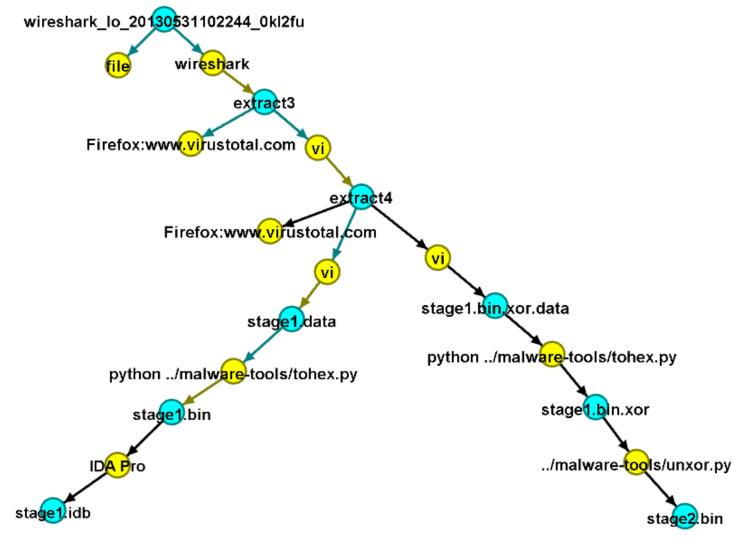
Correlating Analyst Actions/Inputs and Outputs


- How to go from time-sequential actions to data flows?
- Adding Edges for data transformations
 - Time correlate actions and artifacts (same or close in time-stamps)

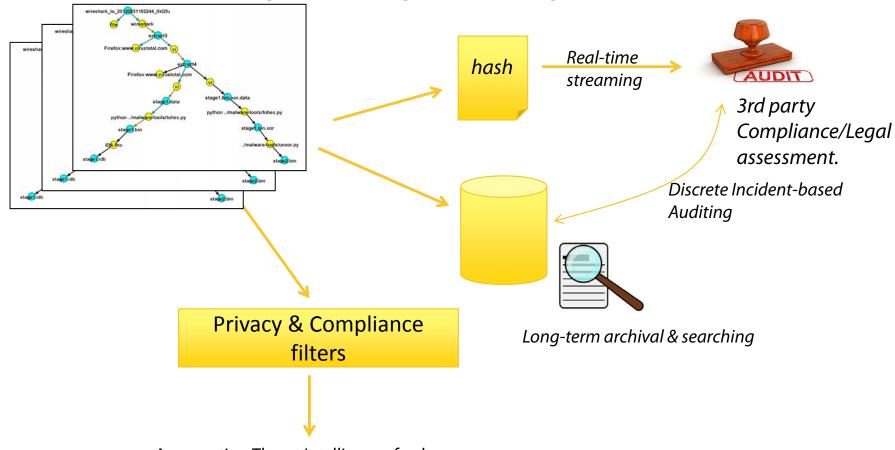
Track file actions (CREATE, MODIFY, DELETE, CLOSE_NOWRITE, CLOSE_WRITE) to determine

input files and output files.

Analyst Actions on input 1 to reach output 3'



- Identify and subsume "copy-paste" actions (which could result in broken links)
- Normalize directory structure/naming to correlate across windows/linux workstations

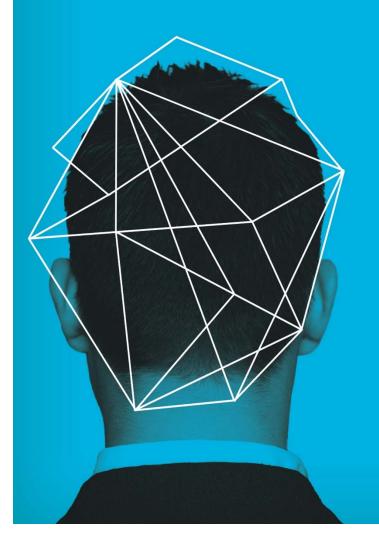

Analyst Activity Chart (data-flow representation)

Attestation (Auditing and Intelligence Sharing)

Augmenting Threat Intelligence feeds

Conclusions

- Improved investigative process visibility supports:
 - Improved efficiency
 - Status Visibility and Update Automation Where are we in the response? What do we know? Who is doing what?
 - ► Forensic Artifact Management What tools ingested which data and produced which files?
 - Enhanced experiential Learning
 - ▶ What did we do? (process documentation)
 - Based on comparison across time or across analysts, what should we Standardize? Automate? Never do again?
 - ► How can we improve? Cooperate? Collaborate?
 - Enhanced Trust
 - ► How did we handle indicators/forensics?
 - Is our performance and practice a basis for extended trust?
 - Did we demonstrate due care?



Next Steps: Responder Activity

- Instrument responder environment for capturing ECAT usage by responders.
- Analyze captured activity across the response cycle (Tier 1-Tier 3)
- Many aspects of response are more operationally regular than are those of reversers and MW analysts, so:
 - Determine potential KPIs
 - Determine completeness of responder behavior capture
 - Potentially extend instrumentation or logging for more coverage
 - Construct a dimensional schema to support analysis of responder efficiency and efficacy

RSACONFERENCE ASIA PACIFIC 2013

Questions