RSACONFERENCE ASIA PACIFIC **2013**

REMOVING THE MYSTERY OF SECURITY ENGINES AND THEIR EFFECT ON YOUR NETWORK

Philip Trainor Senior Manager – Applications and Security Ixia Communications Security in knowledge

Session ID: SPO-T02 Session Classification: Intermediate BYOD, Cloud Computing, and switching from wired to wireless is a network performance and security nightmare!

Complex network traffic exponentially increases the workload on Network infrastructure. This lecture will discuss:

- What function does a security engine or content aware device perform in a network?
- What are their choke points when handing complex traffic?
- How is malicious traffic handled differently than normal user traffic?
- How can a network ensure performance under <u>ALL</u> conditions?

Modern network Size: Mobile

- In the last year there were more smart phones & tablets activated than there were babies born
- 1.3 million android devices are activated every day...300K babies born every day
- The average smartphone has 41 apps
- The average person checks their phone 150 times per day (or once every 6.5 minutes)
- By the end of 2013 there will be an estimated 1.82 billion active smartphones globally.

8.7 <u>Billion</u> Wired Devices online

- According to Cisco, in 2012 there were 8.7 billion devices connected to the internet
 - There are approximately 7 billion people in the world today...

http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

RSACONFERENCE ASIA PACIFIC 2013

That makes 10 Billion Networked Devices Globally

- These devices access both Sensitive Data (Personal and non-personal) as well as untrusted networks.
- The content they view is highly complex and requires high bandwidth
- The devices move from Network to Network <u>CONSTANTLY</u>

BYOD (Bring Your Own Device

- Many work places allow for their employees to simply bring ANY machine they want to work
- Why is this a problem?
 - Taking a machine out of a controlle environment will potentially expose the system to malicious events
 - The user will then BRING their compromised machine to work where it will be in contact with other critical machines and pieces of network infrastructure.

Cloud Computing Security Issues

- Interconnecting disparate networks creates environments where the exposure to compromised machines is almost certain
- How do you ensure that opening up your network to that level of exposure will not result in a security event?!???

Networks rely on security devices!

- The burden on ensuring security rest squarely on the deployment of security solutions!
- Let's remove the mystery of how they work so we can better understand the problems we face.

The job of security and content aware devices is daunting!

- These devices must make decisions based on parsing information within traffic flows.
- Processing complex flows by content aware devices <u>WILL</u> increase network latency
- The development of new applications is rapid and constant
- The development of new security attacks is also rapid and constant

What does a *content aware* security engine do?

- Inline security devices are a full content wire-tap. They sit inline on a network and make decisions.
- Is the traffic allowed from the UNTRUSTED zone to the TRUSTED zone?
- Do we log the event or block the network traffic?
- Is this an isolated event or part of a massive attack?

How do security devices make those decisions?

Security devices look at packets and run <u>regular expressions</u> to parse real user traffic versus potentially malicious traffic.

No.		Time	Source	Destination	Protocol	Length Info
	1/61	46.4859400	192.168.1.3	192.168.1.4	SSH	106 Encrypted response packet len=52
	1762	46.4860070	192.168.1.4	192.168.1.3	TCP	54 57228 > ssh [ACK] Seq=10525 Ack=6
	1763	46.5412650	192.168.1.3	192.168.1.4	SSH	154 Encrypted response packet len=100
	1764	46.7409600	192.168.1.4	192.168.1.3	TCP	54 57228 > ssh [АСК] Seq=10525 Ack=€
	1765	47.1110490	192.168.1.4	192.168.1.255	NBNS	92 Name query NB RWTDOM<1b>
	1766	47.8610480	192.168.1.4	192.168.1.255	NBNS	92 Name query NB RWTDOM<1b>
	1767	48.8550230	66.196.120.100	192.168.1.4	HTTP	92 HTTP/1.1 200 OK
	1768	48.8605440	192.168.1.4	66.196.120.100	ТСР	1404 [TCP segment of a reassembled PDL
	1769	48.8605550	192.168.1.4	66.196.120.100	HTTP	260 GET /v1/pushchannel/phil_trainor?
	1770	48.9171920	66.196.120.100	192.168.1.4	ТСР	60 http > 56888 [ACK] Seq=39 Ack=155
	1771	49.6110860	192.168.1.4	192.168.1.255	NBNS	92 Name query NB RWTDOM<1e>
	1772	50.3619080	192.168.1.4	192.168.1.255	NBNS	92 Name query NB RWTDOM<1e>
	1773	51.1119560	192.168.1.4	192.168.1.255	NBNS	92 Name query NB RWTDOM<1e>
	1774	51.8624070	192.168.1.4	192.168.1.255	BROWSE	EF 216 Get Backup List Request
	1775	51.8624710	192.168.1.4	192.168.1.255	NBNS	92 Name query NB QATEST<1b>
	1776	52 6120010	107 168 1 /	107 168 1 755	NRNS	07 Name GUERY NR OATEST-1hs

What is PCRE?

Perl Compatible Regular Expressions:

- The PCRE library is a set of functions that implement regular expression pattern matching using the same syntax and semantics as Perl.
- Individuals write pattern matching logic in PCRE for security engines to match against malicious network traffic

Let's look at one now:

This Snort signature uses PCRE:

alert tcp \$EXTERNAL_NET any -> \$HTTP_SERVERS \$HTTP_PORTS (msg:"OS-OTHER Cisco IOS HTTP configuration attempt"; flow:to server, established; content: "/level/"; http uri; pcre:"/\x2flevel\x2f\d+\x2f(exec|configure)/iU"; metadata:ruleset community, service http; reference:bugtraq,2936; reference:cve,2001-0537; reference:nessus,10700; classtype:web-applicationattack; sid:1250; rev:21;)

What is the rule trying to prevent?

A crafted string to certain Cisco devices will bypass the authentication and allow the attacker to execute any command on the device.

RSACONFERENCE ASIA PACIFIC 2013

-Let's dissect the rule further:

We make a security alert **IFF** criteria is matched:

- tcp \$EXTERNAL_NET any -> \$HTTP_SERVERS \$HTTP_PORTS;
- 2. flow:to_server,established;
- 3. content: "/level/";
- pcre:"/\x2flevel\x2f\d+\x2f(exec|configure)/iU";

A deeper look at the PCRE Section:

"/\x2flevel\x2f\d+\x2f(exec|configure)/iU"

- \x2f is the hex encoding for a backslash (/)
- level is just ASCII "level"
- \d+ is any number of digits (6422423)
- (exec|config) is either ASCII "exec" of ASCII "config"
- The corresponding attack to the regex is:
- GET /level/16/exec//show HTTP/1.1
- See how they match up?

This is how network traffic will look when the pattern is matched and the engine blocks

- This is the perspective from the untrust zone.
- After the socket is made the exploit is attempted and the connection is swiftly reset

Filter:			•	Expression	sion Clear Apply Save	
No.	Time	Source	Destination	Protocol	col Length Info	
	1 0.000000	MS-NLB-PhysServer-	2 Broadcast	ARP	60 who has 14.0.0.1? Tell 14.0.0.11	
	2 0.000059	Sonicwal_c0:47:a4	MS-NLB-PhysServer-3	2 ARP	60 14.0.0.1 is at 00:17:c5:c0:47:a4	
	3 0.013267	14.0.0.11	15.0.0.10	ТСР	62 23652 > http [SYN] Seq=0 Win=16383 Len=0 MSS=14	60
	4 0.015735	15.0.0.10	14.0.0.11	тср	62 http > 23652 [SYN, ACK] Seq=0 Ack=1 Win=16383 L	.er
	5 0.058570	14.0.0.11	15.0.0.10	тср	62 23652 > http [ACK] Seq=1 Ack=1 Win=16383 Len=0	MS
	6 0.119253	14.0.0.11	15.0.0.10	HTTP	278 GET /level/16/exec//show HTTP/1.1	
	7 0.119479	15.0.0.10	14.0.0.11	ТСР	60 http > 23652 [RST, ACK] Seq=1 Ack=1 Win=16383 L	.er

Here is the trust side perspective

Notice that the HTTP GET Method with the malicious content <u>NEVER</u> made it to trust:

· · · · · -				
1 0.000000	MS-NLB-PhysServer-	2 Broadcast	ARP	60 who has 15.0.0.1? Tell 15.0.0.10
2 0.000084	Sonicwal_c0:47:a5	MS-NLB-PhysServer-	-2 ARP	60 15.0.0.1 is at 00:17:c5:c0:47:a5
3 0.013414	14.0.0.11	15.0.0.10	TCP	62 23652 > http [SYN] Seq=0 Win=16383 Len=0 MSS=1460 W
4 0.015674	15.0.0.10	14.0.0.11	TCP	62 http > 23652 [SYN, ACK] Seq=0 Ack=1 Win=16383 Len=0
5 0.058613	14.0.0.11	15.0.0.10	TCP	62 23652 > http [ACK] Seq=1 Ack=1 Win=16383 Len=0 MSS=
6 0.119484	14.0.0.11	15.0.0.10	TCP	60 23652 > http [RST, ACK] Seq=1 Ack=1 Win=16383 Len=0

A TCP Socket was made from UNTRUST but <u>NONE</u> of the attack that matched the regex crossed into TRUST.

But what if we change how we send the attack with an evasion technique?

An evasion example is the backslash character "\", U+005C. Under the original UTF-8, it could be represented by a hex 5C, C19C and E0819C. All these represent the exact same Unicode code point: when one applies the transformation algorithm, one gets the same value. Many older applications that support UTF-8 will accept the three values and perform the transformation to the backslash.

	-		
14.0.0.3	15.0.0.9	TCP	62 31481 > http [SYN] Seq=0 Win=16383 Len=0 MSS=1460 WS=
15.0.0.9	14.0.0.3	TCP	62 http > 31481 [SYN, ACK] Seq=0 Ack=1 Win=16383 Len=0 M
14.0.0.3	15.0.0.9	TCP	62 31481 > http [ACK] Seq=1 Ack=1 Win=16383 Len=0 MSS=14
14.0.0.3	15.0.0.9	HTTP	220 GET %5clevel%5c16%5cexec%5c%5cshow HTTP/1.1
14.0.0.3	15.0.0.9	TCP	60 31481 > http [FIN, ACK] Seq=167 Ack=1 Win=16383 Len=0
15.0.0.9	14.0.0.3	TCP	60 http > 31481 [FIN, ACK] Seq=1 Ack=167 Win=16383 Len=0
15.0.0.9	14.0.0.3	TCP	60 http > 31481 [ACK] Seq=2 Ack=168 Win=16383 Len=0
14.0.0.3	15.0.0.9	TCP	60 31481 > http [ACK] Seq=168 Ack=2 Win=16383 Len=0

Another Evasion: 1-byte TCP Segmentation with out of order Packets

The security system will have to reassemble the flow in order to perform the regex

3 0.000561	1.1.218.21	1.2.207.47	тср	62 11910 > http [SYN] Seq=0 Win=16383 Len=0 MS5=1460 WS=
6 0.043762	1.2.207.47	1.1.218.21	тср	62 http > 11910 [SYN, ACK] Seq=0 Ack=1 Win=16383 Len=0 M
7 0.085484	1.1.218.21	1.2.207.47	TCP	62 11910 > http [ACK] Seq=1 Ack=1 Win=16383 Len=0 MSS=1 V
8 0.156201	1.1.218.21	1.2.207.47	тср	60 [TCP Previous segment not captured] [TCP segment of a
9 0.156262	1.1.218.21	1.2.207.47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
10 0.156325	1.1.218.21	1.2.207.47	ТСР	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
11 0.156351	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
12 0.156376	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
13 0.156401	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
14 0.156426	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
15 0.156452	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
16 0.156476	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
17 0.156501	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
18 0.156526	1.1.218.21	1.2.207.47	TCP	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
19 0.156550	1.1.218.21	1.2.207.47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
20 0.156575	1.1.218.21	1.2.207.47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
21 0.156600	1.1.218.21	1.2.207.47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
22 0.156626	1.1.218.21	1.2.207.47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
23 0.156651	1.1.218.21	1.2.207.47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
24 0.156676	1.1.218.21	1.2.207.47	ТСР	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
25 0.156701	1.1.218.21	1.2.207.47	ТСР	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
26 0 156726	1 1 218 21	1 2 207 47	тср	60 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]

How well written is your RegEx?

- gET is the exact same action as GET
- hTtp is the exact same action as HTTP
- Will your RegEx account for that scenario?

am eq 0		•	Expression Clea	ar Apply Save			
	Course	Destination	Destand Lawyth	Tufu			
	Source	Destination	Protocol Length				
00425	1.1.147.135	1.2.51.11/	TCP 6	2 40160 > http	[SYN] Seq=	0 W1n=16383	Len=0 MSS=
42720	1.2.51.117	1.1.147.135	TCP 6	2 http > 40160	[SYN, ACK]	Seq=0 Ack=1	Win=16383
85419	1.1.147.135	1.2.51.117	TCP 6	2 40160 > http	[ACK] Seq=	1 Ack=1 Win=	16383 Len=
06222	1.1.147.135	1.2.51.117	HTTP 27	8 Continuation	or non-HTT	P traffic	
50808	1.2.51.117	1.1.147.135	TCP 6	0 http > 40160	[ACK] Seq=	1 Ack=225 Wi	n=16383 Le
52043	1.1.147.135	1.2.51.117	TCP 6	0 40160 > http	[FIN, ACK]	Seq=225 Ack	=1 Win=163
Folk	ow TCP Stream	A A COST AT MA	-	a dense a dense			₩in=163 16383 L€
Stream GET Host User Feni Acce Coni Coni	n Content /level/16/exec//sh t: EbSUHwJVvnugoPFS r-Agent: Mozilla/5.0 nec/10.0.1 ept: */* nection: keep-alive tent-Length: 0	ow hTtp/1.1 mgfzz 0 (Maemo; Linux armv	/71; rv:10.0.	L) Gecko/20100	101 Firefox	/10.0.1	16383 Le

RSACONFERENCE ASIA PACIFIC 2013

OK...that attack was old

- ...but it was a good example ③
- Now lets look at a new attack from 2013 and look at the difficulties a security engine will have to deal with!!
- Lets look at CVE 2013-2028 Nginx HTTP Chunked Buffer Overflow
- Nginx is a new and popular webserver that is open source

This is how the attack would look in wireshark:

Follow TCP Stream

Stream Content-

GET /zrawxq0Z0 HTTP/1.1 Host: rdI9XdcPQe User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0) Accept: */* Transfer-Encoding: chunked

UxuOSSiKrIajifcfCsbVyKxLBbuMTDsNPzaaEpcTnhwvyCMCJgTLSwIirVthOjDRSbgwKUAVJBHNnYZVqSmSq. pcJboLlXNiDjqVzVECTosemfsOmOFTKqWEGaOphpbweckwdAx1FMqUCCrDxDvdYfWCnYxsSbKenFDFoDAEvq1 aytUaSxeURzvplqFLALNtpLKMiKHhFKaitqJHuCGGKbzNPjzlnipvDKHxBoZOhNXHatowbZpJpTnwBhgnfPRpl KMewAUfsQKfhSunQwfKdoUtFfSIAwtKMeTShtGb1hbZgYffaVv1GuLwocrLBQWGLEomIgaQUdczanyhkZKnxci GXWZLYxDnIXqH1X1uZAPX1PKVoDeCcFudZnR1cnKrCGdwPp1JhwzNVCISBHIEy1bpPBvMKBgaBHegHKoDhNwr: eYoiUrUQeKPQbEJuVhxsYbUeRLezBIqxAJvyvSvEarymwCrEsZQcKoMUmhVbkVznfHZLVuYwQAfZqYCrJfRNL. MuVYDXReOmIUTtQxaTxIqQxrhjjkvaTfOZXxtWCBCijIVPuBJxSFCoFqzEubJHQwOcIrAEeCfWFxZEmQvnUjqu bzaXKTupCsyXpZZYubUyýiHpušHxwxCeIbJeSCirlJtDbRkDjtFyhzfaJYZSxHNmBgqIOtXqFixltXXEXWyCH OcsNNTHnCpMDnzbQCMwsihGgVbPqmClwjdmExObJGytxjvWnbEukIsCCbxrJWbOkusyUswuyipcrIvvnYJTDf HVdadbdeaYV jPLrQrnszVP jKFC JaQYoTMBJZh JpPhAdRq JEyQqbt akrk0aofmgPkpSPv i EwiBTFFwk lvKGcwti KSVHoZwuKhKkZmGeotjnwnYzsppxJoHcFyvQMnsewceZwdmwNfOWQoREIovlxBBRCDojzcjQwCecSIDpMMHWE ffzhTaeEZOJeVmuIWCuXQYdbHdXozHZqLQrvJuRIvUDwFvgGYelnShFeHMUFQMMpLjqktzBBIROrjZmHgpgqdu azugtDasKcCeFPBvIRxzUZIYDLnAduCCCyDrfnIDbaPpRDtXwdxsknhJlekTVhoEpXPuQdfMAbigyxEATCWzvv dHOGWSccnxIhpZvqpxMsqLcScUGAVpTwHUQjdl0J0VaZfyUkEuRyGukGUqnKmyQuBcsfUquYMseJjtUqznpJG PzxcUYaeOJHgAbonYwygxBTEyyfEvoJoHTYWOfuSRstcKrFhjOxDVYiyQjfQpQykeCzPPChBbFVPLEuaLuisil AcdZmcSVfgNneKStAaInyypsekDWXfvGAOAwjqSAnGgjhGAnlOqZdtewCkZzeCWQdEYtXQmlsNLNEsuIFwHxm NSCBHXInvgsbczRWSxMukcdGMomTESfPALPfpz1pATXhAWg1t1Tzmzhmi0fGgdBdjkITiqJcmojza1ZRzTeqE bRAzeEkZMśwsCQhtPPxuexsvQusNJplwEiuBMrMTYtmBQAcDaloiDsvnmfwyb5DYidinejtVZqVOHIEuzzKkhi pARmfcGYbmmZCeORdsdbVtjUsVeysZvheYzVYaiuLEkECvjvFaJzsFOOszdwAX1rJvsCyrJQtTWuedoMjhInX zvuweDwqQDFFMFhHAdUUFeEXvvywJvhLbSvjELdCgdffBhSulGEXZzFPMRNMvTbQPSBmdUAVErYFxgExyDQir RtIPBbmjVbB]YhxMyLdaJSxYjFShHYdURqEZYGUwbPYxBoTExoFLyXhvKdEnhIRkNuDHVHdqwONmGaDVuvrCG OY1pMEtucjzSMsSyBgulTEyHxtXdRFUpcLIgnjAAHCqDxqXLWyJvojJfBHoZWKhFsyhOLJcsqSTsramwmpNMx; XAtvEzsuwLbkNJEhXŠvqsfkIqTjtXQsTjTqGrDHiubQYSCIYjAiQmypCDFMFIhVgcGbIXvThMxnMmbQkFquUMI QEefebbpmuHASrMpbXBqUQdHwtdiPmgJqbesJVGsqxxBVrXDDIcLaeEaMPcKpVUDdFalwetqCuCTPFchVpxliv COQIUEXUVqflEiDmFDXtXCtWoiMJRpySRqSLQvvepohuTICOVqkqywRozbOaurTJMZbPciOgGbYjxgzNkCUYQ ezv0jBdDfPZVmAbjBzZTMXpeZIZoCqlIHuNJyXlxEFfeHpUZkMgskClLKaVqkfmXKxcusqFjBwfukQinXzTqwI TMFPpbTHFZZ]yIEKbENIqjKPQDbkmtrxp]KFtWEYZGdcGfsMwj0ZGrNDMXbsYGxuGUjaiKvNOHxLspNDpTJjS FaviIGgwyPNtxecXbNhdSfRRlNbBmrPRXnrkvNRtDPCBfxnEwrolgMlltPfvPUMdwhTeanuAvyyleskcvBKEa MiOwHeČmkUUeHpjrukfCjUKxUsmDmAaefwAMSJutzSlWdEZYxndekJrqIejWGUcpXYCwxssvQonPepPVhYUqrI XhxoGuqOtjBUqDOWPNEFKEftPdIbFnMzzIPuBAQrMVvJwXqPNSiipETewYRBrwyNuSKywoqDjAsHtaraFnFAc. RktlwmDUvEcrFFweGqJYITZYTQGvwMeyZLIruZGZQvcHGfbrYrFoOJkjyALJvrsjnpPYjmutToIaAGYDTdGCG

RSACONFERENCE ASIA PACIFIC 2013

CVE-2013-2028 in depth

- The attack I crafted to create a stack based buffer overflow a worker process on NginX HTTP Server involved a 7,560 byte chunked-encoded payload
- NginX Version Not vulnerable: 1.5.0+, 1.4.1+ Vulnerable: 1.3.9-1.4.0
- Discovered on May 7th, 2013

What is Chunked Encoding?

- Chunked transfer encoding is a data transfer mechanism in HTTP 1.1
- data is sent in a series of "chunks".
- It uses the <u>Transfer-Encoding</u> HTTP header in place of the <u>Content-Length</u> header

Because the Content-Length header is not used, the sender does not need to know the length of the content before it starts transmitting a response to the receiver.

http://en.wikipedia.org/wiki/Chunked_transfer_encoding

Size Matters!!

- Since we're using chunked encoding the server DOES NOT KNOW how much data we are going to send until we finish!!!
- This is why we are able to over-run the stack and cause a segmentation fault
- If we were clever we would not simply crash the worker process...we would TAKE OVER the worker process and have control over the machine running NginX

ASIA PACIFIC **201**3

How does a stack based buffer overflow work?

Give this program 100 A's...

```
void foo(char *user_str)
{
    char local_str[64];
    strcpy(local_str, user_str);
    int main(int argc, char *argv[])
    {
        if(argc!=2)
            { printf("usage: %s <in_string>\n", argv[0]); return 1; }
    foo(argv[1]);
    return 0;
}
```

Register	s (FPU)	<
EAX 0000 ECX 0032 EDX 0041 EBX 7FFD ESP 0012 EBP 4141 ESI 0000 EDI 0000	0000 0FB4 4141 D000 FEEC ASCII "AAAAAAAAAAAAAAAAA 4141 00A28 0000	IAAAAAA
EIP 4141	4141	
C 0 ES P 1 CS A 0 SS Z 1 DS Z 0 FS T 0 GS	0023 3251t 0(FFFFFFFF) 0018 3251t 0(FFFFFFFF) 0023 3251t 0(FFFFFFFF) 0023 3251t 0(FFFFFFFF) 0038 3251t 7FFDF000(FFF) 0000 NULL	
0 0 Las	tErr ERROR_SUCCESS (0000000	301
EFL 0001	0246 (NO, NB, E, BE, NS, PE, GE, L	E)
ST0 empt ST1 empt ST2 empt ST3 empt ST4 empt ST5 empt ST5 empt ST6 empt	y -UNORM BDEC 01050104 0028 y 0.0 y 0.0 y 0.0 y 0.0 y 0.0 y 0.0 y 0.0 y 0.0	80067
FST 0000 FCW 027F	3210 ESPL 1 Cond 0000 Err 0000 Prec NEAR,53 Mask 11	1020 0000 1111

RSACONFERENCE ASIA PACIFIC 2013

Background on Stack Pointers

- EIP (Extended Index Pointer) -> Is a 32-bit register that points to the memory address which the processor will next attempt to execute.
- When we push more data onto the stack than was intended we overwrite what instruction happens next.
- If there is garbage in the EIP (\x41\x41\x41...) the program will simply crash
- A clever hacker will figure out how to put his OWN CODE as part of the payload and use a NOP sled to set the EIP value to the start of their code.

I could go on for hours on assembly code but we (unfortunately) do not have time...

RSACONFERENCE ASIA PACIFIC 2013

More Complexity for Security Engines: Client-Side Attacks!

What is a client side attack?

- When a user, inside of the trusted zone, contacts a server hosting malicious code
- This code is then run on the clients machine, typically in a web browser
- Client Side attacks are difficult for security engines to handle for several reasons:
 - The socket is created from INSIDE the trust zone
 - Often times HUGE amounts of data precede the attack which requires security engines to buffer large amounts of data

Back to Business...Security Engines!

- Security Engines have their work cut out for them when identifying attacks...but what happens when the attacks are 0.0001% of the network traffic??!?!?!?!
- The end result is latency and false positives

A typical network is running dozens to hundreds of unique protocols at high speeds...

Finding attacks in a sea of real users is one of the biggest challenges of security engines

Network Traffic in 2013 at major endpoints and backbones is in the terabytes...or greater

7.21.2. Application Data Throughput

Application Data Throughput

Under this kind of network load even good security engines will miss attacks

RS AS 📕 Total Strike Count 🔳 Allowed Strike Count 📕 Blocked Strike Count 📒 Skip

	Measurement	Value (Strikes)	
	Total Strike Count	183	_
	Allowed Strike Count	10 5.464%	
A CONFERENCE	Blocked Strike Count	173 94.536%	
A PACIFIC 2013	Skipped Strike Count	0	
	Errored Strike Count	0	

Why did the attacks get through?

The larger the network the faster the engine must work because security devices are traffic agnostic...they cannot assume a flow is good or bad. <u>EVERY</u> flow must be scrutinized.

Modern applications are complex

- It's very easy to get a security engine stuck chasing it's tail when it comes to Application Layer Security <u>BECAUSE</u> a RegEx must be applied to every flow
- Even simple evasion techniques require the security engine to allocate MORE resources and limit their effectiveness and <u>increase</u> <u>latency</u>

Why haven't we discussed DDoS????

- Distributed Denial of Services have become an increasing issue that security engines have to account for when securing networks.
- These type of attacks are now more complex as they attack Applications and not simply throw TCP SYN packets or ICMP Echo Request packets at the target
- This problem is growing...

DDoS Effects EVERY kind of organization...

- 27% Governments
- 9% Law Enforcement Agencies
- 7% Educational Institutions
- 6% Online Games
- 6% Internet Services
- 5% Sport
- 4% News
- 4% Financial Institutions
- 4% Technology

***2012 statistics

Recent targets...

- A large scale coordinated attack by Anonymous directed at Isreal took place on April 7th of this year named #OpIsrael
- Websites were defaced...
- Critical GPS information was stolen and is being held hostage...
- Attack was done very publicly

The new fad: Coordinated DDoS attacks!

- Layered attacks where there are multiple contingency plans
 - attempt attack 1, if success exploit, else
 - attempt attack 2, if success exploit, else
 - •

IA PACIFIC **20**

- DDoS can be used as a subterfuge
- Log files chocked with incidents bury the real attack

What does a DDoS Look Like?

The source of DDoS Attacks?

- Individual PC's
- Some even <u>voluntary</u> due to hacktivism!!
- But how can individual PC's cause any damage to a well thought out network that is secured with the latest technology?

Very Easily...PC's are more powerful than most people think...

- My 5 year old i5 laptop put out a 12K Packet Per Second DDoS
- Multiply that
 by even a
 few
 thousand
 machines...

RSACONFERENCE ASIA PACIFIC 2013

-			Capturir	ig from lo	(loopback)) [Wire	eshark 1.9.	0 (SVN R	ev 43144	4 from /	trunk	()]			_	+ ×
<u>F</u> ile	<u>E</u> dit <u>V</u>	iew <u>G</u> o	<u>Capture</u> <u>Analyz</u>	e <u>S</u> tatistic	s Telephony	<u>T</u> ools <u>I</u> r	nternals <u>H</u> elp	þ								
		91 🔐	😂 I 🗗 🛛	‡ × ₹		λ +	÷ ⊊. ₹	F ±		€	Q	0	1	ļ 🗹		₹
Filt	ter:						Expression	I Clear	r Aj	pply	Sav	e				
No.	Time	•	Sourc	e		De	estination		Protocol	Length	Info					
122:	370.99	3477000	J 10.20	10.31.63		10	.200.31.62		HIIP	/6	[TCP	Retra	nsm15510	onj Co	ntinuat	:10N
1223	38 0.99	3486000	9 10.20	0.31.63		10	.200.31.62		HTTP	76		Retra	nsmissio	onj Co	ntinuat	10n
1223	39 0.99	3494000	0 10.20	0.31.63		10	.200.31.62		HTTP	76	TCP	Retra	nsmissio	onj Co	ntinuat	10N
1224	10 0.99	3503000		0.31.63		10	.200.31.62		HTTP	76		Retra	nsmissio	onj Co	ntinuat	:10N
1224	41 0.99	3511000	9 10.20	0.31.63		10	.200.31.62		HTTP	76		Retra	nsmissio	onj Co	ntinuat	ion
1224	42 1.01	14259000	9 10.20	0.31.63		10	0.200.31.62		HIIP	/6		Retra	nsmissio	onj Co	ntinuat	10n
1224	43 1.01	4278000	9 10.20	0.31.63		10	0.200.31.62		HIIP	/6	[TCP	Retra	nsmissio	onj Co	ntinuat	ion
1224	44 I.01	4280000		0.31.03		10	200.31.62		HITP	70		Retra	nsmissio	onj Co	ntinuat	.ion
1224	+5 I.01	4293000				10			HITP	70	TCP	Retra	nsmissio		ntinuat	ion
1224	+0 I.01	4207000		0.31.63		10	200.31.62			70	TCP	Retra			ntinuat	ion
1224	+/ 1.01			0.31.03		10	200.31.62		HITP	70	TCP	Retra	nsmissio	onj Co	ntinuat	ion
1224	+8 I.01					10			HITP	70	TCP	Retra	nsmissio		ntinuat	ion
1224	+9 1.03			0.31.63		10	200.31.62			70	TCP	Retra			ntinuat	ion
1225		2023000		0.31.03		10	200.31.02		итто	70	TCP	Potra	nemicci		ntinuat	ion
1223		2021000		0.21.62		10				70		Potro			ntinuat	ion
1225	52 1.03	203000		0.31.03		10	200.31.02		нттр	70	TCP	Retra	nemiecio		ntinuat	ion
1225	54 1 03	2653000	3 10.20	0.31.03		10	200.31.02		нттр	76	TCP	Retra	nemiecio		ntinuat	ion
1225	55 1 03	265966	a 10.20	0.31.63		10			нттр	76	TCP	Retra	nemicei		ntinuat	ion +
	JJ 1.03	2055000	5 10.20	0.51.05		10	.200.31.02			70	[ICF	Netra	131113310	nij co	ncinda	
+ Era	ame 1·	76 hvt	es on wire (60	8 hits)	76 hytes c	antured	(608 hits)	on inter	rface 0							
	hernet	II, Sr	c: 00:00:00 00):00:00 (0	0:00:00:00	:00:00),	Dst: 00:0	0:00 00:0	00:00 (0	9:00:00	:00:0	0:00)				
.			· · · · ·									· · · · · ·				•
0000	00 00	00 00	00 00 00 00	00 00 00 00	00 08 00 45	600 .		E.								
0010	00 3e	3a 0c	00 00 11 06	20 al 0a (C8 11 31 0a	1 C8 .3	>: >	?								
0020	08 h6	04 02	00 00 73 6f	6d 65 74 (59 6d 65 73	49		timesI								
0040	63 61	75 73	65 54 72 6f	75 62 6C /	65 65	Ci	auseTro ubl	le								

😑 lo (loopback): <live capture in progress> ... ∃ P... ∃ Profile: Default

Earlier I mentioned Application Layer DDoS...

Welcome to	<u>File Edit View History Bookmarks Tools H</u> elp
Slowloris - the	The second seco
	📷 Most Visited 🔻 🛛 🧕 Outlook Web App 🛛 SHODAN - Compute 🖪 The Hacker News [
IOW	Rs http://ha.ckers.oris/slowloris.pl
bandwidth, yet	#!/usr/bin/perl -w use strict;
greedy and	use IO::Socket::INET; use IO::Socket::SSL; use Getopt::Long:
poisonous	use Config;
HTTP client	<pre>\$SIG{'PIPE'} = 'IGNORE'; #Ignore broken pipe errors</pre>
	<pre>print <<eotext; CCCCCCCCCC000000888\@8\@88880000CC0008888888888</eotext; </pre>

This will clutter a security log file up with 50,000 machines atttacking...

				<u>F</u> ile	<u>E</u> dit <u>V</u> i	ew <u>S</u> earch <u>T</u> erminal <u>H</u> elp
				Currer This t	nt stats: thread now	Sending data. Sending data. Slowloris has now sent 9014 packets successfully. sleeping for 100 seconds
				Currer This t	nt stats: thread now	Slowloris has now sent 9026 packets successfully. sleeping for 100 seconds
				Currer This t	nt stats: thread now	Sending data. Slowloris has now sent 9103 packets successfully. sleeping for 100 seconds
Filter:	tcp.stream eq 0		Expression Clea	ar Currer	nt stats:	Building sockets. Building sockets. Sending data. Slowloris has now sent 9430 packets successfully.
No.	Time	Source	Destination	Prot This t	thread now	sleeping for 100 seconds
1	0.00000000	127.0.0.1		TCP Currer	nt stats:	Sending data. Slowloris has now sent 9482 packets successfully.
2	0.000018000	127.0.0.1	127.0.0.1	TCP This t	thread now	sleeping for 100 seconds
3	0.000034000	127.0.0.1	127.0.0.1	TCP		Building sockets. Sending data
4	0.002617000	127.0.0.1	127.0.0.1	TCP Curren	nt stats:	Slowloris has now sent 9687 packets successfully.
5	0.002661000	127.0.0.1	127.0.0.1	TCP	thread now	Building contests
462	0.044108000	127.0.0.1	127.0.0.1	TCP	8.92	Sending sockets.
463	0.044117000	127.0.0.1	127.0.0.1	TCP This t	thread now	sleeping for 100 seconds
1904	10.473499000	127.0.0.1	127.0.0.1	HTT		Building sockets.
1905	10.473517000	127.0.0.1	127.0.0.1	TCP Currer	nt stats:	Sending data. Slowloris has now sent 10084 packets successfully
1906	10.473586000	127.0.0.1	127.0.0.1	TCP This t	thread now	sleeping for 100 seconds
2079	10.512693000	127.0.0.1	127.0.0.1	TCP		Building sockets. Sending data.
8944	100.047623000	127.0.0.1	127.0.0.1	HTT Curren	nt stats: thread now	Slowloris has now sent 10285 packets successfully sleeping for 100 seconds
0045	100 047640000	107 0 0 1	107 0 0 1	TCD		n and an

Why are DDoS Attacks especially difficult for Security Engines?

- DDoS attacks are often a subterfuge for the REAL ATTACK
- Clogging the security engine with millions of repetitive alerts for SlowLoris, High Orbit Ion Cannon, or RUDY (R U DEAD YET) paves the way for a precise and successful attack!

Like an SQL Injection!

SQLi is often used during targeted attacks to make false entries into databases, drop tables, and steal sensitive data

3 0.000815	1.1.166.0	1.2.1/0.195	тср	62 46543 > http [SYN] Seq=0 Win=16383 Len=0 MSS=3
6 0.044195	1.2.170.19	5 1.1.166.0	TCP	62 http > 46543 [SYN, ACK] Seq=0 Ack=1 win=16383
7 0.098183	1.1.166.0	1.2.170.195	TCP	62 46543 > http [ACK] Seq=1 Ack=1 Win=16383 Len=(
8 0.109773	1.1.166.0	1.2.170.195	HTTP	416 GET /blocked.php?u=3&d=3&id=434%29%20or%201%36
9 0.352836	1.2.170.19	5 1.1.166.0	TCP	54 http > 46543 [ACK] Seq=1 Ack=363 Win=16383 Ler
10 0.364016	1.2.170.19	5 1.1.166.0	TCP	337 [TCP segment of a reassembled PDU]
11 0.407908	1.1.166.0	F F H TOD C		k=284 win=16
12 0.407984	1.2.170.1	CP Stream		
13 0.450704	1.2.170.1	Stream Content		win=16383 u
14 0.450776	1.1.166.0	CET /blocked php2y 28d 28dd	4249/209/20 am	Win=16383 I
		GET /DTOCKED.pnp?u=3&d=3&10 20password%20from%20users%2 29,11%29%20LIMIT%201&histor Host: ttXAUBcbJdYZNPptyYWcN User-Agent: Cricket-A310/1. Accept: */* Connection: keep-alive	=434%29%200r 9,32,1%29,16 y=-2&file=3 EgEPsuDnbMed 0 UP.Browser	%201%30%285eTect%201F%28Conv%28M10%28%285eTect% ,10%29%20%3d%2014,BENCHMARK%28711,rand%28%29% HTTP/1.1 /6.3.0.7 (GUI) MMP/2.0
		НТТР/1.1 200 ОК Date: Tue Apr 09 10:49:57 -	0500 2013	

So how do you build a security engine that can handle everything we just mentioned?

- You have to test the device under real conditions!
- Millions of real users running current applications!

A PACIFIC **20**

- Network Throughput commensurate to the load that will be handled when deployed
- ...then you bombard the device with real attacks and real DDoS scenarios

RSACONFERENCE ASIA PACIFIC **2013**

Thank You! Questions?

