RSACONFERENCE
ASIA PACIFIC2013

APPLICATION SECURITY:
FROM WEB TO MOBILE.

N a®
DIFFERENT VECTORS AND | &
NEW ATTACK 2 -

.)‘ .
A\

John T Lounsbury !
Vice President Professional Services, Asia Pacific &=
INTEGRALIS

Session Classification: Advanced

__Mobile Applications - How Many do you
have?

» With the ubiquitous usage of smart phones and PDAs the Web Application market
has exploded

» What started primarily as games and productivity aids have developed into business
and corporate tools

» Evolving from static content to highly interactive user interfaces exchanging data
and information of all types

» The line between the personal world and the business world is almost non-
existent

» Alack of development standards, frameworks, and language have inadvertently
opened up a vast, new targeted threat landscape

» These threats, and how to deal with them, represent one of today’s single largest
information Security risks

—___Some Interesting Statistics

» Android holds the current market share (around 70%)
» There are other players:
» Apple —21%
» BlackBerry — 3%
» Windows — 3%
» Linux — 2%
» Other — 1%

» 73% of organizations have been hacked at least once in the past
two years through insecure web applications

» On average, every web application has an average of 12
vulnerabilities

_ How much security can there be in a $0.99
application?
» Developers are primarily focused on development efficiency, it is

rare that development organizations consider the security
Implications of their application

» Secure Development Life Cycle practices and implementations are
still not widely accepted and implemented — especially in the smaller
shops that where many mobile applications are developed

—_Differences with Web and Mobile Applications

» Alarge number of web application security vulnerabilities are
generally associated with a lack of input validation (SQL Injection,
XSS, Open Redirects, Remote File Includes, etc)

» With web applications, attackers generally attack from a pure black-
box methodology.

» In general, greater skill and knowledge around reverse engineering
IS required for assessing and attacking mobile applications because
the code is already in the hands of the attackers

—_Mobile Application Threat Model

Malicious

Mobile Application User

3"d Party

Libraries

Web
Services

—
=
o
=
D
Q
=~
S~
P
@]
(@]
o
>
(0] e]

suollealjddy snompijep
soliljiqesau|nA ploJpuy

Mobile Phone

—_Mobile Application Attack Surfaces

» The Application and Code
» ldentification and manipulation of client side logic

» Permissions
» Are application components sufficiently protected

» Data-in-Transit
» |s the data protected as it's sent to the server

» Data-at-Rest
» Is the data stored on the device secured

» The Server
» Does the server validate data from the mobile application

—__The Application and Code

» Both Android and 10S applications can be extracted from the phone
In their binary format

» Android: Java compiled to DEX VM bytecode
» 10S: Obj-C compiled to ARM binaries

» A mixture of techniques is then used to decompose the application:
» Analysis of the AndroidManifest.xml File
» Static Analysis
» File System Analysis
» Dynamic Analysis
» Reverse Engineering

—__The Application and Code

It's in the attacker’s hands

» Compilation and de-obfuscation introduce a degree of difficulty for
an attacker attempting to retrieve the code in its original form,
however it's possible for the determined and capable hacker

» Dynamic analysis allows for an application to be extracted from a
mobile device and executed within an emulator

» Execution within an emulator can highlight exactly what API calls are
being executed, and which files on the underlying file system are
being accessed

—__The Application and Code

Getting back to the Source Code (Android)

neil@europa skype unzip com.skype.raider-2.apk
rchive: com.skype.raider-2.apk

inflating: assets/raider-2.@-market-live.cert
extracting: assets/video.cfg

inflating: res/anim/disappear.xml

inflating: res/anim/fade.xml

inflating: resfanim/fade_in.xml

neil@europa skypels 1s
otal 20272

neil neil 2289128 - resources.arsc

neil neil 18464 c AndroidManifest.xml
neil neil 2965468 - classes.dex

neil neil 15453186 - com.skype.raider-2.apk
dev dev 4096 ..

neil neil 4096

neil neil 4096

neil neil 4096

neil neil 4096

neil neil 4096

neil neil 4096

OrWXIrwXr-x
OrWXrwxr-XxX
OrWXTwWXr -X
ArWXrwxr-xX
OrWXIrwXr-x
OrWXrwxr-XxX
OrWXTrwWXr -X

NNWWONWR e

classes.dex contains the Java bytecode in Dalvik compatible form
Continue to decompile it back into Java source code

I\ INTEGRALIS

#1 T Cormmuncstions Growp Compeery

—__The Application and Code
Getting back to the Source Code (Android)

closses_dexjorjar -+
* i andisa MainReceiver.class «
Y "ﬂ com package Com.ckype;

& Ck
& *impart android, content BrosdrastReceiver)
& i
& sy pablic final class MalnRecelwer extesds BroadcastRacelver
" . 1
* i Andradvidecticd peblic static boolman & = false;
* & addresshock heip private static Tisal String & » Miohecelves. class, getiane();
@ o private statlc tinal furmable ¢ = sew Runrablel)
& { :
public fizal void rinl)
& {
L A (3:)0).00) 1= mull)
& (
@ n o)y
@ tww Stringdullder| ady 1299e “l.appendiy, J0) el).cl)). 108t riagl);
!
Ed while (true)
El (
@ oeferences retars;
84 roier g.a0) i~
& 1abiet m,n&‘- piver ol
}
Bl }
bugMenus b
{makVrwFactorysl peblic fisal veld ooRecetvelCentaxt parasContext, Intent paraalntent)
] } {
L] 1t |paramintent, petiction! | == nell)
» (I ManSerdce *z::‘}:::: getiase(l;
IR {
» 1] SearchProveder returs;
] estMe caplan i (paraedntent . getAction() eqeais | “andesid intent act le 0007 COMPLETID"))
LI (
2 = true:

* v

» Most applications are compiled with obfuscation which makes things
more difficult (like this example) and quite tedious

» It boils down to how much time and diligence the attacker has

—__The Application and Code

Getting back to the Source Code (Android)

» Other applications haven’t been obfuscated at the compilation stage
» The source code in this case is very close to the original

b ekt wppon LoginActivity.dass
* & com pachage com, saapchat . andreid;

* I Wesbe okt v putu e

* dnpert averaid . wpp Alertdinlog. Bullder;

*) erehiaten et alichy
o 2 Mutrn sngoon) rlu class LoginActivity metencs SrscifstActivily
* W yooge private static foaal bat AVINTION (RRATION = 790,
* 3 handman pettoretresh Moy peblic static fimal lat LOGIN ACTIVITY AIGAEST (OOF = 4
* @ nreckiansrskdy peblic static fleel Lat LOWOUT ALSRT = 1;
T @ wapchatndion private Tinal String TAL = LeainActivite class. gotsame()

< private TectView mdctigeDescription

W private ScrsiiView slechgrussdVio;

L B private Textviow saseleActionbest :

L privete Textview shutoleTest

. e Frivate View satieViow)

privats View wihastisegs;
& a0

G = RBC200r private boslesn »5L0QirPa)e:

" W private Relativelayout. LayoutParass mieftincier

L T private Butten misgindation;

*) Midiirwmdiactivey privets EdirTex! stoglefleld;

o T B n privets Tlsal View OnCLICRLLSToNNr MOoginOnClickiisTener = mew View OnClickeistonect)

] BboConhy l
® NVl CommaRosemictanty pubilic void Click(¥ime aermdserymesaViog)

) Foedactivity
| Clrputiethodsanager 1 LogiraActivity . this getSystonServiced” Input sethod®) WdeSolt Dnput? resstindon | Lagindctivity . this stogirButten, getigpl icationindawToken(], #);
Magiohctavity this sudwmit (]
|
¥
private EditText sPaswwordield,
privats View sProgressier;
privats Melativelayout LiyuetPMarans sfegister ol lodnoher
private Relativetagout LayoutParass sRightAachor;

” private Butten o5igrupdetton
* J) Pexlemarmsdctvty privates Strieg sUsernaene
e Iw privats final Alsation Alsationlistener shmviogi rAnleetionlistener = s Asisation, Adisatiaslistenes ()
*) ety (
malic vass onkaisatierEndiAnimation parasdrommemAtimet isn |
¢ F Sareyiacuvey {
*] S Previeasctivity MOLIOACTIvALy This. shosebblat o) ;
* J) tnspthatActisty Laniodctivity this sictionDescription, setTextlolor - 16777218}
*) SnepchatApphe aton)

W@ eret ik
W et st Wit PALIC vold OnASIRITSerAepent (ALIRITLEN DaramtverymousANIsation)

I\ INTEGRALIS

w1 NTT Cormmuncetions Group Comperrg

—__The Application and Code

Getting back to the Source Code (Android)

» Developers who don’t obfuscate their code prior to release are
helping the bad guys out

» Simply by reading through the source code you can determine:

>

vvyywyy

>

How the application communicates to the server

The types of requests sent to remote servers and their format

If the application interacts with other components on the phone

If the application is writing files to the underlying operating system
Cryptographic Functions

Third party libraries in use

» All this helps in identifying potential attack surfaces of the
application

» One of the best ways to attack a client-server application is to write
your own client to communicate to the server

—__The Application and Code

Getting back to the Source Code (Android)

» The RequestAuthorization class shows exactly how the
authentication token is created (along with the secret key)

public class RequestAuthorization

{
private static String PATTERN = "0001110111101110001111010161111011016001001110011000116001000116";
private static String SECRET = "iEk21fuwZApX1z93750dmW22pw389dPwok";
private static String STATIC TOKEN = "m198s0kJEn37DjqZ321pRu76xmw288xSQ9";

public static String createRequestAuthorizationToken(String paramStringl, String paramString2)
throws NoSuchAlgorithmException, UnsupportedEncodingException
{
String strl = SECRET + paramStringl;
String str2 = paramString2 + SECRET;
MessageDigest localMessageDigest = MessageDigest.getInstance("SHA-256");
localMessageDigest.update(strl.getBytes("UTF-8"));
String str3 = new String(toHex(localMessageDigest.digest()));
localMessageDigest.update(str2.getBytes("UTF-8"));
String str4 = new String(toHex(localMessageDigest.digest()));
String str5 = "";
int i = 0;
if (i >= PATTERN.length())
return str5;
int j = PATTERN.charAt(i);
StringBuilder localStringBuilder = new StringBuilder(String.valueOf(str5));
if (j = 48);
for (char c = str3.charAt{i); ; c = strd.charAt(i))
{
str5 = c;
1++;
break;
}
}

I\ INTEGRALIS

w1 NTT Cormmuncetions Group Comperrg

—_The Mobile Application

Logical Flaws

» We looked at a popular game which requires purchases of “gold” to
progress further — it could probably get quite expensive

» Upon decompiling the application and navigating through the
obfuscated code, we were drawn to this call to a file on the device
itself:

» The gold value is stored in this preferences file on the device

sp = getSharedPreferences("account info", MODE PRIVATE);
gold amount = sp.getInt("gold", -1);

» A simple edit and you're a millionaire within the game

» We had gold but now we have !

» The server doesn’t keep track of this value!
» Not stored on the server

» Not validates

—_The Mobile Application

Logical Flaws

» Mobile application research, shows that developers are
Implementing business logic into their applications

» Developers are often under the impression that if their code is
obfuscated, it cannot be decompiled

» Thus they decide to implement logic into the applications which
should be done on the server side

» An application that hasn’t been obfuscated means that logic flaws
can usually be identified quickly!

__Permissions

\4

v

Mobile applications are installed with different privilege levels

A user’s mobile device will usually have applications from unknown
developers alongside applications they trust for everyday tasks
» For example, their mobile banking application and free games

Under the Android security model every application runs in its own
process and using a low-privileged user ID

Applications can only access their own files by default

With this isolation in place, applications are able to communicate via
different components

These communications between components are a critical area
of focus for assessing the security of a mobile application

__Permissions

» Android Applications are typically made up of multiple components:
» Activities
» Services
» Content Providers
» Broadcast Receivers

» Permissions are granted to each component for as long as the
application is installed on the device

» If these components are not properly secured, malicious or other
rogue programs can interact with them

» Most applications that we have looked at recently do not have
well defined permissions

__Permissions
What did we find?

» Poorly protected components for a number of well known and
popular applications

» Poorly protected activities (GUI screens) can be launched instead of the intended
Activity

» Exported Activities can be launched by other applications (think CSRF for mobile
applications)

» Broadcast messages vulnerable to eavesdropping or DoS (Denial of Service)

» Our evaluation showed that most Android applications do not
adequately place permissions around their components

» Some applications were found to contain the ‘debug’flag. Even
though this is removed by default within the Eclipse ID, it still
managed to end up in the production application!

____Data-In-Transit

» Most applications will at some point communicate with a server
endpoint

» Confidentiality and strong authentication is a must

» Authentication:
» Verify the entity that the application is communicating with

» Confidentiality:
» Prevent snooping .‘.\
Co

» Man-in-the-middle attacks

— Data-At-Rest

» One of the largest challenges with mobile applications is how they
secure data on the device

» Many popular applications use SQLite database files which are not
adequately protected

» If the device is lost or stolen, it would be trivial for an attacker to pull
these databases and view the records

» On both Android, and iOS it’s fairly easy to get root access and
access application data and configuration files

» These files contain usernames, passwords, encryption
keys, and other sensitive account information

—_The Server
History Repeats Itself

» Through our analysis of popular mobile applications, we continued
to find old web application vulnerabilities:

» Username Enumeration
» SQL Injection
» Broken session management
» Information Disclosure
» Does the server perform strong validation on these requests

» Does the server allow the client to make logic decisions (this should
be a big NO-NO, but happens all the time)

» Does the server validate the mobile application

» A common tactic is to reverse engineer the mobile application
and write a rogue client that communicates with the server

» Are clients validated

___The Server

Harvesting User Information

» The mobile application communicates to the server over HTTPS
(good) and using JSON requests. It looks something like this:

POST https://X000000000000000/data/user_settings
user=test_user2013

Timestamp=9327680311866
request_tok=xjs7akl77wlslxjdB82xkxz

» The server would then respond to this request, with the user’s
account information

1
"phone": "+852x0000000(",
"user”: "test_userz2013",
"action': "test_user20l3@hotmail.com",
"logged”: true
¥

» What happens if we change the username parameter... ?

___The Server

Harvesting User Information

» The server responds with the user information for that user
» Thisisn't good. There's obviously an authentication problem here

HTTP Request

POST https://o00000000000000(/data,/user_settings
user=test_user_2_2013

Timestamp=9311680313861
request_tok=xjs7ak177wlsIxjd882xkxz

HTTP Response

i
"phone”: "+B52x0000000(",
"user": "test_user_2_2013",
"action": "test_user_2_2013@hotmail.com",
"logged™: true
L

I\ INTEGRALIS

w1 NTT Cormmuncetions Group Comperrg

___The Server

Harvesting User Information

» This is a serious vulnerability but unfortunately it
happens quite a lot

» All an attacker needs to have is a valid username and by
exploiting the vulnerability, he is able to obtain:

» The user’s mobile phone number
» The user’s email address

» Through social engineering he may further his attacks
against the user

» He could also write a script to enumerate valid users
within the system and obtain their information

» This application has been downloaded millions of times!

— Mobile Application Study

» For the purpose of this presentation, we undertook a security study
into 40 mobile applications

» These applications consisted of:
» Games
» Banking Applications
» Communications/Messaging
» Entertainment

» The purpose was to identify common vulnerabilities associated with
mobile application development

Mobile Application Assessment Results

50

" Entertaintment

W Messaging

B Communications

W Banking

Games

. Summary

» The threat surface of mobile applications differs significantly rom
that of web applications

» Web application security has improved, but 5 year old vulnerabilities
are still common and the introduction of web application-to-mobile
application dynamics has both exacerbated the existing
vulnerabilities and introduced new ones

» Development of mobile application development guidelines and
assessment capabilities are needed

» The risk of liability to corporations could be potentially very serious

» Qrganizations should have a framework for regular assessment of i-
house developed mobile applications and a solution for assuring the
security of applications on BYOD

RSACONFERENCE
ASIA PACIFIC2013

Questions and
Answers

=
R

Y
»

—__Security around Mobile Applications

» There isn’t a lot out there right now in terms of best practice and
guidelines

» Most developers are quite new when it comes to mobile application
development

» There are a lot of good books and resources on how to break and
find flaws in mobile applications

» But there’s not a lot out there to help developers understand and
mitigate against security flaws

» Malware targeting the Android platform is growing rapidly

» Wil the mobile application arena be a repeat of what was
experienced with web application security?

