ALTERNATIVES TO
CERTIFICATION
AUTHORITIES FOR A
SECURE WEB

Scott Rea
DigiCert, Inc.

Security in knowledge

Session ID: SEC-T02

Session Classification: Intermediate

BACKGROUND: WHAT IS A CERTIFICATION AUTHORITY?

What is a certification authority?

- CA generates "roots" in secure environment – ceremony, video recorded, audited, keys on HSMs
- CA distributes roots to browsers, operating systems to include in trusted root store
- Browsers/OS check for compliance with root store rules, contract, audit
- Browsers/OS distribute CA roots to clients in software updates

What is a certification authority?

- CA provides certs to customers chaining to trusted roots embedded in Operating Systems and Browsers
- Customers install certs on their servers for secure web pages
- Clients go to secure web pages https://, client checks for root in browser trusted root store
- If root is in browser's trusted root store: encrypted session, favorable padlock
 UI (including EV green bar)

What is a certification authority?

- If root not in client trusted root store for browser – warning displayed
- If certificate revoked or expired warning displayed
- CAs and browsers have the ability to revoke roots, sub-roots, and certificates for problems
- CAs must complete annual audits, follow CA/B Forum rules to remain in browser trusted root stores
- Stronger rules, higher CA standards for green Extended Validations or "EV" display

RECENT CA SECURITY ISSUES AND THEIR CONSEQUENCES

Problem: CA's system hacked through external

RA/Reseller portal; 9 fake certs issued for

various top domains

Harm: Unknown. Hacking claims by "Iranian hacker"

never verified

Response: Certs quickly revoked by CA and "untrusted"

by browsers

Problem: Hacking/complete compromise of CA system

over many months; cert issuance logs erased

(no record); 531 or more fake certs issued

Harm: Potentially great (many OCSP checks from

Iran). Hacking claims by "Iranian hacker" never

verified

Response: Some certs revoked by CA (no complete list).

DigiNotar roots "untrusted" by browsers; CA

out of business

Entrust Malaysian Sub-CA: "Digicert Sdn. Bhd."** (2011) **Note: NOT the same as US company DigiCert Inc.

Problem: Independent Sub-CA issued 22 512-bit certs off chained root - too weak, no EKU limiting extension to TLS server certs, violated CA/Browser Forum rules

Harm: Cert stolen from Malaysian government, compromised, used to sign malware

Response: Browsers issued patch to "untrust" the Sub-CA, all certs; new rules to audit sub-CAs

TURKTRUST (2012)

Problem: Customer cert issued with wrong extensions –

customer had powers of a sub-CA, could issue

certs in other domain names

Harm: None detected. Unintentionally used by

customer at firewall in MITM configuration;

accidentally issued "google.com" cert – never

used.

Response: Cert revoked and "untrusted" by browsers, all

CAs scanned past certs

Trustwave® (2012)

Problem: CA issued Sub-CA cert to enterprise for MITM

security screening of enterprise email and

web communications; could be used to create

certs for top domains

Harm: None detected. However, controversial

practice, now deprecated by several browsers

Response: Trustwave <u>revoked</u> MITM Sub-CA and

discontinued issuing them to enterprise

customers

Myth Busting

Myth:

"There are more than 600 trusted CAs in the browsers – too many to handle, any of these CAs can issue (fake) certs, there is no regulation of CAs"

Fact:

Not true –

Many "CAs" detected by SSL Observatory and others are only **sub-CAs** of major CAs, all subject to the same controls by the parent.

The Mozilla root store has only 65 trusted root holders (with their various sub-CAs). Plus, some of "600 CAs" in studies are self-signed only, <u>not</u> trusted in browsers

<u>All</u> CAs in browsers must follow the browser rules, CA/Browser Forum rules, audit regimes.

Summary and Conclusion

- Putting it in perspective:
 - Certs issued worldwide: 2,000,000 per year
 - ▶ Bad certs issued: maybe 1,000 over 11 years (~91 bad certs per year) mostly single incident (DigiNotar)
 - Accuracy ratio for certs issued each year: 99.995% (Error rate 0.005%) US Passport Office and state Departments of Motor Vehicles are NOT this accurate
 - Significant harm from bad certs? Only likely in DigiNotar case (actual harm unknown)
 - CAs are continuously improving security, processes
 - The state of SSL is stronger today, because of these responses

Summary and Conclusion

- Relatively few CA security issues over 15 years
 - Most breaches resulted in no known harm
 - Quickly remediated
 - Industry practices constantly improved by CAs, browsers without government regulation
 - Browser root program requirements raise the bar
 - CA/Browser Forum (2005 to date) raised the bar:
 - ► EV Guidelines (2007), Baseline Requirements (2011), Network and Security Controls (2013)
 - WebTrust, ETSI audit requirements (2000 date)
 - New: CA Security Council www.casecurity.org
 - OTA CA Best Practices

ALTERNATIVES
AND
ENHANCEMENTS
TO CERTIFICATION
AUTHORITIES FOR
A SECURE WEB

Proposed Solutions to Mitigate Attacks

- Despite the minimized risks, a number of alternatives or enhancements to CAs were nonetheless proposed including:
 - Perspectives
 - Convergence
 - MECAI (Mutually Endorsing CA Infrastructure)
 - DANE
 - Public Key Pinning
 - Sovereign Keys
 - CAA Record in DNSSEC
 - Certificate Transparency

Research to Evaluate Proposals

- Research efforts to set a baseline for how we might evaluate the basic options of these Proposals has been done, including work by NYU and Dartmouth.
- The details of that research is not the focus here, however, the methodology and specific scoring used can be discussed afterwards for any interested parties.
- The conclusion of that research to date favors three proposals: CT, CAA, Pinning.
- The research calls for still further investigations, and helps set a baseline for future work.

Favored Proposals

- In addition to the aforementioned and other research, the consensus of the community seems to also be favoring CT, CAA, Pinning, and to a much lesser extent DANE.
- The primary focus of this presentation will be on CT, CAA, and Pinning
 - These three have some advantages to DANE, primarily in that they do not introduce new trust anchors who are not experienced and do not have standards for validating identities.
 - Furthermore, absent universal DNSSEC implementation, DANE is far from feasible.
 - Additionally, DANE lacks the support of Google, and is understood it to be incompatible with Pinning

Certificate Transparency

Certificate Transparency

Certificates should be public record so that you can see what CAs are asserting about your organization.

Certificate Transparency

- Internal CAs are not impacted: internal certificates do not need to be logged.
- Internal hostnames in public certificates don't need to be logged - clients can be configured with a list of internal domains or intermediate CAs can be name constrained.
- Is based on existing technologies that are easily supported with industry coordination

Certificate Transparency

Pros

- Enhances the current CA infrastructure rather than replacing it.
- Doesn't require any actions by sites in the vast majority of cases.

Cons

- Requires all CAs to be updated.
- Deployment will take many years.
- Public records require vigilance to be useful.

Certification Authority Authorization

- Certification Authority Authorization (CAA)
 - ► IETF RFC 6844 drafted by Comodo
 - Mechanism for preventing and detecting mis-issued certificates from Cas
- Mechanism
 - Based on DNS resource record that lists CAs authorized to issue certs for a domain
 - PRIOR to issuing a certificate, CA checks for a CAA record to ensure CA is allowed to issue cert for that domain

- Context and Key Points
 - Benefit in that it's a verification to see whether a CA should be associated with a cert for a specific domain
 - Different from DANE in that this is a "preventative" approach to issuing rogue certs
 - CAA record doesn't say which key must be in the end-entity cert (as DANE does) – entry is at the CA level
 - Supports wildcard certs
 - More than one CA may be specified for each DNS record
 - CABF is starting discussions on CAA for potential usage by CAs

Benefits

- Good complement to existing ecosystem to prevent and detect mis-issuance from CAs
- Low barrier for deployment for CAs CAs need to check CAA record
- Does not require big-bang adoption can be phased per CA and per certificate customer
- Raises the bar on CA security bad actor must be able to attack DNS or suppress CA's CAA check

Risks

- DNSSEC is recommended but not required, opening up potential for DNS record manipulation
- CA and customer opt-in nature makes CAA nondeterministic
- Potential perception of CAA being a mechanism for CAs to "lock in" customers

Public Key Pinning

Public Key Pinning

- Client (browser) tracks what certs are used by a website
 - Can be preloaded into browser
 - **Or** (in a more scalable implementation)
 - Web server makes assertion about what certificate(s) it will use
- Generate an alert or block the connection if a different cert is used
- Two current IETF drafts:
 - Trust Assertions for Certificate Keys
 - Public Key Pinning Extension for HTTP

Public Key Pinning

Benefits

- Reduces attack surface for a given site from approx. 65 roots (and potentially hundreds of intermediates) down to 1-2 roots, or less
- Proven value in detecting compromise
- Enhances existing ecosystem
- Doesn't suffer from CAA's potential "lock in" issue

Public Key Pinning

<u>Issues</u>

- Trust on First Use doesn't protect initial connection
- Doesn't protect against key compromise
- Creates operational challenges with key exchanges
- May be best as a reporting mechanism
 - Long deployment horizon
 - Impact of false positives in "hard fail" mode

Opinion & Conclusions

Opinion on CAA, Pinning & DANE

- Pinning detected TurkTrust and likely would have detected DigiNotar.
 - ▶ It is incompatible with DANE, but is the better option of the two, so we support it.
 - ➤ To work properly, it must enable pinning of multiple CAs and not just one or two, so that redundancy is built in to replace a CA in the event of a compromise.
- CAA is a good proposal in theory, and if it will allow multiple CA records, then it can work.
 - ▶ It lacks enforcement teeth, however, making it weaker than some of the other alternatives.

Opinion on CT

- We applaud Google for working on a practical implementation that meets strong criteria
 - Scalable,
 - Backwards compatible,
 - Does not introduce "unintended consequences" of new technology and trust anchors who lack experience and standards for validating identities,
 - Is much further along than some of the other proposals.

Opinion on CT

- DigiCert has been involved in the early stages with Google to test the CA proof and log viability on behalf of CAs.
- CT has promise and DigiCert is interested in continuing to work with Google
 - There are still has some unanswered questions that need to be resolved.
- CT enhances existing self-regulating mechanisms by leveraging an existing, refined and time-tested CA trustanchor system while avoiding the "unintended consequences" of new technology in unfamiliar space

Next Steps

- More research and multi-stakeholder collaboration is needed.
- CAs are committed and DigiCert is taking a lead role, especially with CT.
- Many smart people are working on these issues, and the future looks good.

Conclusions

- The CA industry is an active, collaborative one that has already made great strides since DigiNotar.
- In addition to reviewing these initiatives, the community is also evolving revocation practices to be more effective and produce less latency, increasing the likelihood for adoption.
- CABF initiatives such as Baseline Requirements (compliance is now part of WebTrust audits), Network Security Guidelines, an active Code Signing Working Group and other efforts are providing greater trust.

Conclusions

- CAs have formed the CASC to address better SSL utilization, configuration and best practices from an educational standpoint
- Other relying parties are also stepping up their collaboration.
- As a whole, SSL is stronger and more secure than it was a few years ago, and indications are that it will only get stronger.

Conclusions

- Where do these proposals go from here?
 - Which proposals get adopted and in which form(s) is yet to be decided.
 - Although the ones highlighted today clearly have the most support i.e. CT, CAA, Pinning, and to a lesser extent DANE
 - Regardless, SSL will improve.
 - Systems that retain the improvements made by CAs as the knowledgeable trust anchors will advance internet security most effectively.

Questions

Scott Rea - (Scott@DigiCert.com)