RSACONFERENCE 2014 ASIA PACIFIC & JAPAN

Capitalizing on Collective Intelligence

Whose Cloud Is It Anyway? Exploring Data Security, Ownership and Control

SESSION ID: CDS-T11

Sheung-Chi NG

Senior Security Consulting Manager, APAC SafeNet, Inc.

Cloud and Virtualization Are Change the Way IT is Managed and Consumed

RSACONFE

ASIA PACIFIC & JAPAN

Agile. Now. On demand. Simple. Secure?

Cloud Benefits Are Being Realized...

- 80% of mature cloud adopters are seeing:¹
 - Faster access to infrastructure
 - Greater Scalability
 - Faster Time to Market for Applications
- 50% of cloud users report benefits including:¹
 - Better application performance
 - Expanded geographic reach
 - Increased IT staff efficiency

Cloud Benefits Realized by Cloud Maturity

...But Cloud Benefits Are Driven by Sharing

And Security and Compliance Are Not the Biggest Fans of Sharing...

Leading Inhibitors to Cloud Adoption

Roadblocks to Reaching Next Phase

eNet

Roadblocks

451 TheInfoPro 2013 Cloud Computing Outlook – Cloud Computing Wave 5

RSACONFERENCE 2014 ASIA PACIFIC & JAPAN

Security and Compliance Concerns With Shared Clouds

Data Governance Lack of Visibility	 Can you track all of my data instances? Backups? Snapshots? Am I aware of government requests/discovery? Do you knew when data is copied/moved ?
Data Compliance Lack of Data Control	 Who is accessing my data? Can I illustrate compliance with internal and external mandates? Is there an audit trail of access to my data?
Data Protection Risk of Breach and Data Loss	 Are all my data instances secure? Can I assure only authorized access to my data? Can I "pull the plug" on data that's at risk of exposure or who's lifecycle has expired?

How Do You Maintain Ownership and Control Of Your Information In A Multi-Tenant Environment?

Encryption enables

Governance / Compliance

- Know about every access event
- Location agnostic
- Non repudiation and attestation

Ownership and Control

- Set effective access policies
- Separation of duties
- Data shredding

Data Security

 Prevent leaks or unauthorized access

ASIA PA

Data isolation

8

Sprawl resistant

Encryption: <u>Un-Sharing</u> in a Shared Environment

Risk – Control

Source: Control Quotient: Adaptive Strategies For Gracefully Losing Control (RSA US 2013) by Josh Corman and David Etue. "Stack" by Chris Hoff -> CSA

RSACONFERENCE 2014 ASIA PACIFIC & JAPAN

Cloud Data Protection –Data Security, Control & Ownership

irtualized infrastructure بوابق الع م

Root-of-trust and trusted crypto for virtualized infrastructure

Cryptographic <u>isolation of virtual</u> <u>machines</u> and storage containers

Storage encryption for Virtual Storage, CIFS, NFS, and iSCSI

Strong <u>authentication</u> to

Cloud Data Protection –Data Security, Control & Ownership

Root-of-trust and trusted crypto for virtualized infrastructure

Cryptographic <u>isolation of virtual</u> <u>machines</u> and storage containers

Storage encryption for Virtual Storage, CIFS, NFS, and iSCSI

Strong <u>authentication</u> to <u>virtualized infrastructure</u>

Root-of-trust and trusted crypto for virtualized infrastructure

PROBLEM

Loss of Digital Ownership and Control Secure Digital Signing and PKI in the Cloud

Proving you are you

- Where is root of trust in Digital Signing and PKI when it's all virtual?
- The challenge of attesting to ownership in a virtual world
- Current focus of virtualization research

Maintaining Keys in clouds

- When your cloud provider handles keys
 - Appropriate key material
 - Proper lifecycle and policy handling
 - Privileged user abuse

The Cryptography and Entropy Problem

- Difficult to get true randomness in highly replicated and automated cloud
- Flaws in cryptographic functions have huge consequences
 - September 2010 .NET encrypted cookie problem affects 25% of Internet servers.

KEY POINTS

- Broad cloud-based platform integration
- Application and data separation
- High performing virtual transactions

Secure Cloud-Based Identities and Transactions: Hardware Security Options

Establish digital ownership and root of trust in virtual environments

- > Broad cloud-based platform integration
- > Application and data separation
- > High performing virtual transactions

Crypto-as-Service

Reduced cost of ownership

- Amortize HSM over multiple applications, organizations, services
- Fewer boxes to buy, install and manage

Centrally managed cryptographic keys

- More secure and simpler to administer
- Keys replicated securely
- Centralized management

Cloud Data Protection – Data Security, Control & Ownership

Root-of-trust and trusted crypto for virtualized infrastructure

Cryptographic <u>isolation of virtual</u> <u>machines</u> and storage containers

Storage encryption for Virtual Storage, CIFS, NFS, and iSCSI

Strong <u>authentication</u> to <u>virtualized</u> infrastructure

Cryptographic isolation of virtual machines and storage containers

Securing Uncontrolled Virtual Instances

Achieving compliant isolation and separation of duties in multi-tenant environments

Unlimited Copying of Instances

- Instances could be copied without awareness
 - No visibility to instance location, no audit trail
- Instances used by competitors and malicious users
- Enables unlimited brute force attacking
 - Return to original copy for next iteration of password guessing

Unsecured Container of Confidential Data

- Identical to lost or stolen laptop, except the instance is often a server
- Virtual nature of makes the potential surface area much larger
 - Not just a single entity lost, potentially unlimited number

KEY POINTS

- Data Isolation
- Separation of Duties
- Cloud Compliance
- Pre-Launch Authentication
- Multi-Tenant Protection

Secure Virtual Machines

Control virtual machines in the cloud with secure instance encryption and authentication

Key Management HW (Supplemental Security Option):

- Manages encrypted instances
- Lifecycle key management
- Security policy enforcement
- Access control

Security Features

- > FIPS level pre-launch instance encryption
- > Secure login interface (HTTPS)
- Password, one time password, and certificate based authentication options
- > Event logging and activation notification

Maintain Trust & Control in Virtual Storage Volumes

Loss of ownership in a shared storage environments

Issue of Data Leakage

- Requires trust in meta-tagging or data isolation strategy of cloud provider
- Risks from misconfiguration and cloud administrators
- Regulatory evidence of privacy and integrity controls

Trust and Control Issues

If cloud provider offers encryption:

- Proper Key Handling
 - NIST Lifecycle compliance
 - Strength, uniqueness, rotation, etc.
- NIST approved algorithms

Administration trust

Separation of Duties

KEY POINTS

- Data Isolation
- Cloud Compliance
- Multi-Tenant Protection

Secure Virtual Storage

Maintain data privacy in shared storage environments with encrypted data isolation

Key Management HW (Supplemental Security Option):

- Manages encrypted instances
- Lifecycle key management
- Security policy enforcement
- Access control

Security Features

- > Multiple cloud storage options:
 - > Encrypting volume for storage servers
- > FIPS 140-2 Level 2 Security Certified Solution
- > Centralized Policy and NIST 800-57 Key Lifecycle Management

Cloud Data Protection – Data Security, Control & Ownership

Root-of-trust and trusted crypto for virtualized infrastructure

Cryptographic <u>isolation of virtual</u> <u>machines</u> and storage containers

Storage encryption for Virtual Storage, CIFS, NFS, and iSCSI

Strong <u>authentication</u> to <u>virtualized infrastructure</u>

Storage encryption for Virtual Storage, CIFS, NFS, and IP-SAN

Securing Uncontrolled Shared Storage

Achieving compliant isolation and separation of duties in multi-tenant environments

KEY POINTS

- Data Isolation
- Separation of Duties
- Cloud Compliance
- Multi-Tenant Protection

- No encryption
 - Everyone can see and manipulate all data files
 - Anyone who manages data can access it
 - Only secure when drive is powered off
 - No separation of duties or data isolation

Secure Virtual Share

Isolates data in Multi-tenant environments

Cloud Data Protection – Data Security, Control & Ownership

Root-of-trust and trusted crypto for virtualized infrastructure

Cryptographic <u>isolation of virtual</u> <u>machines</u> and storage containers

Storage encryption for Virtual Storage, CIFS, NFS, and iSCSI

ized infrastructure

tual

entication

auth

Strong authentication to virtualized infrastructure

Controlling Access to SaaS and Cloud Applications

Keeping data secure when you don't own the system

Enforcing Authentication Strategy in the Cloud

Multi-Factor authentication required for any apps

Cloud or Physical (Any devices "BYOD")

Likely even more critical for cloud-based applications

• Lower level of trust, invocation of additional regulatory requirements

Authentication Sprawl

- Separate authentication systems for each cloud provider
 - Operationally un-scalable
 - Typical user password/authentication fatigue and weak passwords

Preserving Flexibility

- Likely to use multiple cloud providers simultaneously
- Desire rapid re-provisioning to try new services
- Preserve options in chaotic cloud market
 - The cloud market will consolidate- not if, but when

KEY POINTS

- Single Sign On Access
- Federated Identities
- Seamless Integration
- Rapid Provisioning

SOLUTION

Secure Access to SaaS

Protect access to cloud-based applications via centrally managed authentication

Protect Everything: Networks, Applications and Authentication as a Service

Securing VDI Images with Strong Authentication and Encryption

Encryption: <u>Un-Sharing</u> in a Shared Environment

