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— REST—The Cultural Evolution

» REST Culture (as evolved from ESB)
» Developer self-service — open lifecycle
» Usage context — Open API, Enterprise API, Vendor API
» Deployment context — public cloud, private cloud, on premise
» Focus on explicit state management / stateless APIs (nouns)
» Constrained interaction model (verbs)

» REST Security (as evolved from Web Applications)
» EXxplicit actor model — add developer and app to user and API
» “public” security model — assume browser or app is compromised
» Tiered defensive strategy
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— OAUTH Actor Model
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— API Identities and Keys

» ldentities and Credentials

» The User (Resource Owner)
» Issued by...federated in many scenarios

» The App (Client)
» Issued through the Developer Portal by the APl Owner

» The Developer
» Issued through the Developer Portal by the APl Owner

» The APl Owner
» Federated to the Enterprise / Web Site Owner
» Keys/Tokens
» Access Tokens (typically “short’-lived)
» Refresh Tokens (long-lived or indefinite)



—The TLS Slide

» REST Security in general and OAuth mechanisms in
particular depend on TLS
» Use TLS 1.0, 1.2 if you can
» Handle certificates properly, even in sample code




—— Threats

» Service Provider
» Access control violations (data protection)
» Availability (scale, responsiveness)
» ldentity management (life cycle)
» Application Developer
» Client (application) keys, identifiers
» Integrity of access and refresh tokens
» Application and Developer reputation

» Application / Service Consumer
» Man-in-the-middle vulnerability
» Malicious responses



——Web Threats, REST Edition

Injection attacks (XSS, SQL, Xpath, Xquery)
Buffer Overflow

(D)DoS attacks

XML attacks

JSON attacks

Session attacks / CSRF
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» APIs are responsible for managing inbound and
outbound threats



—— Tiered Countermeasures
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—— Authorization

» OAuth manages authorization using scopes
» Scope management can be delegated to an API Gateway

» JSON Web Tokens
» Can be used in cross-domain contexts
» Requires signatures, and associated certificate management

» Alternate mechanism to obtain access tokens, possibly with
scope



— Example: OAuth 2.0 Auth Code Grant Flow
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— Example: OAuth 2.0 Implicit Grant Flow
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__ Example: OAuth 2.0 Resource Owner
Password Credentials Flow
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—_ Example: OAuth 2.0 Client Credentials Flow
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—_ Example: OAuth 2.0 JWT Flow
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—Summary

» REST Security...for whom?
» API Provider, APl Consumer, APl Developer

» Life Cycle Processes (keep Self-Service in mind)
» Credential registration, maintenance, revocation
» Access Token and Refresh Token revocation
» Visibility and Monitoring
» Authorization server abuses / hammering
» APl usage tracking (correlation with client_id)

» Threat prevention
» Prefer whitelisting, where possible
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