

Mobile Security Attacks A Glimpse From the Trenches

SESSION ID: MBS-W06

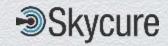
Yair Amit

CTO & Co-Founder Skycure @YairAmit

Adi Sharabani

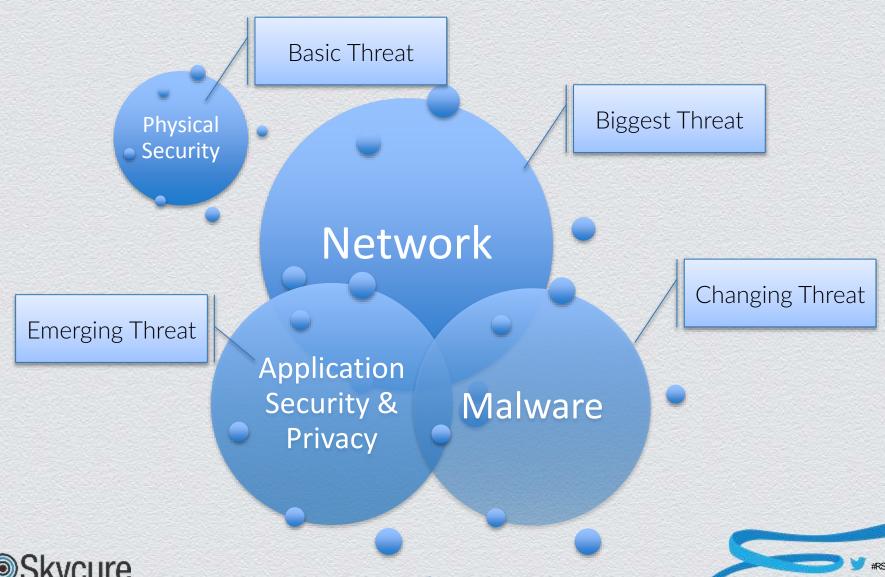
CEO & Co-Founder Skycure @AdiSharabani

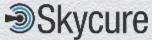
About the Presenters

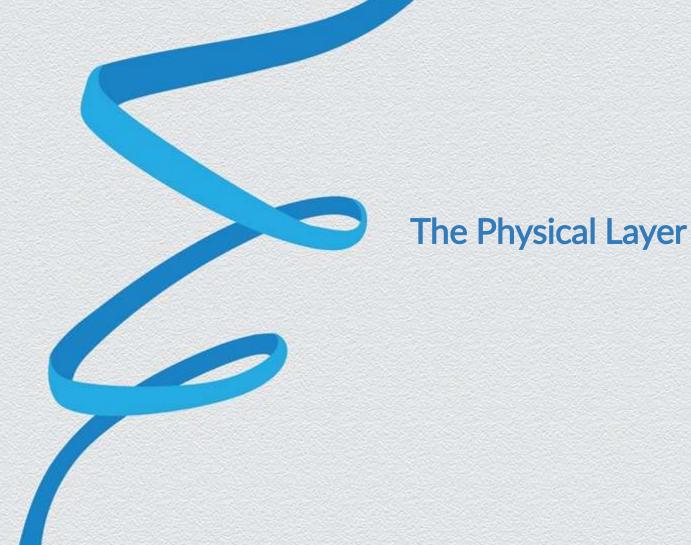

Yair Amit

- CTO & co-founder of Skycure
- Web, network and mobile researcher
- Filed over 15 security patents
- Former manager of the Application Security & Research group at IBM

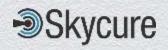
Adi Sharabani

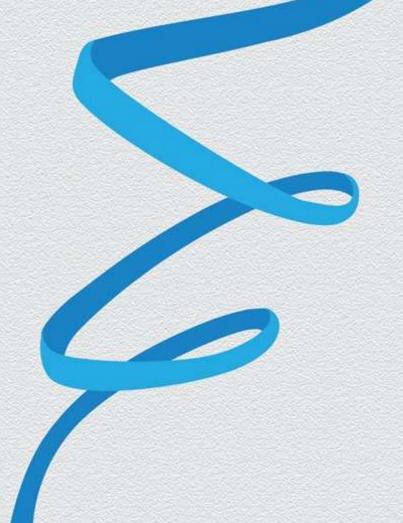

- CEO & co-founder of Skycure
- Watchfire's research and security group [Acquired by IBM]
- Led the security of much of IBM software
- Fellow at Yuval Ne'eman's workshop
- Teacher at Ohel Shem high-school





A Holistic Outlook on Mobile Security





The Physical Layer

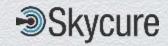
- Threat vector
 - Device lost / Device stolen / Temporary physical access
- Basic physical security needs:
 - Remote wipe
 - Locate device
 - Backup
 - Local storage
 - Passcode protection
- The above becomes OS responsibility
- MDM provides the above OS features together with management and policy enforcement

Network Based Attacks

Insights from Skycure's database

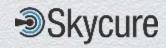
- Real-world statistics (Skycure's database)
 - 10763 scanned networks

7.5% of scanned networks pose a threat

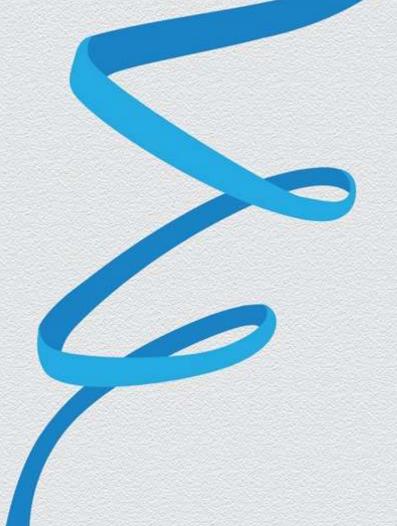


12%
of all devices
connected to such
networks
every week

20%
of all devices
connected to such
networks
every month

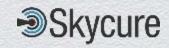


Network Based Attacks


Implementation-Based Vulnerabilities

Vs.

Design-Based Vulnerabilities

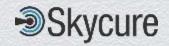


Network Based Attacks

Implementation issues

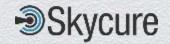
Implementation-Based Vulnerabilities

iOS vs. Android



• Example I:

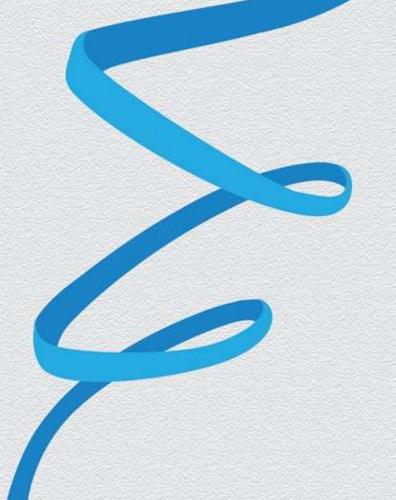
gotofail



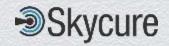
Gotofail - The Code

```
static OSStatus
SSLVeritySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
                                 uint8 t *signature, UInt16 signatureLen) {
    if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
        goto fail;
                                                                              Always goto
    if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
                                                                              "fail", even if
        goto fail;
    if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
                                                                                 err==0
       goto fail;
        goto fail;
    if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
        goto fail;
                                                                        Code is skipped
    err = sslRawVerify(ctx,
                                                                    (even though err == 0)
                       ctx->peerPubKey,
                       dataToSign,
                                                  /* plaintext length */
                       dataToSignLen,
                       signature,
                       signatureLen);
                                                          Function returns 0 (i.e. verified),
fail:
    SSLFreeBuffer(&signedHashes);
                                                           even though sslRawVerify was
    SSLFreeBuffer(&hashCtx);
                                                                     not called
   return err;
```




Example II:

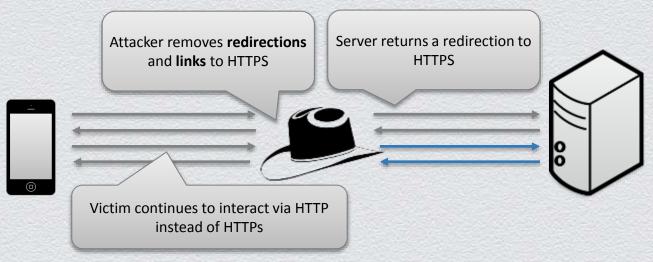
Heartbleed

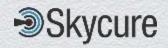


Network Based Attacks

Design issues

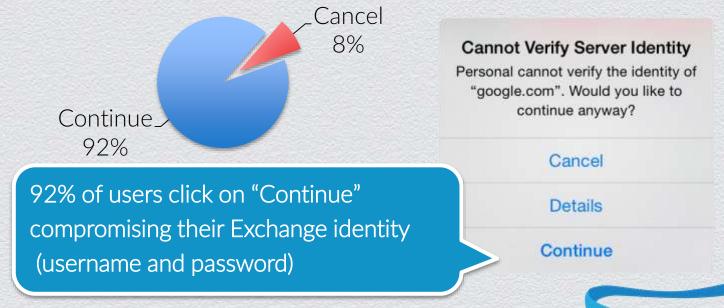
Design-Based Vulnerabilities

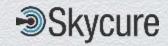

- Design issues are much more interesting
 - ... and much harder to fix
- These are divided into two types:
 - General "protocol" vulnerabilities
 - Design issues affecting mobile OS
- Mobile devices are more susceptible:
 - Lack of adequate security solutions
 - Excessive use of untrusted networks



Example I:

sslstrip

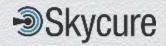




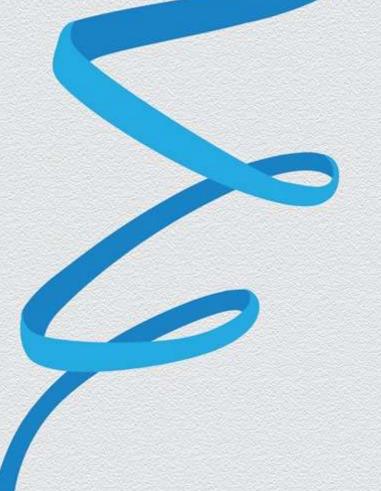
Design-Based Vulnerabilities (Generic)

Example II:

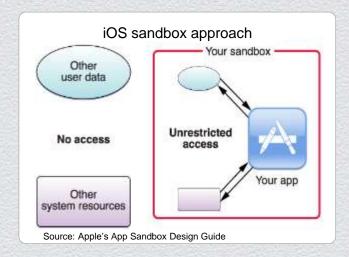
SSL decryption


Design-Based Vulnerabilities (Generic)

>> Read more

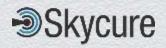

Example III:

Karma


Network Based Attacks

Mobile-specific design issues

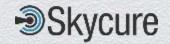
iOS Security Model


App Characteristics

- One Store
- Heavy Screening
- App Sandboxing

Profile Characteristics

- No Store
- No Screening
- No Sandboxing



Configuration Profiles

Where Do We Find Them?

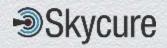
- Mobile Device Management (MDM)
- Cellular carriers
 - Usually used for APN settings
- Mobile applications
- Service providers

Demo: Participation Instructions

1. Open your Safari

2. Tap the blue button

3. Click on 'Install'

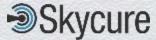

4. Click on 'Install Now'

5. Click on 'Done'

Start demo by opening Safari and browsing to:

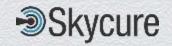
attack.skycure.com

Malicious Profiles


Where Do We Find Them?

- >> <u>Read more</u>
- Malicious "service providers" (apps/services/Wi-Fis/etc.)
- Vulnerable services
- Privacy violating services

Hacker gains access to your mail, business apps, cloud services, bank accounts and more, even if traffic is encrypted



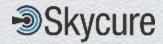
Malicious Profiles

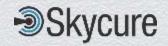
Going Viral

- Attacker hijacks victim's key identities
 - Corporate Exchange
 - Facebook
 - LinkedIn
- Attacker sends mass messages to victim's contacts, luring them to install the malicious profile
- Attack propagates

Am I Safe?

- Profile listing could indicate suspicious profiles
- Cat-and-mouse game: attackers can name their profile to look benign



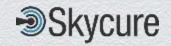


Example II:

WiFiGate

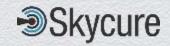
```
    adish — ssh — 72×14

Sakin:/System/Library/Carrier Bundles/iPhone root# ls -d [A-0
AIS_th.bundle
                        CW_tt.bundle
                                             Claro_qt.bundle
ATT_US.bundle
                                             Claro_hn.bundle
                        CW wi.bundle
AVEA_tr.bundle
                                             Claro_jm.bundle
                        CarrierLab.bundle
                                             Claro ni bundle
Aircel in.bundle
                        Celcom_my.bundle
Bell_ca.bundle
                        CellC za.bundle
                                             Claro_pa.bundle
BhartiAirtel_in.bundle Cellcom_il.bundle
                                             Claro_pe.bundle
Bouyques_fr.bundle
                        Chunghwa_tw.bundle Claro_pr.bundle
CMCC_cn.bundle
                        Claro_ar.bundle
                                             Claro_py.bundle
CSL_hk.bundle
                        Claro_br.bundle
                                             Claro_sv.bundle
CTM_mo.bundle
                        Claro_cl.bundle
                                             Claro_uy.bundle
CW_bs.bundle
                                             Comcel co.bundle
                        Claro_cr.bundle
CW_pa.bundle
                        Claro do.bundle
                                             Comviq_se.bundle
Sakin:/System/Library/Carrier Bundles/iPhone root#
```



App Level Security & Privacy

- Mobile OS enforce additional security models
 - Sandbox
 - Better updates
 - Controlled application stores
- App-level issues are now on the rise

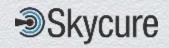


App Level Vulnerabilities

• Example I:

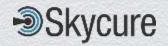
Plain HTTP

Daaa!



Example II:

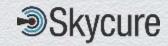
Certificate Pinning



Certificate Pinning

A Long Way to Go

- Almost all major apps today lack SSL Pinning
 - Susceptible to attacks such as malicious profiles by design
 - Also exploited when attacker gains access to a trusted CA
- Slow adoption should not come as a surprise
 - Implementation challenges
 - Less flexibility
 - Can become a nightmare if done wrong...



App Level Vulnerabilities

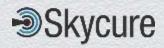
Example III:

HTTP Request Hijacking

A while later, ens the app Victim opens the app in an untrusted environment

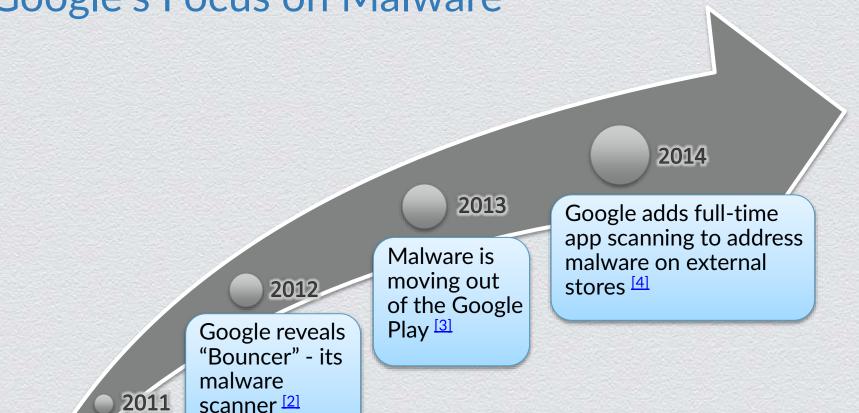
App logic has changed!

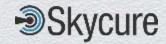
Арр


Victim interacts with the malicious server

Attacker returns a 301 directive specifying a permanent change in URI

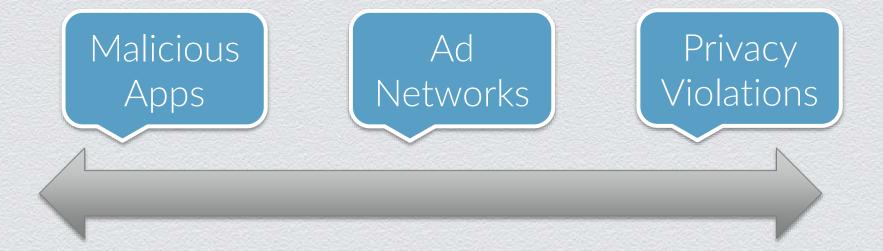
App continues to connect to the malicious server!

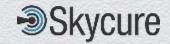

Malicious server can return actual results from the target server



Google's Focus on Malware

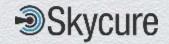
The year of **Android** malware [1]

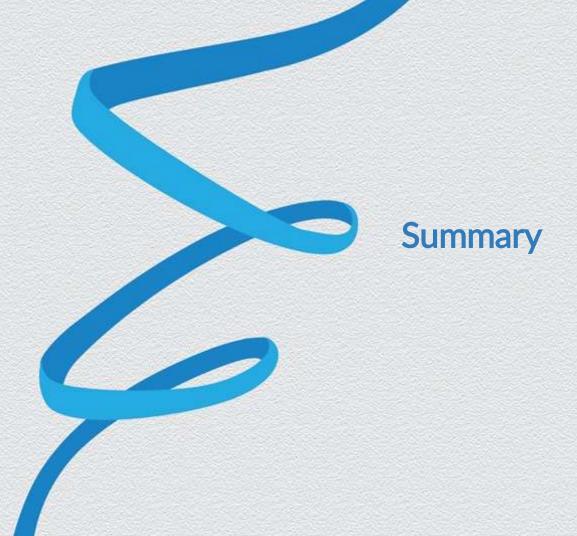

Android is becoming like iOS when it comes to malware



The Maliciousness Axis

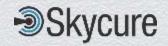
 While OS anti-malware techniques advance, there are other similar problems (harder to address)





The Maliciously Vulnerable App

- Malicious services sometimes try to justify their actions
 - "I need all your key-strokes to provide you with a better service"
- We are concerned about the Maliciously-Vulnerable app:
 - App with semi-naive service is created
 - App does not pose a privacy/security issue
 - App is approved to go on AppStore/Google Play.
 - App has a special crafted carefully thought vulnerability
 - Vulnerability used as a backdoor to escalate app for malicious activity



Summary

- The physical layer
 - Becomes the OS responsibility
- Network based attacks
 - Implementation vulnerabilities
 - Design vulnerabilities
 - Generic vs. mobile specific
- App level
 - Vulnerabilities
 - HTTP/S, Certificate Pinning, HTTP Request Hijacking
 - The "maliciousness" axis
 - Malware
 → Ad Networks
 → Privacy Violations

Thank you!

twitter: <a><u>@YairAmit</u>, <a><u>@AdiSharabani</u>

email: {yair,adi}@skycure.com

blog: http://www.skycure.com/blog

