
Session ID:

Session Classification:

John T Lounsbury
Vice President Professional Services, Asia Pacific

INTEGRALIS

MBS-W01

Advanced

APPLICATION SECURITY:

FROM WEB TO MOBILE.

DIFFERENT VECTORS AND

NEW ATTACK

► With the ubiquitous usage of smart phones and PDAs the Web Application market

has exploded

► What started primarily as games and productivity aids have developed into business

and corporate tools

► Evolving from static content to highly interactive user interfaces exchanging data

and information of all types

► The line between the personal world and the business world is almost non-

existent

► A lack of development standards, frameworks, and language have inadvertently

opened up a vast, new targeted threat landscape

► These threats, and how to deal with them, represent one of today’s single largest

information Security risks

Mobile Applications - How Many do you

have?

► Android holds the current market share (around 70%)

► There are other players:

► Apple – 21%

► BlackBerry – 3%

► Windows – 3%

► Linux – 2%

► Other – 1%

► 73% of organizations have been hacked at least once in the past

two years through insecure web applications

► On average, every web application has an average of 12

vulnerabilities

Some Interesting Statistics

► Developers are primarily focused on development efficiency, it is

rare that development organizations consider the security

implications of their application

► Secure Development Life Cycle practices and implementations are

still not widely accepted and implemented – especially in the smaller

shops that where many mobile applications are developed

How much security can there be in a $0.99
application?

► A large number of web application security vulnerabilities are

generally associated with a lack of input validation (SQL Injection,

XSS, Open Redirects, Remote File Includes, etc)

► With web applications, attackers generally attack from a pure black-

box methodology.

► In general, greater skill and knowledge around reverse engineering

is required for assessing and attacking mobile applications because

the code is already in the hands of the attackers

Differences with Web and Mobile Applications

Mobile Application Threat Model

Mobile Phone

Mobile Application

Web
Services

3rd Party
Libraries

A
n

d
ro

id
 V

u
ln

erab
ilities

M
alicio

u
s A

p
p

licatio
n

s

Jailb
reak / R

o
o

tin
g

Malicious
User

File System

► The Application and Code

► Identification and manipulation of client side logic

► Permissions

► Are application components sufficiently protected

► Data-in-Transit

► Is the data protected as it’s sent to the server

► Data-at-Rest

► Is the data stored on the device secured

► The Server

► Does the server validate data from the mobile application

Mobile Application Attack Surfaces

► Both Android and iOS applications can be extracted from the phone

in their binary format

► Android: Java compiled to DEX VM bytecode

► iOS: Obj-C compiled to ARM binaries

► A mixture of techniques is then used to decompose the application:

► Analysis of the AndroidManifest.xml File

► Static Analysis

► File System Analysis

► Dynamic Analysis

► Reverse Engineering

The Application and Code

► Compilation and de-obfuscation introduce a degree of difficulty for

an attacker attempting to retrieve the code in its original form,

however it’s possible for the determined and capable hacker

► Dynamic analysis allows for an application to be extracted from a

mobile device and executed within an emulator

► Execution within an emulator can highlight exactly what API calls are

being executed, and which files on the underlying file system are

being accessed

The Application and Code
It’s in the attacker’s hands

The Application and Code
Getting back to the Source Code (Android)

► classes.dex contains the Java bytecode in Dalvik compatible form

► Continue to decompile it back into Java source code

The Application and Code
Getting back to the Source Code (Android)

► Most applications are compiled with obfuscation which makes things

more difficult (like this example) and quite tedious

► It boils down to how much time and diligence the attacker has

The Application and Code
Getting back to the Source Code (Android)

► Other applications haven’t been obfuscated at the compilation stage

► The source code in this case is very close to the original

The Application and Code
Getting back to the Source Code (Android)

► Developers who don’t obfuscate their code prior to release are

helping the bad guys out

► Simply by reading through the source code you can determine:

► How the application communicates to the server

► The types of requests sent to remote servers and their format

► If the application interacts with other components on the phone

► If the application is writing files to the underlying operating system

► Cryptographic Functions

► Third party libraries in use

► All this helps in identifying potential attack surfaces of the

application

► One of the best ways to attack a client-server application is to write

your own client to communicate to the server

The Application and Code
Getting back to the Source Code (Android)

► The RequestAuthorization class shows exactly how the

authentication token is created (along with the secret key)

► We looked at a popular game which requires purchases of “gold” to

progress further – it could probably get quite expensive

► Upon decompiling the application and navigating through the

obfuscated code, we were drawn to this call to a file on the device

itself:

► The gold value is stored in this preferences file on the device

► A simple edit and you’re a millionaire within the game

► We had gold but now we have !

► The server doesn’t keep track of this value!

► Not stored on the server

► Not validates

The Mobile Application
Logical Flaws

► Mobile application research, shows that developers are

implementing business logic into their applications

► Developers are often under the impression that if their code is

obfuscated, it cannot be decompiled

► Thus they decide to implement logic into the applications which

should be done on the server side

► An application that hasn’t been obfuscated means that logic flaws

can usually be identified quickly!

The Mobile Application
Logical Flaws

► Mobile applications are installed with different privilege levels

► A user’s mobile device will usually have applications from unknown

developers alongside applications they trust for everyday tasks

► For example, their mobile banking application and free games

► Under the Android security model every application runs in its own

process and using a low-privileged user ID

► Applications can only access their own files by default

► With this isolation in place, applications are able to communicate via

different components

► These communications between components are a critical area

of focus for assessing the security of a mobile application

Permissions

► Android Applications are typically made up of multiple components:

► Activities

► Services

► Content Providers

► Broadcast Receivers

► Permissions are granted to each component for as long as the

application is installed on the device

► If these components are not properly secured, malicious or other

rogue programs can interact with them

► Most applications that we have looked at recently do not have

well defined permissions

Permissions

► Poorly protected components for a number of well known and

popular applications

► Poorly protected activities (GUI screens) can be launched instead of the intended

Activity

► Exported Activities can be launched by other applications (think CSRF for mobile

applications)

► Broadcast messages vulnerable to eavesdropping or DoS (Denial of Service)

► Our evaluation showed that most Android applications do not

adequately place permissions around their components

► Some applications were found to contain the ‘debug’ flag. Even

though this is removed by default within the Eclipse ID, it still

managed to end up in the production application!

Permissions
What did we find?

► Most applications will at some point communicate with a server

endpoint

► Confidentiality and strong authentication is a must

► Authentication:

► Verify the entity that the application is communicating with

► Confidentiality:

► Prevent snooping

► Man-in-the-middle attacks

Data-In-Transit

► One of the largest challenges with mobile applications is how they

secure data on the device

► Many popular applications use SQLite database files which are not

adequately protected

► If the device is lost or stolen, it would be trivial for an attacker to pull

these databases and view the records

► On both Android, and iOS it’s fairly easy to get root access and

access application data and configuration files

► These files contain usernames, passwords, encryption

keys, and other sensitive account information

Data-At-Rest

► Through our analysis of popular mobile applications, we continued

to find old web application vulnerabilities:

► Username Enumeration

► SQL Injection

► Broken session management

► Information Disclosure

► Does the server perform strong validation on these requests

► Does the server allow the client to make logic decisions (this should

be a big NO-NO, but happens all the time)

► Does the server validate the mobile application

► A common tactic is to reverse engineer the mobile application

and write a rogue client that communicates with the server

► Are clients validated

The Server
History Repeats Itself

► The mobile application communicates to the server over HTTPS

(good) and using JSON requests. It looks something like this:

► The server would then respond to this request, with the user’s

account information

► What happens if we change the username parameter… ?

The Server
Harvesting User Information

► The server responds with the user information for that user

► This isn’t good. There’s obviously an authentication problem here

 HTTP Request

 HTTP Response

The Server
Harvesting User Information

► This is a serious vulnerability but unfortunately it

happens quite a lot

► All an attacker needs to have is a valid username and by

exploiting the vulnerability, he is able to obtain:
► The user’s mobile phone number

► The user’s email address

► Through social engineering he may further his attacks

against the user

► He could also write a script to enumerate valid users

within the system and obtain their information

► This application has been downloaded millions of times!

The Server
Harvesting User Information

► For the purpose of this presentation, we undertook a security study

into 40 mobile applications

► These applications consisted of:

► Games

► Banking Applications

► Communications/Messaging

► Entertainment

► The purpose was to identify common vulnerabilities associated with

mobile application development

Mobile Application Study

Mobile Application Assessment Results

0

5

10

15

20

25

30

35

40

45

50

Entertaintment

Messaging

Communications

Banking

Games

► The threat surface of mobile applications differs significantly rom

that of web applications

► Web application security has improved, but 5 year old vulnerabilities

are still common and the introduction of web application-to-mobile

application dynamics has both exacerbated the existing

vulnerabilities and introduced new ones

► Development of mobile application development guidelines and

assessment capabilities are needed

► The risk of liability to corporations could be potentially very serious

► Organizations should have a framework for regular assessment of i-

house developed mobile applications and a solution for assuring the

security of applications on BYOD

Summary

Questions and
Answers

► There isn’t a lot out there right now in terms of best practice and

guidelines

► Most developers are quite new when it comes to mobile application

development

► There are a lot of good books and resources on how to break and

find flaws in mobile applications

► But there’s not a lot out there to help developers understand and

mitigate against security flaws

► Malware targeting the Android platform is growing rapidly

► Will the mobile application arena be a repeat of what was

experienced with web application security?

Security around Mobile Applications

