


—— Untrusted Libraries

» Software developer Bob wants to write a photo gallery
» Bob finds a library for PNGs

» Bob might not trust the library
» can it steal photos? tamper with photos?

» What can Bob do?

» Analyse the source of the library?
» can vulnerabilities/malicious behavior be found?

» What if no source?

» |In practice - just use the library

= e NUS School of

s | Computing




—— Massive Use of External Software Libraries

» GoogleChrome uses 115 external libraries; Firefox uses 171

» Software Plug-ins:
» A framework to allow third party modification
» E.g. Adobe Photoshop, Winamp, GStreamer, GIMP, Kernel Driver

» Browser Extensions: Flash, Java, QuickTime, Real Player, ...

» From www.libpng.org: 103 Web browsers, 154 image viewer
and 21 hardware use libpng. They gave up counting them 6
years ago

» From www.gzip.org: “This list is getting pretty long. Eventually,
it may be easier to list the applications that don't use zIib!”




—— Reported Vulnerabilities in Libraries

» libpng vulnerabilities in 2011
» See:http://www.libpng.org/pub/png/libpng.html

» Denial of Service: CVE-2011-3328, CVE-2011-3045, CVE-2011-2692,
CVE-2011-2691, CVE-2011-2501

» Denial of Service: CVE-2011-3328, CVE-2011-3045, CVE-2011-2692,
CVE-2011-2691, CVE-2011-2501

» Otheryears: 2010, 2009, 2008, 2007, ...

» Malicious Plug-ins

» Trojan.PWS.Chromelnject.A: Firefox plugin that collects a user’s
passwords from banking sites

» Heuristic.BehavesLike.Exploit.CodeExec.l: worm disguised as VLC
plugin libwav_plugin.dll

B & N U S
@ ey =il

School of

s | Computing



—— Some Definitions

» Main Program

» trusted code Main Program
» full privileges

» Untrusted Code l
» library code, plugin, ...

» reduced privileges

Untrusted Library

%‘? NUS School of

*» | Computing




—— Software Fault Isolation (SFI)

» SFI - prevent library from modifying memory outside its
own space
» library prevented from writing to memory contents of main
» sandbox library to its own memory space

» What about system calls?

» What about tight interactions?
» Passing parameters by reference + return by reference
» Callbacks - library calls function in main
» Long jump + exceptions
» Shared Global variables

%‘? NUS School of

s | Computing




—— Example of Tight Interactions

» an example using 1ibpng

» shows various tight interactions between main and 1ibpng




static void row_callback(png struct *png, png bytep new_row,
png uint 32 row_num, int pass) { // display the row }

int main (void) {
FILE *fp = fopen("foo.png", "rb");
png struct *png = png _create_read_struct(...);
png _info *info = png _create_info_struct(png);
if (setjmp(png_jmpbuf(png))) { libpng API
png_destroy read_struct(&png, &info, NULL);
close(fp); return 1;
}
png_set progressive_read_fn(ptr, ..., row _callback, ...);
while (1) {
char buff[1024];
size t len = fread(buff, 1, 1024, fp);
if (!len) break;
png_process_data(png, info, buff, len);
}
png_destroy read_struct(&png, &info, NULL);
fclose(fp); return 0;



static void row_callback(png struct *png, png bytep new_row,
png uint 32 row_num, int pass) { // display the row }

int main (void) {

FILE *fp = fopen("foo.png", "rb");

png struct *png = png create _read struct(...);

png_info *info = png _create_info_struct(png); Returning

if (setjmp(png_jmpbuf(png))) { Result by
png _destroy read struct(&png, &info, NULL); Reference
close(fp); return 1;

}

png _set progressive read fn(png, ..., row callback, ...);

while (1) {
char buff[1024];

size_t len = fread(buff, 1, 1024, fp); Passmg
if (!len) break; Parameter by
png_process_data(png, info, buff, len); Reference

}
png destroy read struct(&png, &info, NULL);

fclose(fp); return 0;



static void row_callback(png_struct *png, png bytep new_row,
png_uint_32 row_num, int pass) { // display the row }

int main (void) {
FILE *fp = fopen("foo.png", "rb");
png struct *png = png create _read struct(...);
png_info *info = png create info_struct(png);
if (setjmp(png_jmpbuf(png))) { Long Jump
png destroy read struct(&png, &info, NULL);
close(fp); return 1;

}
png_set progressive read fn(ptr, ..., row_callback, ...);
while (1) {
char buff[1024]; Callback
size t len = fread(buff, 1, 1024, fp);
if (!len) break;
png _process_data(png, info, buff, len);
}

png destroy read struct(&png, &info, NULL);
fclose(fp); return 0;

10



—— Library Sandboxing Solutions

» Google Native Client (NaCl)
» Designed to sandbox untrusted modules in browser (Chrome)
» SFl-based
» can be used for sandboxing libraries (but ...)
» Well supported by Google, may not be so easy to use
» Comes with tool chain and tool support

» Codelalil
» Research prototype
» Developed at NUS
» New memory model, differences from SFl
» Supports Tight Interactions

s | Computing

%‘? NUS School of




—— Native Client Basics

» recompile module with NaCl tool chain
» generates safe machine code
» does not support all programs
» only safe subset of machine instructions
» disallowed instructions: syscall, int, lock, ...

» Codein NaCl sandbox

» can only access NaCl created region of memory
» memory access errors cause exceptions
» hardware exception handling limitations
» no system calls allowed
» NaCl supports restricted 1ibc with system calls run outside sandbox

» NaCl compiled code reasonably efficient — rewrites potentially unsafe
memory + jmp instructions to safe sequences

%‘? NUS School of

s | Computing




—— (CodeJail Basics 1

» Novel Memory Model
» different from SFI

» main + library share same address space
» contents of memory differ
» main can read/write untrusted library memory

» untrusted library cannot write to memory of main - leads to separate

copy
» library can read memory of main

» library memory is persistent — supports library global variables
» designed to support tight interactions
» except for library writing to main's memory
» shared global variables used in controlled way supported by APIs

» Implemented with operating system memory protections

%? NUS School of

s | Computing




—— (CodelJail Basics 2

» Can work with any reasonable library
» No recompilation

» Codelail APl is used to interact with library
» but can be made transparent with rewritten library wrappers

» System calls restricted using a system call policy
» library can run with reduced privileges

%‘? NUS School of

s | Computing




—— (odeJail Implementation

» Linux prototype

» protection guarantees due to Unix/Linux kernel mechanisms
+ virtual memory protection

» reasonable overheads
» overheads commensurate with % calls and tight interactions
» transparently run real programs + real libraries with tight
interactions

» tested libraries with tight interactions:
» libpng, 1ibtiff, 1ibbzip2, 1ibexpat
» Firefox with 1ibpng sandboxed

s | Computing

%‘? NUS School of




—— Native Client vs CodeJail

NaCl CodelJail
» source needed » binaries sufficient
» recompile with NaCl toolchain » no recompilation — existing binaries
» source modification needed » no modification, transparent to main
» library need to use NaCl » APl wrapper library may be needed
mechanisms » can also write programs with CodelJail API
» main program may need changes
» compatibility » compatibility
» SFImodel, tight interactions not » supports many tight interactions
allowed
» implementation » implementation
» architecture specific, requires de- » OS based, portability based on OS
optimizations mechanisms, overhead ~ page fault + etc
» efficient - only a few percent » not as efficient as NaCl to transfer context

overhead on SPEC benchmarks from main to library

School of

v | Computing




— Security Guarantees

» Both SFl solutions (Native Client) and Codelail

» memory in main cannot be modified by library
» ensures integrity of main

» system privileges are restricted in library




—— Attack on Library

» Suppose library is malicious or has exploited vulnerability
» arbitrary code execution in library
» normally bad news

» Sandboxed library/plugin
» arbitrary code execution in library
» more restricted in NaCl
» cannot modify datainmain
» cannot write to main stack + heap + globals
» cannot change execution in main

» only has privileges of library
» cannot escalate privileges

%‘? NUS School of

s | Computing




—— Library Security Checklist

» Does your code use libraries?
» Do you use plugins?
» Do you use loadable runtime modules?
» Can external libraries be loaded?

» Are the libraries trusted?
» should they be trusted?
» are exploitable vulnerabilities possible?

» Can your libraries be modified or substituted?
» library path attacks

» Do you have source code for libraries?
» Do you have source code for your programs/applications?

%‘? NUS School of

s | Computing




—— How to protect yourself

» SFl solutions work
» Native Client - particularly if its a browser plugin

» may require source code + rewriting of main + library
» may be hard if there is significant tight interactions

» runtime overheads low modulo code changes
» may be higher if code is large
» significant data copying/transfers needed

» Libraries with tight interactions

» Codelail-like solutions

» not all tight interactions can be supported
» reasonable programs + libraries may be transparent to sandbox

» Codelail still alpha stage

%‘? NUS School of

s | Computing







