
Session ID:

Session Classification:

John T Lounsbury
Vice President Professional Services, Asia Pacific
INTEGRALIS Services Pte Pty

MBS‐W01

Advanced

FROM WEB TO MOBILE: DIFFERENT VECTORS
AND NEW ATTACKS

► With the ubiquitous usage of smart phones and PDAs the Web Application market has
exploded

► What started primarily as games and productivity aids have developed into business and
corporate tools
► Evolving from static content to highly interactive user interfaces exchanging data and

information of all types
► The line between the personal world and the business world is almost non-existent

► A lack of development standards, frameworks, and language have inadvertently opened up
a vast, new targeted threat landscape

► These threats, and how to deal with them, represent one of today’s single largest
information Security risks

Mobile Applications - How Many do you have?

► Android holds the current market share (around 70%)
► There are other players:

► Apple – 21%
► BlackBerry – 3%
► Windows – 3%
► Linux – 2%
► Other – 1%

► 73% of organizations have been hacked at least once in the past two
years through insecure web applications

► On average, every web application has an average of 12 vulnerabilities

Some Interesting Statistics

► Developers are primarily focused on development efficiency, it is rare
that development organizations consider the security implications of
their application

► Secure Development Life Cycle practices and implementations are still
not widely accepted and implemented – especially in the smaller shops
that where many mobile applications are developed

How much security can there be in a $0.99
application?

► A large number of web application security vulnerabilities are generally
associated with a lack of input validation (SQL Injection, XSS, Open
Redirects, Remote File Includes, etc)

► With web applications, attackers generally attack from a pure black-box
methodology.

► In general, greater skill and knowledge around reverse engineering is
required for assessing and attacking mobile applications because the
code is already in the hands of the attackers

Differences with Web and Mobile Applications

Mobile Application Threat Model

Mobile Phone

Mobile Application

Web
Services

3rd Party
Libraries

Android Vulnerabilities
Android Vulnerabilities

M
alicious Applications

M
alicious Applications

Jailbreak / Rooting
Jailbreak / Rooting

Malicious
User

File System
File System

► The Application and Code
► Identification and manipulation of client side logic

► Permissions
► Are application components sufficiently protected

► Data-in-Transit
► Is the data protected as it’s sent to the server

► Data-at-Rest
► Is the data stored on the device secured

► The Server
► Does the server validate data from the mobile application

Mobile Application Attack Surfaces

► Both Android and iOS applications can be extracted from the phone in
their binary format
► Android: Java compiled to DEX VM bytecode
► iOS: Obj-C compiled to ARM binaries

► A mixture of techniques is then used to decompose the application:
► Analysis of the AndroidManifest.xml File
► Static Analysis
► File System Analysis
► Dynamic Analysis
► Reverse Engineering

The Application and Code

► Compilation and de-obfuscation introduce a degree of difficulty for an
attacker attempting to retrieve the code in its original form, however it’s
possible for the determined and capable hacker

► Dynamic analysis allows for an application to be extracted from a mobile
device and executed within an emulator

► Execution within an emulator can highlight exactly what API calls are
being executed, and which files on the underlying file system are being
accessed

The Application and Code
It’s in the attacker’s hands

The Application and Code
Getting back to the Source Code (Android)

► classes.dex contains the Java bytecode in Dalvik compatible form
► Continue to decompile it back into Java source code

The Application and Code
Getting back to the Source Code (Android)

► Most applications are compiled with obfuscation which makes things
more difficult (like this example) and quite tedious

► It boils down to how much time and diligence the attacker has

The Application and Code
Getting back to the Source Code (Android)

► Other applications haven’t been obfuscated at the compilation stage
► The source code in this case is very close to the original

The Application and Code
Getting back to the Source Code (Android)

► Developers who don’t obfuscate their code prior to release are helping
the bad guys out

► Simply by reading through the source code you can determine:
► How the application communicates to the server
► The types of requests sent to remote servers and their format
► If the application interacts with other components on the phone
► If the application is writing files to the underlying operating system
► Cryptographic Functions
► Third party libraries in use

► All this helps in identifying potential attack surfaces of the application
► One of the best ways to attack a client-server application is to write your

own client to communicate to the server

The Application and Code
Getting back to the Source Code (Android)

► The RequestAuthorization class shows exactly how the authentication
token is created (along with the secret key)

► We looked at a popular game which requires purchases of “gold” to
progress further – it could probably get quite expensive

► Upon decompiling the application and navigating through the
obfuscated code, we were drawn to this call to a file on the device itself:

► The gold value is stored in this preferences file on the device

► A simple edit and you’re a millionaire within the game
► We had gold but now we have !

► The server doesn’t keep track of this value!
► Not stored on the server
► Not validates

The Mobile Application
Logical Flaws

► Mobile application research, shows that developers are implementing
business logic into their applications

► Developers are often under the impression that if their code is
obfuscated, it cannot be decompiled
► Thus they decide to implement logic into the applications which

should be done on the server side
► An application that hasn’t been obfuscated means that logic flaws can

usually be identified quickly!

The Mobile Application
Logical Flaws

► Mobile applications are installed with different privilege levels
► A user’s mobile device will usually have applications from unknown

developers alongside applications they trust for everyday tasks
► For example, their mobile banking application and free games

► Under the Android security model every application runs in its own
process and using a low-privileged user ID

► Applications can only access their own files by default
► With this isolation in place, applications are able to communicate via

different components
► These communications between components are a critical area of

focus for assessing the security of a mobile application

Permissions

► Android Applications are typically made up of multiple components:
► Activities
► Services
► Content Providers
► Broadcast Receivers

► Permissions are granted to each component for as long as the
application is installed on the device

► If these components are not properly secured, malicious or other rogue
programs can interact with them

► Most applications that we have looked at recently do not have well
defined permissions

Permissions

► Poorly protected components for a number of well known and popular
applications
► Poorly protected activities (GUI screens) can be launched instead of the intended

Activity
► Exported Activities can be launched by other applications (think CSRF for mobile

applications)
► Broadcast messages vulnerable to eavesdropping or DoS (Denial of Service)

► Our evaluation showed that most Android applications do not
adequately place permissions around their components

► Some applications were found to contain the ‘debug’ flag. Even though
this is removed by default within the Eclipse ID, it still managed to end
up in the production application!

Permissions
What did we find?

► Most applications will at some point communicate with a server
endpoint

► Confidentiality and strong authentication is a must

► Authentication:
► Verify the entity that the application is communicating with

► Confidentiality:
► Prevent snooping
► Man-in-the-middle attacks

Data-In-Transit

► One of the largest challenges with mobile applications is how they
secure data on the device

► Many popular applications use SQLite database files which are not
adequately protected

► If the device is lost or stolen, it would be trivial for an attacker to pull
these databases and view the records

► On both Android, and iOS it’s fairly easy to get root access and access
application data and configuration files
► These files contain usernames, passwords, encryption keys, and

other sensitive account information

Data-At-Rest

► Through our analysis of popular mobile applications, we continued to
find old web application vulnerabilities:
► Username Enumeration
► SQL Injection
► Broken session management
► Information Disclosure

► Does the server perform strong validation on these requests
► Does the server allow the client to make logic decisions (this should be a

big NO-NO, but happens all the time)
► Does the server validate the mobile application

► A common tactic is to reverse engineer the mobile application and
write a rogue client that communicates with the server

► Are clients validated

The Server
History Repeats Itself

► The mobile application communicates to the server over HTTPS (good)
and using JSON requests. It looks something like this:

► The server would then respond to this request, with the user’s account
information

► What happens if we change the username parameter… ?

The Server
Harvesting User Information

► The server responds with the user information for that user
► This isn’t good. There’s obviously an authentication problem here

HTTP Request

HTTP Response

The Server
Harvesting User Information

► This is a serious vulnerability but unfortunately it happens
quite a lot

► All an attacker needs to have is a valid username and by
exploiting the vulnerability, he is able to obtain:
► The user’s mobile phone number
► The user’s email address

► Through social engineering he may further his attacks
against the user

► He could also write a script to enumerate valid users within
the system and obtain their information

► This application has been downloaded millions of times!

The Server
Harvesting User Information

► For the purpose of this presentation, we undertook a security study into
40 mobile applications

► These applications consisted of:
► Games
► Banking Applications
► Communications/Messaging
► Entertainment

► The purpose was to identify common vulnerabilities associated with
mobile application development

Mobile Application Study

Mobile Application Assessment Results

0
5
10
15
20
25
30
35
40
45
50

Entertaintment
Messaging
Communications
Banking
Games

► The threat surface of mobile applications differs significantly rom that of
web applications

► Web application security has improved, but 5 year old vulnerabilities are
still common and the introduction of web application-to-mobile
application dynamics has both exacerbated the existing vulnerabilities
and introduced new ones

► Development of mobile application development guidelines and
assessment capabilities are needed

► The risk of liability to corporations could be potentially very serious
► Organizations should have a framework for regular assessment of i-

house developed mobile applications and a solution for assuring the
security of applications on BYOD

Summary

Questions and Answers

► There isn’t a lot out there right now in terms of best practice and
guidelines

► Most developers are quite new when it comes to mobile application
development

► There are a lot of good books and resources on how to break and find
flaws in mobile applications

► But there’s not a lot out there to help developers understand and
mitigate against security flaws

► Malware targeting the Android platform is growing rapidly

► Will the mobile application arena be a repeat of what was experienced
with web application security?

Security around Mobile Applications

