RSACONFERENCE
ASIA PACIFIC2013

SECURING REST APIS—
PROTECTING THE NEW WORLD
OF MOBILE AND CLOUD il <8

asts
SERVICES, USING OAUTH AND B\ <
API KEYS TN
A\
John Thielens !
Axway =
Session ID: SPO-WO3A

Session Classification: |ntermediate

— REST—The Cultural Evolution

» REST Culture (as evolved from ESB)
» Developer self-service — open lifecycle
» Usage context — Open API, Enterprise API, Vendor API
» Deployment context — public cloud, private cloud, on premise
» Focus on explicit state management / stateless APIs (nouns)
» Constrained interaction model (verbs)

» REST Security (as evolved from Web Applications)
» EXxplicit actor model — add developer and app to user and API
» “public” security model — assume browser or app is compromised
» Tiered defensive strategy

v

— OAUTH Actor Model

Developer
Portal The User
App —
Developer .
'C‘--’\'S:qé\.}eloper Portal Credentials Resource
Owner
Authorization
API Business
\.i“y]l_& _____________ T _______________
“u#|Access Toker| ?:__(_E‘,)——r’—‘——_—— Aevess-Token —==p Resource Owner
Refresh Token<- (F) --- Protected Resource --- Server
R + R M A, +
The App

— The API

: o
e

— API Identities and Keys

» ldentities and Credentials

» The User (Resource Owner)
» Issued by...federated in many scenarios

» The App (Client)
» Issued through the Developer Portal by the APl Owner

» The Developer
» Issued through the Developer Portal by the APl Owner

» The APl Owner
» Federated to the Enterprise / Web Site Owner
» Keys/Tokens
» Access Tokens (typically “short’-lived)
» Refresh Tokens (long-lived or indefinite)

—The TLS Slide

» REST Security in general and OAuth mechanisms in
particular depend on TLS
» Use TLS 1.0, 1.2 if you can
» Handle certificates properly, even in sample code

—— Threats

» Service Provider
» Access control violations (data protection)
» Availability (scale, responsiveness)
» ldentity management (life cycle)
» Application Developer
» Client (application) keys, identifiers
» Integrity of access and refresh tokens
» Application and Developer reputation

» Application / Service Consumer
» Man-in-the-middle vulnerability
» Malicious responses

——Web Threats, REST Edition

Injection attacks (XSS, SQL, Xpath, Xquery)
Buffer Overflow

(D)DoS attacks

XML attacks

JSON attacks

Session attacks / CSRF

vvyvyvyy

» APIs are responsible for managing inbound and
outbound threats

—— Tiered Countermeasures

* Credential
* Behavior Whitelisting reaentia

Hammering
* Query String Canonicalization
* Refresh Token
* JSON Schema Validation .
. . Anomalies
* Virus Scanning
. * SourcelP

* Blacklist Patterns e

. Filtering

Authorization
Server

Client [API Gateway]

Token
| Repository

Resource
Server

Classical Network Defenses

Quota/Rate
Enforcement
Harvesting Detection

—— Authorization

» OAuth manages authorization using scopes
» Scope management can be delegated to an API Gateway

» JSON Web Tokens
» Can be used in cross-domain contexts
» Requires signatures, and associated certificate management

» Alternate mechanism to obtain access tokens, possibly with
scope

— Example: OAuth 2.0 Auth Code Grant Flow

Web Server

User UserAgent (Browser) (Client App) Authorization Server Resource Server
Enter URL >
Open URL >
Sart OAuth Process D

qRedret o Atz Server |

Opersre;dgum >
< Present Authorization UL
< Presentt Authorization UL
Pmalu’edertialsarﬂalﬂmseag.

Present submitted data from user >

¢ Redirect to Web Server with Authorization Code
FolonredredthebSever,

Present Authorization Code N
< Refurn Access Token
Call protected resource with Access Token

T
< Refum protected resource

>

Web Server
(Client App)

UserAgent (Browser)

Authorization Server Resource Server

— Example: OAuth 2.0 Implicit Grant Flow

Enfers URL >
Page with javasript >
Exeutejarasa‘:t:
'mmmmw
Opens redredt URL >
T
< Prasent Sutharization Ul
< Present Authorzation Ul
Pmataederﬁalsandawmseu'g'
Present submitted data from user >
]
Verify and create Access Token :)
< Rediract to Web Server with Access Token In 2 fragment
T
Follow rediract to Web Server with out fragment >
T
< page with javascript
Mam&ssmkenfrunfrwa
Cal protecied resource with Access Token >
T
< Retum proteciad resource

User User Agent (Browser) Javastript client | Authorization Server | Web Server | Resource Server

__ Example: OAuth 2.0 Resource Owner
Password Credentials Flow

Resource Owner Client Authorization Server Resource Server

Resource Owner's credentials >
Resource Owner's credentials >

Authenticate Resource Owner D

Authenticate Client D

< Access token with optional refresh token

Access protected resource wlth access token

Protected resource r&sporse

<
Client Authorization Server

—_ Example: OAuth 2.0 Client Credentials Flow

Client Authorization Server

lient ¢ al
C redentials >

Authenticate Client :

4Access token with NO refresh token

<

Access protected resource with access token

Protected resource response

Authorization Server Resource Server

—_ Example: OAuth 2.0 JWT Flow

Server Application Authorization Server Resource Server

Token Request (with JWT)

< Token Response
1
Call API with Access Token

Server Application Authorization Server Resource Server

—Summary

» REST Security...for whom?
» API Provider, APl Consumer, APl Developer

» Life Cycle Processes (keep Self-Service in mind)
» Credential registration, maintenance, revocation
» Access Token and Refresh Token revocation
» Visibility and Monitoring
» Authorization server abuses / hammering
» APl usage tracking (correlation with client_id)

» Threat prevention
» Prefer whitelisting, where possible

RSACONFERENCE
ASIA PACIFIC2013

